Formerly Utilized Sites Remedial Action Program (FUSRAP)

Maywood Chemical Company Superfund Site

ADMINISTRATIVE RECORD

Operable Unit 2 - Groundwater

Document Number

GW-011

US Army Corps of Engineers. New York District

Groundwater Remedial Investigation Report Addendum

Volume I Report Text and Appendices

New York District Formerly Utilized Sites Remedial Action Program Maywood Superfund Site

Prepared by:

Shaw Environmental, Inc. 100 West Hunter Ave. Maywood, New Jersey 07607

for: US Army Corps of Engineers - Kansas City District Formerly Utilized Sites Remedial Action Program Contract No. DACW41-99-D-9001

US Army Corps of Engineers_®

March 2004, Revision 3

DRAFT GROUNDWATER REMEDIAL INVESTIGATION REPORT ADDENDUM

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. DACW41-99-D-9001 TASK ORDER 00001 WAD 05, WBS 15

Submitted to:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Submitted by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

> March 2004 Revision 3

Volume 1 Report Text and Appendices

 Issued to:
 ______ Date:

 Copy No.
 _____ Controlled

DRAFT GROUNDWATER REMEDIAL INVESTIGATION REPORT ADDENDUM

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. DACW41-99-D-9001 TASK ORDER 00001 WAD 05, WBS 15

Submitted to:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Submitted by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

> March 2004 Revision 3

Volume 1 Report Text and Appendices

Reviewed / Approved by:		Date:
	Andy Mills	
	Project Manager	
Reviewed / Approved by:		Date:
	Kevin F. Donnelly, P.E.	
	Project Environmental Engineer / Task Manager	
Reviewed / Approved by:		Date:
	Alan F. Brown, P.E.	
	Contractor Quality Control System Manager	
Reviewed / Approved by:		Date:
	Robert DeMott, R.G.	
	Project Hydrogeologist	
Reviewed / Approved by:		Date:
	Michael R. Kulbersh, P.H.G.	
	Hydrogeologist	

RECORD OF REVISIONS

Revision No.	Description of Revision Date	
Revision 01	Issue of Draft Report	August 2003
Revision 02	Issue of Revised Draft Report	October 2003
Revision 03	Issue of Revised Draft Report	January 2004

This page intentionally left blank.

TABLE OF CONTENTS

RECO	ORD O	F REV	ISIONS	i
TABL	LEOF	CONTI	ENTS	iii
LIST	OF TA	BLES.		V
LIST	OF FI	GURES		vi
APPE	NDICI	ES		vii
ABBF	REVIA	TIONS	, ACRONYMS, FORMULAS AND SYMBOLS	ix
1.0	INTR	ODUC	TION	1_1
1.0	1.1		/IEW	
	1.2		OF THE RI ADDENDUM	
	1.3		GROUND	
	1.4		ARY OF EXISTING SOIL AND OVERBURDEN GROUNDWATER	
			ING DATA	1-2
		1.4.1	Evaluation of Existing Soil Sampling Data	
		1.4.2	Evaluation of Existing Overburden Groundwater Sampling Data	
2.0	INVE	STIGA	TION SCOPE OF WORK & METHODOLOGY	2-1
	2.1		ORING WELL INSTALLATION	
	2.2	WELL	DEVELOPMENT AND SPECIFIC CAPACITY TESTING	2-2
	2.3	WELL	ABANDONMENT	5-3
	2.4	BOREH	IOLE GEOPHYSICS	5-3
	2.5		R LEVEL MEASUREMENTS	
	2.6	Monit	ORING WELL SURVEY	5-5
	2.7	GROUN	NDWATER SAMPLING	
		2.7.1	Total Volatile Organic Compound Sampling	5-5
		2.7.2	Biogeochemical Sampling	5-5
		2.7.3	Sample Management / Data Validation	5-7
3.0			F THE FIELD INVESTIGATION	
	3.1		DGEOLOGY	
			Overburden and Bedrock Geology	
		3.1.2	Water Level Measurements	
		3.1.3	Permeability Testing	
	2.2	3.1.4	Borehole Geophysics	
	3.2		OC SAMPLING RESULTS	
		3.2.1	Benzene Sampling Results	
	2.2	3.2.2 Diagram	Other VOCs	
	3.3		OCHEMICAL SAMPLING RESULTS	
		3.3.1	Dissolved Oxygen and Oxidation-Reduction Potential	
		3.3.2	Alternate Electron Acceptors	
		3.3.3	Nutrients	

		3.3.4 Oxygen Demand3.3.5 Microbiologic Activity	
	3.4	DISCUSSION	
4.0	SUM		
	4.1	SUMMARY / CONCLUSIONS	4-1
	4.2	RECOMMENDATIONS	4-3

LIST OF TABLES

- Table 1-1
 Summary of Historical Benzene Soil Results
- Table 2-1Well Construction Data Table
- Table 2-2Well Survey Data Table
- Table 2-3Field Parameters Measured Prior to Groundwater Sampling FUSRAP Maywood
Superfund Site
- Table 3-1Synoptic Water Level Measurements for Bedrock Monitoring Wells, FUSRAP
Maywood Superfund Site
- Table 3-2Summary of Hydraulic Conductivity Values Obtained from Specific Capacity
Tests, FUSRAP Maywood Superfund Site
- Table 3-3Summary of Benzene Results for Bedrock Groundwater Samples RI Addendum
FUSRAP Maywood Superfund Site
- Table 3-4Summary of Benzene Results Exceeding Groundwater Standards RI Addendum
FUSRAP Maywood Superfund Site
- Table 3-5Summary of Detectable TCL VOCs RI Addendum FUSRAP Maywood
Superfund Site
- Table 3-6Summary of TCL VOCs Exceeding Groundwater Standards RI Addendum
FUSRAP Maywood Superfund Site
- Table 3-7
 Electron Acceptor Data RI Addendum FUSRAP Maywood Superfund Site
- Table 3-8
 Nutrient Results RI Addendum FUSRAP Maywood Superfund Site
- Table 3-9Biological Data RI Addendum FUSRAP Maywood Superfund Site
- Table 3-10
 Summary of Benzene Groundwater Results for Wells Presented on Figure 3-3

LIST OF FIGURES

Figure 1-1	Location of FMSS Properties
Figure 1-2	Benzene Results for Bedrock Monitoring Well Groundwater Samples (2000 - 2002)
Figure 1-3	Benzene in Overburden Soils
Figure 1-4	Overburden Benzene Results for Geoprobe® and Overburden Monitoring Well Groundwater Samples (2000 – 2002)
Figure 1-5	Overburden Groundwater Surface Elevation Map of MISS Based on July 2001 Synoptic Event
Figure 2-1	Existing and Newly Installed Bedrock Wells Sampled and Abandoned Wells – RI Addendum
Figure 3-1	Potentiometric Surface Map – Bedrock Monitoring Wells – June 23 & 24, 2003
Figure 3-2	Summary of Bedrock Fracture Orientation - RI Addendum Wells
Figure 3-3	Benzene Results for Bedrock Well Groundwater Samples - RI Addendum Investigation
Figure 3-4	Eh and DO Field Data - Bedrock Wells RI Addendum
Figure 3-5	Oxidation-Reduction Potentials for Various Oxidation-Reduction Reactions
Figure 3-6	Electron Acceptor Reduction Data - Bedrock Wells – RI Addendum
Figure 3-7	Nutrient Analysis - Bedrock Wells - RI Addendum
Figure 3-8	Oxygen Demand and Microbiological Data - Bedrock Monitoring Wells – RI Addendum

APPENDICES

Appendix A	RI Addendum Work Plan A-1	
Appendix B	Well Permits and Monitoring Well RecordsB-1	
	Boring & Well Construction LogsC-1 C.1 – Boring Logs C.2 – Monitoring Well Construction Logs	
Appendix D	Well Development Forms D-1	
Appendix E	Specific Capacity FormsE-1	
Appendix F	Monitoring Well Abandonment FormsF-1	
Appendix G Borehole Geophysical Report and GWRI Rose and Steronet Plot of Water Filled Fractures Appendix G.1 – Borehole Geophysical Report Appendix G.2 – GWRI Rose and Stereonet Plot of Water Filled Fractures		
Appendix H	Monitoring Well Certification – Form BH-1	
Appendix I	Well Sampling RecordI-1	
Appendix J	Quality Control Summary Report (QCSR)J-1	

This page intentionally left blank.

ABBREVIATIONS, ACRONYMS, FORMULAS AND SYMBOLS

μg/L	microgram per liter
μg/kg	microgram per kilogram
ALT	Advanced Logic Technologies
ATP	Adenine Triphosphate
ATV	acoustic televiewer
B	blank contamination data qualifier
BOD5	biological oxygen demand
BRA	Baseline Risk Assessment
BTEX	benzene, toluene, ethylbenzene, and xylenes
CAD	computer aided drafting
CDQMP	Chemical Data Quality Management Plan
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFU	colony forming units
CH ₄	methane
COD	chemical oxygen demand
D	dilution data qualifier
DO	dissolved oxygen
DOE	U.S. Department of Energy
EDSA	Electronic Data Submittal Application
EE/CA	Engineering Analysis / Cost Evaluation
Eh	redox potential
EMP	Environmental Monitoring Program
EPA	U.S. Environmental Protection Agency
Fe ⁺²	divalent iron
Fe _{solid}	trivalent iron (mineral form)
FFA	Federal Facilities Agreement
FMSS	FUSRAP Maywood Superfund Site
FRes	field resistivity
FTemp	field temperature as related to borehole geophysics
FS	Feasibility Study
FUSRAP	Formerly Utilized Sites Remedial Action Program
gpm	gallons per minute
GWQC	New Jersey Groundwater Quality Criteria
GWRI	Groundwater Remedial Investigation
ICP	Inductively Coupled Plasma
J	estimated data qualifier
Kd km	Batch Sorption Soil Distribution test kilometer
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
$\begin{array}{l} MCA\\ MCL\\ MCW\\ mi\\ MISS\\ mL\\ mL/min\\ Mn^{+2}\\ Mn^{+3}\\ Mn^{+4}\\ Mn_{solid} \end{array}$	Methods for Chemical Analysis Maximum Contaminant Level Maywood Chemical Works miles Maywood Interim Storage Site milliliters milliliters per minute divalent manganese trivalent manganese Manganese (solid) Manganese (solid)

NADNorth American DatumNGVDNational Geodetic Vertical DatumNH4,*ammoniaNO5*nitrateNJNew JerseyNIDEPNew Jersey Oppartment of Environmental ProtectionNJGWQC New Jersey Groundwater Quality CriteriaNEnorth-ast azmithal bearingNNEnorth-ast azmithal bearingNNEnorth-ast azmithal bearingNPLNational Priorities ListNTUNephelometric Turbidity UnitsNWNorthwest Azmithal BearingORPOxidation Reduction PotentialPCETetrachloroethenePIDphotoionization detectorPOTWPublicly Owned Treatment WorksPVCpolyvinyl chlorideQFlow Rate, fl3/dayQA/QCquality assurance / quality controlRrejected data qualifierRARisk AssessmentRAGSRisk Assessment Guidance for SuperfundRIRemedial InvestigationsDrawdown, ftSAICScience Applications International CorporationShawStandard MethodsS ^{2*} sulfateS&WSouth-southwest azmithal bearingSRIspl point resistanceSSWsouth-southwest azmithal bearingTtransmissivity, ft ² /dayTCEtransmissivity, ft ² /dayTCE <t< th=""><th>MNA MS MSD</th><th>monitored natural attenuation Matrix Spike Matrix Spike Duplicate</th></t<>	MNA MS MSD	monitored natural attenuation Matrix Spike Matrix Spike Duplicate
PCETetrachloroethenePIDphotoionization detectorPOTWPublicly Owned Treatment WorksPVCpolyvinyl chlorideQFlow Rate, ft3/dayQA/QCquality assurance / quality controlRrejected data qualifierRARisk AssessmentRAGSRisk Assessment Guidance for SuperfundRIRemedial InvestigationsDrawdown, ftSAICScience Applications International CorporationShawShaw Environmental, Inc.SMStandard MethodsS²sulfideSQ4"sulfideSWStone & Webster, Inc.SPspontaneous potentialSPRsingle point resistanceSWsouth-southwest azmithal bearingTtransmissivity, ft²/dayTCEtrichloroetheneTCLtarget compound listTICtop of inner casingTOCtotal organic carbonTPtotal phosphorousUnon-detect data qualifierUJestimated non-detect data qualifierUSACEU.S. Army Corps of Engineers	NGVD NH4 ⁺ NO3 ⁻ NJ NJDEP NJ NE NNE NPL NTU	National Geodetic Vertical Datum ammonia nitrate New Jersey New Jersey Department of Environmental Protection GWQC New Jersey Groundwater Quality Criteria northeast azmithal bearing north-northeast azmithal bearing National Priorities List Nephelometric Turbidity Units
PIDphotoionization detectorPOTWPublicly Owned Treatment WorksPVCpolyvinyl chlorideQFlow Rate, f13/dayQA/QCquality assurance / quality controlRrejected data qualifierRARisk AssessmentRAGSRisk Assessment Guidance for SuperfundRIRemedial InvestigationsDrawdown, ftSAICScience Applications International CorporationShawShaw Environmental, Inc.SMStandard MethodsS²sulfideS&WStone & Webster, Inc.SPspontaneous potentialSPRsingle point resistanceSSWsouth-southwest azmithal bearingSTLSevern Trent Laboratories, Inc.SWsouthwest azmithal bearingTtransmissivity, ft²/dayTCEtrichloroetheneTCLtarget compound listTICtop of inner casingTOCtotal organic carbonTPtotal phosphorousUnon-detect data qualifierUJestimated non-detect data qualifierUSACEU.S. Army Corps of Engineers	ORP	Oxidation Reduction Potential
QA/QCquality assurance / quality controlRrejected data qualifierRARisk AssessmentRAGSRisk Assessment Guidance for SuperfundRIRemedial InvestigationsDrawdown, ftSAICScience Applications International CorporationShawShaw Environmental, Inc.SMStandard MethodsS ² sulfideSQ4 [†] Stone & Webster, Inc.SPspontaneous potentialSPRsingle point resistanceSSWsouth-southwest azmithal bearingSTLSevern Trent Laboratories, Inc.SWsouthwest azmithal bearingTtransmissivity, ft²/dayTCEtrichloroetheneTCLtarget compound listTICtop of inner casingTOCtotal organic carbonTPtotal phosphorousUnon-detect data qualifierUJestimated non-detect data qualifierUJU.S. Army Corps of Engineers	PID Potw	photoionization detector Publicly Owned Treatment Works
RARisk AssessmentRAGSRisk Assessment Guidance for SuperfundRIRemedial InvestigationsDrawdown, ftSAICScience Applications International CorporationShawShaw Environmental, Inc.SMStandard MethodsS ²² sulfideSQ4 [#] Stone & Webster, Inc.SPspontaneous potentialSPRsingle point resistanceSSWsouthwest azmithal bearingSTLSevern Trent Laboratories, Inc.SWsouthwest azmithal bearingTtransmissivity, ft²/dayTCEtrichloroetheneTCLtarget compound listTICtop of inner casingTOCtotal organic carbonTPtotal phosphorousUnon-detect data qualifierUJestimated non-detect data qualifierUSACEU.S. Army Corps of Engineers		
SAICScience Applications International CorporationShawShaw Environmental, Inc.SMStandard MethodsS'2sulfideSO4=sulfateS&WStone & Webster, Inc.SPspontaneous potentialSPRsingle point resistanceSSWsouth-southwest azmithal bearingSTLSevern Trent Laboratories, Inc.SWsouthwest azmithal bearingTtransmissivity, ft²/dayTCEtrichloroetheneTCLtarget compound listTICtop of inner casingTOCtotal organic carbonTPtotal phosphorousUnon-detect data qualifierUJU.S. Army Corps of Engineers	RA RAGS	Risk Assessment Risk Assessment Guidance for Superfund
TCEtrichloroetheneTCLtarget compound listTICtop of inner casingTOCtotal organic carbonTPtotal phosphorousUnon-detect data qualifierUJestimated non-detect data qualifierUSACEU.S. Army Corps of Engineers	SAIC Shaw SM S ⁻² SO ₄ ⁼ S&W SP SPR SSW STL	Science Applications International Corporation Shaw Environmental, Inc. Standard Methods sulfide sulfate Stone & Webster, Inc. spontaneous potential single point resistance south-southwest azmithal bearing Severn Trent Laboratories, Inc.
UJestimated non-detect data qualifierUSACEU.S. Army Corps of Engineers	TCE TCL TIC TOC	trichloroethene target compound list top of inner casing total organic carbon
	UJ	estimated non-detect data qualifier
	VOC	

1.0 INTRODUCTION

1.1 OVERVIEW

1 Shaw Environmental, Inc. (Shaw) is under contract to the U.S. Army Corps of Engineers (USACE) for 2 the environmental restoration of the Formerly Utilized Sites Remedial Action Program (FUSRAP) 3 Maywood Superfund Site (FMSS). The FMSS consists of property owned by the Federal Government, 4 the Maywood Interim Storage Site (MISS), the Stepan Company, and other government, commercial, and 5 private properties in Maywood, Lodi, and Rochelle Park, New Jersey (NJ) (Figure 1-1). The 6 Groundwater Remedial Investigation (GWRI) was conducted on the FMSS during 2000, 2001, and 2002, 7 which culminated in the submittal of the Draft GWRI Report to the U.S. Environmental Protection 8 Agency (EPA) and the New Jersey Department of Environmental Protection (NJDEP) in June 2003 9 (USACE 2003a).

Preliminary results of the GWRI were presented to the EPA on February 19, 2002. In that meeting, the USACE was directed to further investigate the source and downgradient extent of a bedrock benzene plume that was partially delineated on the MISS. An RI Addendum Work Plan was prepared by the USACE, and approved by the EPA and NJDEP in May 2002 (Appendix A). The scope of work included installation of source area and downgradient bedrock monitoring wells, permeability testing, and borehole geophysical logging of newly installed wells, water level measurements, and a new round of groundwater

16 sampling for volatile organic constituents (VOCs) and biogeochemical parameters.

Fieldwork commenced in August 2002, and the final elements were completed in June 2003. This reportprovides the results of the RI Addendum fieldwork, and provides recommendations for future action.

1.2 SCOPE OF THE RI ADDENDUM

- 19 The scope of work was defined in the RI Addendum Work Plan, and includes the following tasks or 20 elements:
- 1. Install four bedrock monitoring wells on the MISS to delineate the benzene source area.
- 22 2. Install two offsite bedrock monitoring wells to determine the downgradient extent of the benzene
 23 plume.
- Develop six newly installed wells, and calculate well hydraulic conductivity using a short-term specific capacity test.
- 26 4. Collect and analyze groundwater samples from 38 bedrock monitoring wells for TCL VOCs.
- 5. Collect and analyze biogeochemical (bioremediation) samples at nine wells.
- 6. Conduct borehole geophysics at six new wells to measure the distribution and orientation of borehole fractures.
- 30 7. Survey newly installed wells.
- 31 8. Measure water level elevations at 54 shallow and deep bedrock wells.
- 9. Prepare the RI Addendum Report, which includes evaluation of the data, conclusions, and recommendations.

1.3 BACKGROUND

34 Elevated benzene concentrations on the MISS were first identified in May 2001, and have been partially 35 delineated by sampling of former bedrock test wells and other monitoring wells as part of the GWRI. 36 Benzene sampling results from the GWRI (USACE 2003b) are presented on Figure 1-2. This figure 37 depicts a benzene isopleth map superimposed over the December 2001 bedrock groundwater flow lines. 38 As depicted, a contiguous benzene plume is plotted on site, extending northeast (NE) to southwest (SW) 39 from the area of upgradient well MW-26D to MISS-5B, which is located at the downgradient property 40 boundary. Maximum detected benzene concentrations within the plume were recorded at wells BRPZ-5 41 (5000 µg/L) and MISS-5B (3500 µg/L). Benzene was also detected in deep packer zone samples 42 collected at bedrock wells BRPZ-5 (480 µg/L) and BRPZ-7 (270 µg/L duplicate sample). The sampling 43 results indicate that the highest benzene concentrations are found in shallow bedrock and, that benzene 44 concentrations decrease approximately an order of magnitude between shallow (35 to 60 feet bgs open 45 interval) wells and deep (90 to 115 feet bgs open interval) wells.

- 46 The upper portion of the plume appears to be aligned with local groundwater flow, however, this changes 47 further downgradient as bedrock groundwater flow turns west, as noted in the GWRI. Benzene transport 48 in bedrock may be impacted (or controlled) by aquifer anisotropy in the Passaic Formation. Aquifer 49 permeability is typically higher along bedrock strike or bedding plane fractures, which locally trends
- 50 north-northeast (NNE).

51 GWRI benzene sampling data was presented in a February 19, 2002 meeting with the EPA. The USACE 52 was directed to prepare an RI Addendum Work Plan to further delineate the benzene source area and 53 downgradient extent of the plume. An RI Addendum Work Plan was submitted to the EPA and NJDEP 54 on May 8, 2002, and was approved without modification by the regulators on May 31, 2002. The 55 approved RI Addendum Work Plan is presented in Appendix A (USACE 2002a).

1.4 SUMMARY OF EXISTING SOIL AND OVERBURDEN GROUNDWATER SAMPLING DATA

1.4.1 Evaluation of Existing Soil Sampling Data

Soil sample data was reviewed from previous MISS and Stepan investigations to identify potential benzene source areas for the plotted bedrock benzene plume. This includes Geoprobe[®], boring and test pit sampling data collected as part of the Remedial Investigation Report (DOE 1992), Pilot Study Report (USACE 2000a), and Draft Groundwater Remedial Investigation Report (USACE 2003a) for the FMSS. Soil sampling data collected as part of the Stepan Remedial Investigation Report (CH2M Hill 1994) was also reviewed in the evaluation.

62 A total of 137 soil borings, well test borings, and test pit soil samples were obtained from the MISS and 63 adjacent areas of the Stepan Chemical property. From these 137 sample locations, 202 soil samples were 64 submitted for benzene analysis. A majority of these samples were collected from the MISS. Soil sample 65 locations, identification, and benzene sampling results are shown on Figure 1-3. Additional sampling 66 data (sample type, date, and investigation) is summarized in Table 1-1. As shown on Figure 1-3, a large 67 number of soil samples were collected in the probable source area, which is located upgradient and in 68 proximity to monitoring well MW-26D (refer to Figure 1-2). Soils were also sampled along the slab of 69 former MCW Building 62, which is located within the plotted probable benzene source area. Historical 70 MCW maps show two above ground chemical storage tanks located on the east side of former 71 Building 62. The location of former MCW Building 62 is shown in Figures 1-2 and 1-3.

Soil sampling results show benzene soil exceedances of the 1000 μ g/kg NJDEP standard in 4 of 202 samples. Benzene soil exceedances are highlighted on **Figure 1-3**, and as shown, exceedances were detected at USACE Test Pit 2 (4200 μ g/kg). Test Pit 4 (2600 μ g/kg). Test Pit 5 (280 000 μ g/kg) and in

- detected at USACE Test Pit 3 (4300 μ g/kg), Test Pit 4 (3600 μ g/kg), Test Pit 5 (380,000 μ g/kg), and in Steppen apil baring C 44 laceted along the southern have fithe Step
- 75 Stepan soil boring C-44 located along the southern boundary of the Stepan property. Test Pits 3 and 4 are 76 located at the edge of former Retention Ponds C and E', and Test Pit 5 is located at the southern edge of
- 10 located at the edge of former Retention Ponds C and E', and Test Pit 5 is located at the southern edge of 17 Building 76. As shown in Figure 1-3, benzene soil exceedances were not detected in test pits along the
- 78 slab at former MCW Building 62.
- 79 Test Pits 3, 4, and 5 are located within the mapped extent of the overburden aquifer (USACE 2003a). As

80 discussed in Section 3.1.2 "Water Level Measurements", slightly elevated benzene concentrations were

81 detected in overburden groundwater downgradient of Building 76 on the MISS, refer to Figure 1-4. Site

82 areas with shallow bedrock (without an overburden aquifer) were also evaluated, since those areas could

- 83 potentially leach benzene directly into the bedrock aquifer.
- 84 Site areas without an overburden aquifer were mapped as part of the GWRI and are shown on **Figure 1-5**
- 85 (GWRI Figure 3-19b). Shallow bedrock was mapped on the Stepan Chemical Site, and is located
- 86 approximately 275 feet east of the plotted bedrock benzene plume.

1.4.2 Evaluation of Existing Overburden Groundwater Sampling Data

87 Historical benzene overburden groundwater sampling data was evaluated on the MISS and Stepan as a

88 potential source to the bedrock aquifer. This included a review of overburden groundwater benzene data

89 collected from the Remedial Investigation Report (DOE 1992), Groundwater Remedial Investigation

90 Report (USACE 2003a), and 2002 Annual Monitoring Report (USACE 2003d) prepared for the MISS,

91 and Stepan's Remedial Investigation Report (CH2M Hill 1994).

92 Volatile organic constituent (VOC) overburden groundwater sampling was conducted on the MISS and 93 adjacent Stepan property during the GWRI (USACE 2003a). Overburden groundwater benzene sampling 94 results are presented on Figure 1-4 (GWRI Figure 5-6). Low-level benzene exceedances were detected 95 in MISS Geoprobe[®] locations 12b017 (71 µg/L), 12b017 (4 µg/L), 12b028 (2 µg/L), 12b020 (9 µg/L), and 96 12b011 (36 µg/L). The reported GWRI overburden groundwater benzene concentrations on the MISS are 97 considered too low to constitute a source of benzene to the bedrock aquifer. As shown on Figure 1-4. 98 overburden wells located adjacent and downgradient to the bedrock benzene plume (B38W25S, 99 MISS-6A, MISS-7A, PW-1S, OVPZ-17, B38W19S, and MISS-1AA) report very low or non-detect 100 concentrations of benzene.

- 101 Historical sampling data (except recently installed wells PW-1S and OVPZ-17) for these wells goes back
- 102 to 1987, and likewise do not report exceedances of benzene in groundwater (USACEb). Evaluation of the
- 103 current and historical overburden groundwater benzene data does not show any evidence of a former
- 104 overburden groundwater source to the bedrock aquifer. Historical groundwater benzene data for the
- bedrock aquifer is presented and discussed in Section 3.4.

This page intentionally left blank.

2.0 INVESTIGATION SCOPE OF WORK & METHODOLOGY

As outlined in the RI Addendum Work Plan, Appendix A, six additional bedrock wells were advanced as depicted on **Figure 2-1**. Four of the bedrock monitoring wells were advanced on the MISS, and two wells were advanced in Rochelle Park, along Grove Avenue. The purpose of the additional monitoring wells was to further attempt to define the source and extent of the bedrock benzene contamination presented and discussed in the GWRI report (USACE, 2003a). The four bedrock monitoring wells were installed within the MISS in an attempt to identify potential overburden sources of benzene, whereas the wells in Rochelle Park were installed to define the extent of the benzene plume.

113 The RI Addendum also consisted of the sampling and analysis of 38 bedrock monitoring wells for TCL 114 VOCs. Additionally, nine bedrock wells were analyzed for geochemical parameters (alternate electron 115 acceptors, and nutrients) and biological activity - refer to specific analyses discussed in Section 2.7 116 "Groundwater Sampling".

117 A synoptic round of water levels was conducted and included the measurement of shallow and deep 118 bedrock wells. A total of 54 wells were gauged. Additionally, borehole geophysical activities were 119 conducted on five of six bedrock wells. All wells but MW-33D were included in the borehole 120 geophysical program.

121 The specific capacity of the newly installed bedrock monitoring wells was determined by pumping the 122 wells at a constant rate. The pumping rate and depth to water were recorded until water level stabilization 123 occurred. This information was used to determine the aquifer transmissivity and hydraulic conductivity 124 of the bedrock aquifer.

2.1 MONITORING WELL INSTALLATION

125 Six bedrock monitoring wells were installed as part of the RI Addendum (Figure 2-1), and included 126 bedrock monitoring wells MW-27D, MW-28D, MW-31D, MW-32D, MW-33D, and MW-34D. During 127 installation, a 10-inch diameter temporary casing was driven to the top of bedrock to prevent running 128 sands and potential hole collapse. A nominal 10-inch air hammer was used to clean out the casing and 129 advance the borehole 10 to 15 feet into bedrock until competent rock was encountered. At this point, all 130 source area monitoring wells (MW-27D, MW-28D, MW-33D, and MW-34D) were left overnight to 131 recharge (groundwater), and each well was inspected the next morning for product using a clear bailer. 132 No product or product sheen was detected in any source area wells. A 6-inch diameter steel casing was 133 subsequently seated and grouted into bedrock and allowed to set for a minimum of 48 hours. After 134 curing, all boreholes were advanced an additional 25 feet into bedrock using a nominal 6-inch diameter 135 air hammer. All wells, except MW-33D, were completed with an open borehole.

136 Well MW-33D encountered soft / fractured bedrock zones in the open borehole below the casing, so the 137 well was screened to prevent borehole collapse. The well was completed with 20-feet length of 2-inch 138 diameter (ID) PVC screen (10 slot), riser, and Morie No. 1 filter sand. The annular space was tremie 139 grouted from the top of the filter pack to the surface with a bentonite-cement grout. Due to the 140 overburden depth (>20 feet) at MISS wells, the driller could not pull the 10-inch ID temporary drive 141 casings at wells MW-27D, MW-28D, and MW-34D, and they were left in place. Wells MW-31D and 142 MW32D were installed in residential driveways, where drive casings were left in place to avoid potential 143 damage to concrete. The retention of 10-inch ID drive casings has resulted in "double cased" bedrock 144 wells, where the overburden aquifer is cased off from bedrock by both the drive casing and 6-inch ID 145 riser pipe. This should enhance the seal between the overburden and bedrock aquifers. MISS wells 146 MW-27D, MW-28D, MW-33D, and MW-34D were completed as stickups whereas offsite wells

147 MW-31D and MW-32D were completed in the flush mount configuration. Well construction data is 148 summarized in **Table 2-1**. Monitoring Well permits and Monitoring Well Records, the latter prepared by

- the Driller, B&B Drilling, Inc., Netcong, NJ, is presented in Appendix B. The boring logs and as-built
- 150 well construction diagrams for the bedrock monitoring wells are provided in Appendix C.

2.2 WELL DEVELOPMENT AND SPECIFIC CAPACITY TESTING

All newly installed wells with the exception of MW-33D were developed by air and surge / pumping to remove sediment, and ensure well communication with the aquifer. Bedrock wells were air developed by the drill rig after completion of the hole to remove sediment from the well. The air was pumped under pressure to the well bottom through drill rods, which displaced water and sediment from the well. Development water was collected in a mud tub, and subsequently pumped off into drums. Once the wells recharged, they were developed by surging and pumping.

Prior to well pumping development, the well headspace was field screened for VOCs with a PID. The depth to water and depth to bottom were measured with a water level indicator to calculate the volume of water in the well. A YSI 650MDS and flow through cell was used to monitor pH, temperature, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity parameters during development. Development was continued until a minimum three well volumes were purged and turbidity measurements of 50 Nephelometric Turbidity Units (NTUs) or less was achieved.

Bedrock wells were pumped using either a 2-inch submersible pump or a 1.5-inch disposable submersible (whale) pump in sequence to produce the required flow. The pump was also used as a surge device to suspend and pump off sediment that settled on the bottom of the well. During the initial phase of development, the wells were pumped at a relatively high flow rate to evacuate coarse sediment at the bottom of the well, and to draw down the water level. The pump was shut off, and the water level in the well was allowed to recover. The well was then pumped at a sustainable rate to remove the required volume and to achieve a turbidity reading below 50 NTU.

170 Following well development, all bedrock wells were pumped at a constant rate to determine the wells 171 specific capacity. The specific capacity results are discussed further in Section 3.0 "Results of the Field 172 Investigation". Bedrock wells were pumped at rates ranging from 0.15 gpm to approximately 5gpm. 173 During the specific capacity test, the depth to water was typically recorded every 10 to 15 minutes. 174 Knowing the pumping rate and associated drawdown, the transmissivity ("T") of the aquifer may be 175 determined. The Method by Razack and Huntley, 1991, as presented in Fetter (1994) was used to 176 determine an approximate value of transmissivity. The equation cited was derived for a granular 177 (alluvial) aquifer, and assumes homogenous and isotropic conditions, in an aquifer of infinite areal extent. 178 The well is assumed to be fully penetrating, with minimal well loss. The tested wells are installed into the 179 bedrock aquifer, which has principle secondary (fracture) porosity, and may not meet all assumptions of 180 the Razack and Huntley (and Theis) equation.

A similar specific capacity testing method employed by Bradbury and Rothschild (1985) reported less than an order of magnitude difference in calculated hydraulic conductivity (K) values at pump test and specific capacity tested wells in an alluvial aquifer, and "just over an order of magnitude" in a fractured dolomite (bedrock) aquifer. Accordingly, the calculated transmissivity values should be considered estimated values. The equation used to determine "T" as presented in Fetter (i.e., Section 7.6, page 256-257, eq., 7-90b,1994). is as follows: 187

- 188 Where:
- 189 $T = ft^2/day$
- 190 $Q = ft^3/day$
- 191 s = ft

192 Transcribed Specific Capacity forms are contained in Appendix E, and the results are discussed in193 Section 3.0 "Results of the Field Investigation".

 $T=33.6(Q/s)^{0.67}$

194 Water generated from well development and specific capacity testing was placed in drums or truck 195 mounted tanks and brought back to the MISS. After treatment and batch testing, the water was 196 discharged to the Publicly Owned Treatment Works (POTW).

2.3 WELL ABANDONMENT

197 Three USACE monitoring wells, including MW-1S, MW-1D and B38W06B, were abandoned during the 198 RI Addendum field program. Although well abandonment was not proposed in the Work Plan, the details 199 are provided in this report. USACE monitoring wells MW-1S/1D were located on the Bristol Manor 200 property and well B38W06B was located on the Stepan property. Abandonment of well MW-1S/D was 201 approved by the EPA pursuant to a USACE and property owner request. The USACE noted that MW-1S 202 was historically dry, and that the cluster wells were of limited further technical value to the FUSRAP RI.

Bedrock monitoring well B38W06B was damaged by a truck, and the stickup was sheared off. At this location on the Stepan site, the overburden aquifer is heavily impacted by benzene, and there was a USACE concern about cross contamination if the well riser was broken or displaced. Well B38W06B was abandoned and not reinstalled due to the close proximity of Stepan wells PT-1DA/B (60 feet) and PT-2DA/B (100 feet), which could be used for water level measurements.

All monitoring wells were abandoned by B&B Drilling in accordance with the NJDEP requirements and procedures for the decommissioning of wells in N.J.A.C. 7:9D-3 and the site-specific Chemical Data Quality Management Plan (USACE 2002b). Monitoring Well Abandonment forms are included in Appendix F.

212 Abandonment activities included tremie grouting bentonite-cement grout into the well. Displaced water

213 was containerized and the grout was allowed to flow to the surface in order to ensure an adequate seal.

Well casing / risers were cut approximately 1.5 feet below grade and backfilled with a Quikcrete cement

to approximately 6 inches below grade. The well pads were broken up and taken to the MISS for disposal. Topsoil was placed on top of the cement at all locations, and grass was planted at the Bristol

217 Manor residence.

2.4 BOREHOLE GEOPHYSICS

Geophysical Applications, Inc. performed borehole geophysical logging as part of the RI Addendum
 activities. All newly installed bedrock monitoring wells were logged with the exception of MW-33D.
 This well was completed with 2-inch PVC and would not accommodate the borehole geophysical
 equipment.

The logging suite included conventional measurements (caliper, fluid temperature [FTemp], fluid resistivity [FRes], single-point resistance [SPR], spontaneous potential [SP], and natural gamma), acoustic televiewer [ATV], and heat-pulse flowmeter logging. All borehole logs were referenced to depths below the top of the outer steel casing. The geophysical logging winches contain optical depth encoders that maintain depth measurements accurate within approximately \pm 0.2 feet throughout each borehole.

228 A Mount Sopris Model 4MXB digital logging winch was used with a Mount Sopris heat-pulse flowmeter, 229 polygamma, and caliper probes to obtain conventional geophysical logging data. The caliper probe 230 included a fluid resistivity / fluid temperature subassembly at the probe's bottom. Caliper, fluid 231 temperature, fluid resistivity, SP, SPR, and natural gamma data were recorded at 0.1-foot depth 232 increments, as determined by the logging winch's digital depth encoder. The fluid logs were recorded 233 using a relatively slow speed of 3 to 4 feet per minute to allow the thermistor to measure subtle 234 temperature variations. The remaining conventional logs were recorded at higher logging speeds 235 (typically 5 to 10 feet per minute).

236 ATV data were recorded using Advanced Logic Technologies (ALT) Model ABI40 acoustic televiewer 237 probe with the Mount Sopris logging winch. This televiewer can adapt to a wide range of borehole 238 diameters (up to 16-inch diameter) and is not hindered by suspended sediments in the water column. 239 ATV data were recorded at 0.01-foot intervals throughout each borehole at a speed of approximately 240 1.3 feet per minute. The ABI40 contains a high-frequency sonic transducer aimed upwards at a rotating 241 mirror. This mirror is tilted approximately 45 degrees from the probe's vertical axis to direct the sonic 242 pulses at the borehole wall. The transducer divides each sweep around a borehole's circumference into 243 288 arc segments, and records two-way sonic travel time and reflected signal amplitude for each segment. 244 The ABI40 chooses the largest-amplitude reflected signal within the measurement time window as 245 representing the borehole wall.

Flowmeter data were recorded at specific depth ranges approximately 5 feet apart, above and below possible bedrock fractures indicated by the caliper and fluid temperature / resistivity logs. Flow data were recorded in ambient conditions on the downward run to measure natural groundwater flow between fracture zones encountered by each boring. Flowmeter data were subsequently repeated under low-flow (approximately 0.15 to 0.5 gallon per minute [gpm]) pumping conditions to help determine which fracture zones were providing significant recharge into the wells.

All geophysical logs were recorded on a laptop computer's hard drive and transferred to a CD-ROM as a backup precaution. Post-survey plot scales were adjusted to display as much detail as possible. All conventional logs from the same borehole were merged onto one log plot to aid data correlation. Acoustic televiewer logs are presented on a separate page for clarity. All geophysical log data are presented in this report using ALT's WellCad software package, with a special image-processing module for the acoustic televiewer data.

258 The borehole geophysical survey report is presented in Appendix G.

2.5 WATER LEVEL MEASUREMENTS

A synoptic round of groundwater level measurements was obtained from 54 bedrock monitoring wells on June 23 and 24, 2003. Forty-nine (49) of the water level measurements were obtained on June 23, with the remaining measurements obtained the next morning. Groundwater levels were obtained using electronic water level devices, and measurements were referenced to the inside casings of the monitoring wells, where applicable. All groundwater measurement data was converted to elevations relative to the 1929 National Geodetic Vertical Datum (NGVD). A bedrock groundwater isopleth map was prepared, and is discussed in Section 3.0 "Results of the Field Investigation".

2.6 MONITORING WELL SURVEY

All newly installed wells were surveyed on June 25, 2003 by Garden State Surveyors, Inc., a licensed
New Jersey Surveyor (NJ License 37586). Horizontal controls were based on the North American Datum
(NAD), 1927. Vertical elevations were based on the NGVD, 1929. Table 2-2 presents the Northing,
Easting, Ground Surface, Top of Inner Casing, where applicable, and Top of Outer Casing for each well.
Monitoring Well Certifications (NJDEP Form B) are provided in Appendix H.

2.7 GROUNDWATER SAMPLING

As part of the RI Addendum, groundwater samples were collected from 38 bedrock monitoring wells. The low flow sampling method (EPA, 1998a) was used to collect the groundwater samples at each of the wells. Each well was purged at a pumping rate varying between 200 and 500 milliliters / minute (mL/min), and groundwater samples were collected at a pumping rate of approximately 250 mL/min. A decontaminated (non-dedicated), 2-inch diameter stainless steel submersible pump was used for purging and sample collection. Prior to reuse of the pump, the pump was decontaminated in accordance with the procedures outlined in the CDQMP (USACE 2002b).

Dedicated polyethylene tubing was connected through a two-way valve to a flow through cell. Initially, the water was allowed to drain out of an out flow tube near the top of the flow through cell and into a

bucket until the parameters stabilized and the water sample could be collected. A YSI 650MDS and flow

through cell was used to measure pH, dissolved oxygen, temperature, conductivity, oxidation / reduction

282 potential (ORP) and turbidity (**Table 2-3**). Once the parameters stabilized, a groundwater sample was

collected. Field measurements were typically recorded at 5-minute intervals.

Groundwater samples were obtained by shutting off the valve to the flow through cell and opening the valve to the sample collection tube. Sample glassware and preservative were in accordance with the analytical method. Upon collection of the sample, the flow through cell, field instruments, and pumps were decontaminated following the procedures outlined in the CDQMP (USACE 2002b). Well purging and sampling records are provided in Appendix I.

2.7.1 Total Volatile Organic Compound Sampling

Thirty-eight bedrock groundwater samples were collected as part of this supplemental investigation,
including six newly installed wells. As outlined in the RI Addendum Work Plan, the RI Addendum, and
Environmental Monitoring Program (EMP), field sampling efforts were combined to avoid duplication of
effort and reduce costs. TCL VOC data was utilized from 11 bedrock wells sampled as part of the EMP.
All VOC samples were analyzed by Severn Trent Laboratory, STL Connecticut, Shelton, CT using
SW-846 Method 8260B.

2.7.2 Biogeochemical Sampling

295 Biogeochemical sampling was performed to further characterize the bedrock aquifer, and provide specific 296 information about the utilization and availability of electron acceptors, oxygen demand, nutrients and 297 bacteria in groundwater. Dissolved oxygen and oxidation-reduction potential were measured in the field 298 during sampling using a calibrated YSI MS 650 meter and flow through cell. Monitored natural 299 attenuation (MNA) is currently being evaluated for remediation of the benzene plume, and collection of 300 biogeochemical samples / parameters is the first step in the evaluation process. Biogeochemical samples were collected from nine wells, including MISS wells MISS-5B, BRPZ-4, BRPZ-9, MW-26D, and offsite 301 302 wells B38W17D, MW-31D, MW-32D, B38W15D, and MW-2D.

303 The wells were sampled for the following alternate electron acceptors and reduced species: nitrate / 304 ammonia (NO₃⁻/NH₄⁺), total and dissolved manganese (Mn_{Tot}/Mn_{dis}), total and dissolved iron (Fe_{Tot}/Fe_{dis}), sulfate / sulfide (SO_4^{-2}/S^{-2}) , and methane (CH_4) . Although nitrogen gas (N_2) is the thermodynamically 305 306 favored reaction and product of denitrification, measurement of nitrogen gas is not feasible in the field. 307 Therefore, ammonia, is measured in groundwater to show that nitrate reduction is occurring as part of in-308 situ biodegradation. Iron (Fe_{Tot}/Fe_{dis}) and manganese (Mn_{Tot}/Mn_{dis}) samples were collected in field 309 filtered (0.45 micrometer) and unfiltered samples, and were analyzed using the total iron / manganese 310 (EPA) method 6010B. In the normal groundwater environment, stability field diagrams indicate iron and manganese exist in the oxidized Fe^{+3} and Mn^{+4} form and reduced Fe^{+2} and Mn^{+2} form. Fe^{+3} and Mn^{+4} exist 311 312 as insoluble oxyhydroxides in groundwater, and are referred to as Fe_{solid} and Mn_{solid} in the text. Reduced Fe⁺² and Mn⁺² are relatively soluble and found in the dissolved groundwater fraction, and are referenced 313 314 as Mn_{dis} and Fe_{dis} in the text. It is noted that some Fe_{solid}/Mn_{solid} may be present in fine particulate or 315 colloidal form in groundwater (less than 0.45 micrometer), and would pass through the filter and be 316 analyzed as part of the dissolved fraction. This would result in the overestimation of the Mn_{dis}/Fe_{dis} 317 fraction in groundwater. For this reason, Mn_{dis}/Fe_{dis} concentrations are only considered an estimate of the reduced Fe^{+2}/Mn^{+2} fraction in groundwater. 318

319 Groundwater oxygen demand was measured by sampling and analysis for biological oxygen demand 320 (BOD_5) and chemical oxygen demand (COD). Sampled nutrients include nitrate / ammonia, total 321 phosphorous, and total organic carbon (TOC). Microbiologic samples were collected to measure bacteria 322 concentrations in groundwater, and include analysis for total heterotrophs and benzene, toluene, 323 ethylbenzene, and xylenes (BTEX) degraders. All samples were analyzed by STL Connecticut with the 324 exception of methane and BTEX Degrader Heterotrophs / Total Heterotrophs. Methane analyses were 325 performed by STL's Burlington laboratory, Burlington, Vermont. BTEX Degraders / Total Heterotroph 326 analysis was performed by New Jersey Analytical Laboratory, Pennington, NJ. Analytical methods used 327 during the RI Addendum are summarized as follows:

- EPA's Test Methods for Evaluating Solid Waste Physical / Chemical Methods (SW-846) 6010B:
 Iron and manganese, total and dissolved.
- SW-846 8015A modified: Methane.
- EPA's Methods for Chemical Analysis of Water and Wastes (MCA) 300: Nitrate.
- MCA 300: Sulfate.
- MCA 365.2: Phosphorous (total).
- MCA 350.1: Ammonia.
- MCA 376.1: Sulfide.
- MCA 415.1: Total organic carbon.
- MCA 405.1: BOD.
- MCA 410.4: COD.
- Standard Methods for the Examination of Water and Wastewater (SM) 9215M: BTEX Degrader Heterotrophs.
- SM9215B: Total Heterotrophs.

2.7.3 Sample Management / Data Validation

342 Sample management includes laboratory Quality Assurance / Quality Control (QA/QC) and data package 343 review by the project chemist. Shipped samples were logged in by laboratory staff and temperature 344 blanks and/or the temperature of the cooler(s) were measured. The sample containers were checked for 345 breakage / leakage, and in the case of the VOC samples, the sample containers were inverted to check for 346 the presence of air bubbles. The laboratory then verified that the samples identified on the 347 chain-of-custody were received and that the sample containers / methods of analysis match the 348 information on the chain-of-custody. If there were discrepancies, they were noted on the sample login 349 form, and Shaw was contacted if clarification was required.

A laboratory chain-of-custody was prepared which identifies the methods of analysis required for each sample aliquot. The pH of the sample was verified, if applicable, and the laboratory then recorded this information. After analysis, the data package was assembled and internally reviewed by the laboratory QA Staff. Discrepancies were addressed in the case narrative, which may include sample holding time exceedances, temperature issues, poor matrix spike / matrix spike duplicate (MS/MSD) or laboratory control standards (LCS) recoveries, etc.

Upon receipt of the data package from the laboratory, the Project Chemist reviewed all packages for completeness and the case narrative to identify major issues. All data packages were submitted to a certified validator for validation in accordance with the U.S. Army Corp Guidance CENWK-EC-EF Data Quality Evaluation Guidance (USACE 1999). RI Addendum Data Packages were validated by Kestrel Environmental, Inc., Freeport, Maine, or Validata, Duluth, Georgia. The following components of the data packages were reviewed by the validation contractor:

- Holding times
- Laboratory blank data
- 364 LCSs
- Surrogate recovery (organic methods)
- MS/MSD and MS/MD percent recoveries and relative percent differences
- Internal standards (primarily organic methods)
- Inductively Coupled Plasma (ICP) or atomic absorption QC (inorganic methods only)
- Calibration
- Sample reanalysis
- Secondary dilutions
- Laboratory case narrative
- 373 Data qualifiers were assigned to samples by the validator, and include the following:
- U denotes the analyte was non-detect
- UJ denotes that the analyte was non-detect and that the detection limits were estimated
- J denotes that the concentration presented, was estimated
- R denotes that the analyte was rejected

378 A data validation memorandum was prepared by the validation contractor for each data package. The

379 data validation memo was reviewed by the project chemist, and entered into the project database. Copies

380 of the laboratory data packages and data validation memorandums are presented as attachments to the RI

381 Addendum's Quality Control Summary Report (QCSR), Appendix J.

382 As required by the NJDEP Site Remediation Program, and as identified in NJAC 7:26E or the Tech Regs, 383 an electronic data submission is required for samples obtained as part of a Site Investigation, Remedial 384 Investigation, or Remedial Action. The HazSite deliverable was formatted in an ASCII Tab Delimited 385 format. Appendix J contains the electronic deliverable on CD. Both chemical and geochemical data 386 obtained as part of the RI Addendum is contained on the CD. As recommended by NJDEP, USACE 387 utilized the Electronic Data Submittal Application (EDSA) routine to verify that the files would be 388 acceptable for importing into the NJ DEP database. The database files were accepted by the EDSA 389 routine.

3.0 **RESULTS OF THE FIELD INVESTIGATION**

Results of the RI Addendum Field Investigation are presented in Section 3.0. Results of well logging and installation, water level monitoring, specific capacity (permeability) testing, and borehole geophysics are discussed in Section 3.1. Groundwater TCL VOC and biogeochemical sampling results are presented in Sections 3.2 and 3.3, respectively.

3.1 HYDROGEOLOGY

3.1.1 Overburden and Bedrock Geology

394 Four bedrock monitoring wells were installed on the MISS as part of the source area investigation, and two were installed on Grove Avenue, in order to define the downgradient extent of the benzene plume. 395 396 Bedrock was encountered at 18 to 20 feet depth in wells installed on the MISS, and 9 to 10 feet depth at 397 wells MW-31D and MW-32D on Grove Avenue. Overburden deposits encountered at MISS wells 398 MW-27D, MW-28D and MW-33D are generally described as tan to black sand from the surface to 15 to 399 20 feet depth, bgs. This sand unit also contains wood fragments and clumps of clay material that may 400 have been ash, and likely represents fill and stained soils in and around Former Retention Pond A. The 401 fill unit is underlain by native red-brown sand at well MW-28D, and is presumably present at other locations below fill. Overburden deposits at MISS well MW-34D are described as gravel, sand, and silt 402 403 fill to approximately five feet bgs, and is underlain by native red-brown sand and gravel above bedrock.

404 Overburden deposits at wells MW-31D and MW-32D on Grove Ave are described as a thin concrete and 405 sub-base fill at the surface, and overlies red brown sand to bedrock. The shallow (overburden) 406 groundwater table was encountered at approximately 12 feet bgs on the MISS, and at 5 feet bgs along 407 Grove Avenue in Rochelle Park. All bedrock wells were cased through the overburden aquifer, and 408 casings were set and grouted a minimum of 10 feet into bedrock.

409 Bedrock cuttings were sampled and logged every 5 feet during drilling, and fractures were logged as 410 encountered. Bedrock is described as a red-brown, interbedded fine to medium grained sandstone and 411 coarse grained siltstone. Large discrete fractures were mapped in wells MW-31D and MW-32D, and 412 readily produced water during development and testing. Several feet of soft, weathered bedrock was 413 typically encountered at the bedrock surface, and five of six well casings were set at 10 feet (below 414 bedrock surface) in competent rock. Shallow bedrock at well MW-33D was extensively fractured, and 415 was described as "soft" during drilling. Casing was installed 18 feet to competent rock in order to 416 minimize the potential for leakage / communication from the overlying overburden aquifer. Fractured 417 and "soft" rock zones were also logged at depth, so the borehole was screened (with a 2-inch PVC screen) 418 to avoid collapse.

3.1.2 Water Level Measurements

419 Water levels were obtained from 54 bedrock monitoring wells on June 23 and 24, 2003. Groundwater 420 level measurements, well elevations ((top of inner casing (TIC)), groundwater elevations and other well 421 data are summarized in Table 3-1. Plotted and contoured shallow bedrock groundwater well elevations 422 are shown on **Figure 3-1**. As depicted in this figure, the direction of groundwater flow is predominantly 423 west-southwest, with a component of flow towards the south. The slope of the water table ranges from 424 approximately 0.035 ft/ft on the MISS and Stepan property, to 0.01 ft/ft further west and downgradient 425 from the site in Rochelle Park (west of Route 17). Groundwater elevations were also measured at five shallow / deep bedrock well clusters, including wells MW-19D/DD, MW-23D/DD, MW-24D/DD, 426 427 BRPZ-4/BRPW-1DRE, and PT-1DA/1DB. All bedrock well clusters showed slightly higher groundwater

heads in the shallow well, which indicates an overall downward vertical gradient within bedrock. It is
noted that the site had received approximately 8.33 inches of rain for the month of June 2003, which
significantly exceeds the 20 year monthly June average of 3.51 inches (recorded at Teterboro Airport,
NJ). Overburden / bedrock cluster wells also measured during this period (as part of the Environmental
Monitoring Program or EMP) also recorded higher (shallow depth to water) heads, and may reflect

433 aquifer recharge following a period of very heavy rainfall.

434 Historical groundwater levels for overburden/shallow bedrock and shallow bedrock/deep bedrock clusters 435 on the FMSS and Stepan Company Property were evaluated in the Draft RI Report (Section 3.5.3) to 436 identify vertical gradients. Water levels were measured in July and December 2003 for the 21 newly 437 installed overburden/bedrock well clusters, and 13 quarterly measurements were evaluated for the 14 438 existing overburden/bedrock well clusters. A number of cluster locations showed consistent vertical 439 gradients over time. Most overburden/shallow bedrock cluster wells on the MISS showed a net downward 440 gradient from the overburden to bedrock aquifer; whereas most overburden/shallow bedrock clusters 441 located downgradient (Rochelle Park and Lodi, NJ) showed a net upward gradient from the bedrock to 442 overburden aquifer.

- ++2 overburden aquiter.
- 443 Shallow and deep bedrock cluster well elevation monitoring was started in 2003 as part of the GWRI, and
- 444 was conducted in June and December 2003. As noted in the Draft RI Report, all bedrock clusters except
- 445 PT-1DA/PT-1DB show weak (<0.1 feet difference) or inconsistent (reversed) vertical gradients. Stepan
- 446 Company well cluster PT-1DA/PT-1DB has shown a consistent downward gradient."

3.1.3 Permeability Testing

447 As discussed in Section 2.2, specific capacity tests were conducted on all newly installed wells following 448 completion of well development or concurrent with the last development event. During the test, 449 groundwater discharge (Q) was stabilized at a constant rate, and well drawdown was monitored. The well 450 specific capacity (Q/s) was computed once the discharge and water levels stabilized for three or more 451 readings. The specific capacity tests were typically conducted over a 70-minute (MW-31D) to 452 130-minute (MW-33D and MW-34D) period. The method of Razack and Huntley (Fetter 1994) was used 453 to determine the transmissivity "T" of the bedrock aquifer. The hydraulic conductivity of the bedrock 454 aquifer was then determined by dividing the transmissivity of the aquifer by the saturated thickness of the 455 aquifer, which was determined to be the wells "open hole" interval.

A summary of the specific capacity test parameters (Q, s), computed specific capacity, transmissivity, and hydraulic conductivity for each well is given in **Table 3-2**. The calculated well hydraulic conductivities ranged from 2.79 x 10^{-3} (MW-27D) to 3.01 x 10^{-2} cm/sec (MW-31D), with a geometric mean of 7.05 x 10^{-3} cm/sec. Pumping rate and water level data for each test is provided in Appendix E. The computed hydraulic conductivity is higher than the median (1.63 x 10^{-3} cm/s) and mean (1.48 x 10^{-3} cm/s) values cited in the RI. This may be attributed to the effect of two high yielding wells (MW-31D and MW-32D) on the small data set.

3.1.4 Borehole Geophysics

Borehole geophysics was conducted at five of the six newly installed bedrock wells. The logging suite included caliper, SPR, SP, natural gamma, fluid temperature, fluid resistivity, ATV, and heat pulse flowmeter logging (ambient and pumping conditions). Borehole fractures were identified using the ATV and Well CAD software, which was used to determine fracture dip angles and down-dip azimuths. Tadpole plots indicate measured fracture orientations, where the filled circles indicate dip angles (0 to 90 degrees). Each tadpole "tail" points in the measured down dip direction, which is perpendicular to the fracture strike. Borehole geophysical logs are presented in Appendix G. 470 Open fractures were identified (visible) using both the ATV travel time and ATV amplitude plots, 471 whereas less open fractures were only visible on the ATV amplitude plots. Water conducting fractures 472 were identified using the heat - pulse flow meter, fluid temperature and fluid resistivity data. The heat 473 pulse flow meter identified fractures that exhibited either an upward or downward flow of water within 474 the borehole within the instrument operation range of 0.3 to 1.0 gpm. Conductive fractures were also 475 identified using the fluid temperature and fluid resistivity log (down to the minimum instrument detection 476 level), where local inflections or changes in slope of the log(s) typically represent water movement 477 entering or exiting a fracture.

Well fracture orientations for each well are presented on Figure 3-2, using Rose diagrams and Stereonet plots. A Rose diagram is a circular plot used to represent fracture dip directions. The circular diagram represents points of a compass, and is divided into 15 degree sectors. Fracture dip data are input into the appropriate sectors, where the population of the fracture data determines the sector size or magnitude. Overall, the Rose diagrams show a dominant NW fracture dip direction, with a lesser number of fractures dipping west, southeast, and east.

484 A stereonet plot was used to represent the individual fracture dip direction and angle data on the same 485 diagram. Individual fractures are displayed as a point on the stereonet. The dip direction is determined 486 by measuring the compass direction of a line from the fracture point through the origin or axis of the 487 stereo plot. The dip angle of the fracture point is measured relative to the concentric dip angles plotted on 488 the stereo plot. The origin represents zero dip angle, and increases 10 degrees at each line toward the 489 edge of the stereo plot, which depicts vertical fractures. In total, the stereo plots show a dominant NW 490 dip azmith, with those fractures mostly dipping between 10 and 20 degrees. Water bearing fractures are 491 labeled blue on the stereoplot, and also show a dominant NW dip direction and 10 to 20 degree dip angle. 492 Some steeply dipping water bearing fractures were noted in MW-31D, with fractures dipping 50 degrees 493 towards the northwest, while conductive fractures in MW-32D measured between 70 to 80 degrees 494 towards the southeast.

495 A comparison of the well drilling and geophysical logs in the GWRI and this study show a substantially 496 greater number of features using borehole geophysics. Although all fractures or water bearing zones 497 observed by the driller and/or geologist were entered into the field logs, only large fractures with 498 significant open or soft areas, and/or water bearing zones can be identified during drilling. Borehole 499 geophysics is considered more accurate than field logging, and for that reason, was selected to 500 definitively characterize the fracture distribution and orientation in bedrock using multiple logs. The 501 larger fractures and/or water bearing zones logged in the field in both the GWRI and RI Addendum were 502 also corroborated by borehole geophysics.

503 Borehole geophysics fracture dip azmith and angle data are similar to those reported in the GWRI and 504 likewise correspond with the measured NNE bedrock strike and NW dip (8 to 14 degrees) in area 505 outcrops. A summary Rose diagram and stereonet plot of water bearing fractures from the GWRI is 506 provided for comparison in Appendix G, which also contains the Borehole Geophysics report.

3.2 TCL VOC SAMPLING RESULTS

A total of 38 bedrock wells were sampled for TCL VOCs. Thirty four (34) groundwater samples were collected in July and August 2002, with later installed wells sampled in October 2002 (MW-33D / MW-34D), March 2003 (MW-31D) and May 2003 (MW-32D). The later sampling dates are noted for these wells shown on **Figure 3-3**. Benzene sampling results are discussed in Section 3.2.1, and other TCL VOC exceedances are summarized in Section 3.2.2. Results of the Biogeochemical Sampling is discussed in Section 3.2.3.

3.2.1 Benzene Sampling Results

513 Benzene was detected in 19 of 38 bedrock groundwater samples, with 14 samples exceeding the New 514 Jersey Groundwater Quality Criteria (GWQC) of 1 μ g/L. The maximum concentration of 9500 μ g/L was 515 detected at bedrock well BRPZ-5, which is located on the MISS within Former Retention Pond C. 516 Benzene sampling results are summarized in **Table 3-3**, and exceedances are presented in **Table 3-4**.

Benzene sample concentrations were plotted and contoured using 1, 10, 100 and 1000 μ g/L concentration contours. As depicted on **Figure 3-3**, the extent of the plume has been delineated by the 1.0 μ g/L benzene standard. The benzene plume extends approximately 1075 feet, and is oriented NNE to SSW along the plume axis. As noted in the GWRI, the apparent SSW plume direction does not follow the predicted site bedrock groundwater flow, and may reflect local flow conditions not captured by site wells.

Source Area Delineation

522 Low concentrations of benzene are detected at upgradient well MW-3D (15 μ g/L), and the upgradient 523 edge of the benzene plume is projected offsite onto the New York Susquehanna & Western Railroad 524 property. An active upgradient source of benzene is considered unlikely, due to the low concentrations of 525 benzene detected in wells MW-3D, MW-27D (5 µg/L) and MW-33D (10 µg/L). A potential active 526 benzene source located in soils adjacent Building 76 is also considered unlikely, due to the low detected 527 concentrations of benzene in downgradient bedrock monitoring wells MW-28D (6 µg/L), MW-34D 528 (16 µg/L) and B38W25D (ND). A slug or intermittent benzene source, however, cannot be precluded at 529 these locations.

530 A potential benzene bedrock source area was delineated based upon benzene sampling data, and is shown 531 on Figure 3-3. Noting that there is no detected product in bedrock, the plotted potential source area 532 represents the predicted upgradient extent of elevated (>100 μ g/L) benzene concentrations in bedrock. 533 The plotted potential source area is located sidegradient to well MW-26D (180 µg/L), and is upgradient 534 relative to plume monitoring wells BRPZ-9 (1800 μ g/L) and BRPZ-5 (9500 μ g/L). The plotted potential 535 source area is located on a local bedrock groundwater high (see Figure 3-1), and may account for the 536 distribution of benzene in MW-33D, MW-27D, MW-3D and other site wells. A potential benzene source 537 located in soils adjacent Building 76 is also considered unlikely, due to the low detected concentrations of 538 benzene in downgradient bedrock monitoring wells MW-28D (6 μ g/L), MW-34D (16 μ g/L) and 539 B38W25D (ND).

540 The source of benzene in bedrock is not known, or no longer exists. As noted in Section 1.4.1, former 541 MCW Building 62 is located in the plotted potential bedrock source area (50 feet northwest of MW-26D). 542 The soils along the east side of the Former MCW Building 62 slab were investigated by the USACE in 543 August 1999 as part of the Pilot Demonstration Work Plan (USACE 2000a). Benzene was not detected in 544 the test pit soil samples or shallow groundwater. Benzene was also not detected in other soil boring and 545 Geoprobe[®] samples collected within or adjacent to the plotted source area. It is noted that Former MCW 546 Building 62 and the plotted potential bedrock source area lie within the mapped extent of the overburden 547 aquifer. As shown on Figure 1-4, benzene was not detected in downgradient overburden wells MISS-6A, 548 MISS-7A and PW-1, and Geoprobe* samples 12b-029 and 12b-009. A low concentration of benzene was 549 detected in Geoprobe[®] boring 12b020 (9 µg/L).

550 Soils within the plotted bedrock source area, Building 76 and surrounding MISS areas are scheduled for 551 excavation as part of the Operating Unit (OU) 1 soil remediation for radiological constituents. All 552 potential benzene sources on the MISS such as buried tanks, drums, pipes, and impacted soils would be 553 removed during the remediation.

Downgradient Plume Delineation

- 554 The downgradient edge of the benzene plume is extrapolated between MISS well MW-24D (29 µg/L) and
- downgradient offsite wells B38W17B (ND), MW-31D (ND), and MW-32D (ND). Wells B38W17B and
- 556 MW-32D are located approximately 150 feet downgradient from the plotted 1 μ g/L benzene isopleth, and
- along the projected centerline of the plume. These wells should be effective compliance / sentry wells for
- 558 monitoring of the benzene plume.

3.2.2 Other VOCs

559 Additional VOC exceedances were detected in groundwater samples. Eight VOCs were detected at 560 concentrations exceeding the lower of the NJDEP GWQC, NJDEP MCL, or Federal MCL, including 1,1-dichloroethene, 1,2-dichloroethene (cis), 1,2-dichloroethene (total), bromodichloromethane, 561 562 chloroform, tetrachloroethene, trichloroethene, and vinyl chloride. VOC sampling results are summarized 563 in Table 3-5, and exceedances are presented in Table 3-6. As depicted in Table 3-6, tetrachloroethene 564 and trichloroethene are the most commonly reported VOC exceedances. Tetrachloroethene and 565 trichloroethene sampling results are briefly discussed in the following section. High concentrations of 566 chlorinated solvent (and degradation products) was detected in overburden and bedrock wells on the 567 158 West Central Avenue Property, and is the likely source of these COCs on the MISS and in 568 overburden and bedrock monitoring wells in Rochelle Park. A summary of the 158 West Central Avenue 569 investigation results is provided in Section 1.8.3 of the Draft RI Report USACE (2003a).

Trichloroethene

570 Trichloroethene was detected in 15 samples with concentrations ranging from 0.3 to 300 µg/L. The

- 571 maximum detected concentration was present in well MW-7D, located on the 141 West Central Avenue
- 572 property, Rochelle Park. Eight of the samples had concentrations that were at or exceeded the NJ GWQC
- 573 / State MCL of 1 μ g/L.

Tetrachloroethene

574 Tetrachloroethene was detected in 14 samples with concentrations ranging from 0.1 to 1300 μ g/L. The 575 maximum detected concentration was present in well MW-7D, located on the 141 West Central Avenue 576 property, Rochelle Park. Eleven of the samples had concentrations that exceeded the NJ GWQC / State 577 MCL of 1 μ g/L.

3.3 BIOGEOCHEMICAL SAMPLING RESULTS

578 As part of the RI Addendum, field parameters were analyzed for dissolved oxygen, redox potential (Eh), 579 pH, temperature, and turbidity. Of these parameters, dissolved oxygen and redox potential are important 580 parameters in assessing in-situ bioremediation potential. Additionally, alternate electron acceptors 581 consisting of manganese reduction, nitrate reduction, iron reduction, sulfate reduction, and 582 methanogenesis are indicators of in-situ bioremediation. Biological community data was also collected in 583 the form of BOD5, COD, and BTEX Degrader Heterotrophs and Total Heterotroph analysis. 584 Furthermore, nutrient data in the form of phosphate, nitrate, and total organic carbon (TOC) data were 585 collected. These data are presented in the following sections.

3.3.1 Dissolved Oxygen and Oxidation-Reduction Potential

Dissolved Oxygen

586 Dissolved oxygen (DO) is the most thermodynamically favored electron acceptor used by microbes for 587 the degradation of organic carbon. Aerobic biodegradation of benzene typically occurs with DO 588 concentrations greater than 1.0 mg/L, but has been reported as low as 0.5 mg/L (EPA 1998b, 1998c). 589 Dissolved oxygen was measured at all wells in the field during sampling, using a YSI 650 multimeter and 590 flow through cell. Measured dissolved oxygen values are presented in **Table 2-3**.

591 Dissolved oxygen was measured at 38 bedrock monitoring wells, and is shown on **Figure 3-4**. Dissolved 592 oxygen values recorded at wells MISS-2B, B38W25D and MW-26D were rejected since they exceeded 593 the maximum theoretical D.O. value of 9.9 mg/L at sea level (North Carolina State University, College 594 of Agriculture and Life Sciences, April 2002). The field measured DO values at wells BRPZ-5 595 (1.58 mg/L), MISS-5B (1.16 mg/L), and MW-26D (1.67 mg/L) are inconsistent with other sampling data 596 showing deeply reduced groundwater conditions at these wells, and may reflect DO meter / sensor error 597 during purging.

598 Twenty-nine (29) wells have DO concentrations less than 1.0 mg/L, with 20 wells below 0.5 mg/L. This

599 data indicates anaerobic groundwater conditions at a majority of site wells. Low DO concentrations

600 (0.5 to 1.0 mg/L) were detected at eight wells located upgradient and sidegradient to the plotted benzene

blume. Elevated DO levels were detected at wells MISS-1B (2.24 mg/L) and MW-5D (4.02 mg/L). The

- 602 DO data indicates anaerobic groundwater conditions at a majority of site wells, and in all wells located
- 603 downgradient from the projected benzene source area.

Oxidation – Reduction Potential

604 The oxidation-reduction potential (ORP) of groundwater is a measure of electron activity and is an 605 indicator of the relative tendency of a solution to accept or transfer electrons. The ORP of groundwater 606 generally ranges from -500 millivolts (mV) to +800 mV. Under aerobic (or oxidizing) conditions, the 607 ORP of groundwater is positive and typically above +800 mV, whereas anaerobic (reducing) conditions 608 are characterized by ORP readings below +800 mV. The ORP of groundwater can be used as an indicator 609 since certain biodegradation processes (i.e., sulfate reduction, methanogenesis) only operate within a 610 prescribed range of ORP conditions. The oxidation-reduction potential for various oxidation-reduction 611 reactions is shown on Figure 3-5.

- 612 ORP was measured in 38 wells during sampling, and is presented in **Table 2-3**, and depicted spatially on 613 **Figure 3-4.** Groundwater ORP ranged from -626.3 to +332.6 mV, with 31 of 38 values below +0.0 mV.
- The lowest Eh values are reported at wells located within the benzene plume including MW-26D (-626 mV), BRPZ-9 (-72.8 mV), BRPZ-5 (-332 mV), MISS-5B (-88.9 mV), BRPZ-4 (-55.4 mV) and
- 616 BRPZ-3 (-578 mV). The range of Eh values in the plume area indicate that Fe_{solid}/Fe_{dis} , SO₄/hydrogen 617 sulfide (HS⁻) and CO₂/methane reduction reactions may be occurring in groundwater as part of the 618 anaerobic benzene biodegradation process (see **Figure 3-5**). Projected downgradient compliance wells
- 619 (B38W17B, MW-31D, MW-32D, B38W15D, and MW-2D) are less reduced, and indicate potential
- $620 \qquad Mn_{solid}/Mn_{dis} \ and \ Fe_{solid}/Fe_{dis} \ reduction \ reactions.$

pH Data

- 621 The pH is defined as the negative logarithm of the hydrogen ion activity and describes whether a solution
- 622 is acidic (pH<7), neutral (pH=7), or basic (pH>7). Microbes capable of degrading petroleum
- 623 hydrocarbon compounds generally prefer pH values ranging from 6 to 8 standard units (SU).

624 The pH of the groundwater was measured during sample purging, and is presented in **Table 2-3**. The pH

values ranged from 5.54 to 7.49 SU, with three samples (B38W18D, B38W24D, and BRPZ-5) slightly

626 outside the prescribed range.

3.3.2 Alternate Electron Acceptors

627 Microorganisms obtain energy by transferring electrons from donors, such as organic carbon compounds 628 (BTX), to compounds that accept electrons. For biodegradation to occur, electron acceptors must be 629 present. In respiration, electrons are transferred directly to inorganic compounds that are relatively 630 oxidized, and include molecular oxygen, nitrate, manganese (Mn_{solid}), iron (Fe_{solid}), sulfate, or carbon 631 dioxide. In fermentation (methanogenesis), organic compounds act as both the electron donor (BTX) and 632 acceptor (CO₂), and generate incompletely oxidized by-products such as methane.

633 The alternate electron acceptors (other than oxygen) were sampled to identify available acceptors, and 634 provide data for the Feasibility Study. Reduced electron acceptor species / compounds (NH₄⁺, Mn⁺², Mn_{dis}), Fe^{+2} (Fe_{dis}), HS⁻, and CH₄ were also sampled to provide evidence of specific acceptor utilization 635 and biologic activity. Although nitrogen gas (N_2) is the thermodynamically favored reaction and product 636 637 of denitrification, measurement of nitrogen gas is not feasible in the field. Therefore, ammonia was 638 measured in order to show that nitrate reduction is occurring as part of in-situ biodegradation. As 639 illustrated on Figure 3-5, biochemical reactions will preferentially reduce electron acceptors in the order 640 of nitrate / ammonia (NO₃⁻/NH₄⁺)], manganese (Mn_{Tot}/Mn_{dis}), iron (Fe_{Tot}/Fe_{dis}), sulfate (SO₄⁻²/S⁻²), and 641 carbon dioxide / methane (CO₂/CH₄). Alternate electron acceptors were sampled and analyzed in nine 642 monitoring well samples. The electron acceptor data is given in Table 3-7, and depicted graphically on 643 Figure 3-6. Sampling results for each electron acceptor and reduced compound are presented in the 644 following section.

Nitrate / Ammonia Reduction

Low concentrations of nitrate (0.04 to 0.14 mg/L) were detected in four of nine samples. Three of four wells with detected nitrate are located downgradient of the plotted benzene plume. Ammonia, the reduced form of nitrate, was detected in all wells at concentrations ranging from 0.88 to 19 mg/L (MISS-5B). The highest ammonia concentration was detected at wells located within the mapped benzene plume, indicating more reduced conditions. The absence / trace detected concentrations of nitrate, and high concentrations of ammonia in groundwater indicate the utilization of nitrate as an electron acceptor, and ongoing degradation of organic carbon in the aquifer.

Manganese Reduction

652 Manganese occurs as a solid in the form of the minerals rhodochrosite, manganite, and pyrolusite. Under

anaerobic conditions, bacteria can use these minerals as electron acceptors. In the presence of benzene,

 $\begin{array}{ll} 654 & \text{manganite (MnO_2) will be reduced from Mn_{solid} to Mn_{dis}. Under anaerobic conditions (DO < 0.5 mg/L),} \\ 655 & \text{manganese (Mn_{solid}) is reduced to Mn_{dis}.} & \text{As noted in Section 2.7.2, the Mn_{solid} concentration was} \end{array}$

656 estimated by subtracting the filtered or dissolved (Mn_{dis}) sample results from the total manganese 657 concentration.

658 As indicated in **Table 3-7**, low / trace concentrations of Mn_{solid} were detected in all but one sample

- (BRPZ-9), with detected concentrations ranging from 0.02 to 3.82 mg/L (BRPZ-4). Dissolved Mn_{dis} concentrations substantially exceeded Mn_{solid} at all locations, and ranged from 0.328 to 5.26 mg/L
- 661 (BRPZ-4). Overall, approximately 95% of the total manganese was in the dissolved (reduced) form. As
- depicted on **Figure 3-6**, the highest dissolved (Mn_{dis}) manganese concentrations are detected at wells
- 663 located within the plotted benzene plume, and downgradient well B38W17B.

664 The low concentrations / absence of Mn_{solid} , and relatively high concentrations of dissolved manganese 665 (Mn_{dis}), indicate that the Mn_{solid} is substantially diminished as an electron acceptor in the bedrock aquifer.

- 666 The higher concentrations of dissolved manganese in plume areas appear to indicate that reduced
- 667 conditions have occurred due to degradation of organics in groundwater. However, it should be noted
- that site-specific analysis for Biologically Extractable Mn_(solid) has not been conducted, therefore, it is
- 669 difficult to determine the amount of Biologically Extractable Mn_(solid) that has been reduced in the aquifer.

Iron Reduction

- 670 Ferric Iron (Fe_{solid}) was detected in seven of eight groundwater samples, with concentrations ranging from
- 671 0.02 to 5.85 mg/L (BRPZ-4). Dissolved (ferrous or Fe_{dis}) iron was detected in five of seven wells, with
- 672 detected concentrations ranging from 0.44 to 62.7 mg/L (MW-26D). As shown on Figure 3-6, the
- 673 highest dissolved iron concentrations are detected in wells within the plotted benzene plume and at
- 674 downgradient well B38W17B. Downgradient wells show decreasing ferrous (dissolved) iron
 - 675 concentrations (to non-detect) with distance from the site.

676 Iron sampling data indicates that ferric iron (as an electron acceptor) is substantially diminished at 677 monitoring wells MW-26D and B38W17B, and is significantly (>50%) diminished at benzene plume 678 monitoring wells BRPZ-9 and BRPZ-4. Downgradient (offsite) wells, except B38W17B, show little if 679 any iron reduction activity. This data appears to indicate that microbes are utilizing iron (Fe_{solid}) as an electron acceptor in much of the benzene plume, and plume fringe areas. Other plume areas are more 680 heavily reduced, and biodegradation may proceed using sulfate or CO₂ as alternate electron acceptors. 681 682 However, it should be noted that site-specific analysis for Biologically Extractable Fe(solid) has not been 683 determined for this site, therefore, it is difficult to determine the amount of Biologically Extractable 684 $Fe_{(solid)}$ that has been reduced in the aquifer.

Sulfate Reduction

Sulfate can be used as an electron acceptor during biodegradation, where sulfate (S^{+6}) is reduced to sulfide (S^{-2}) , and HS⁻ is generated as an end product. Sulfate was detected in eight of the nine samples collected, with concentrations ranging from 350 to 3000 mg/L (MW-26D). Sulfate / sulfide concentrations are given in **Table 3-7** and shown on **Figure 3-6**.

689 Sulfide was detected in 3 of 9 samples, including benzene plume monitoring wells BRPZ-9 (1.0 mg/L)

- and BRPZ-4 (0.2 mg/L), and downgradient well MW-32D (0.5 mg/L). Sulfate reduction at wells BRPZ-9
- and BRPZ-4 is consistent with the high ferrous iron concentrations at those wells, and is likewise
- 692 predicted at wells MW-26D and B38W17B.

Methanogenesis

- 693 Carbon dioxide can act as an electron acceptor during anaerobic biodegradation, and is ultimately reduced
- to methane (CH₄) under strongly reducing (-240 mV) conditions. Methane groundwater concentrations in
- excess 0.5 mg/L are an indicator of methanogenesis (EPA 1998b). As presented in Table 3-7, methane
- 696 was detected in all nine groundwater samples at concentrations ranging from 0.002 to 3.1 mg/L. High 697 methane concentrations (>1.0 mg/L) were detected in benzene plume monitoring wells BRPZ-4
- 697 methane concentrations (>1.0 mg/L) were detected in benzene plume monitoring wells BRPZ-4 698 (3.1 mg/L), BRPZ-9 (2.9 mg/L), and MW-26D (1.8 mg/L). As shown on **Figure 3-6**, methane
- 699 concentrations generally decrease with distance from the mapped benzene plume.
- 700 Methane groundwater data indicates that methanogenesis is an ongoing process in the plotted benzene
- plume and monitoring wells MW-26D, BRPZ-9, and BRPZ-4. Reduction of sulfate is also predicted in
 these wells and plume area wells.

3.3.3 Nutrients

The essential microbial nutrients, nitrogen, phosphorous, and carbon, were sampled as part of the RI Addendum. Nine samples were collected and analyzed for ammonia and nitrate, total phosphorous, and total organic carbon (TOC). Nutrient sampling results are summarized in **Table 3-8**, and sample locations are shown on **Figure 3-7**, along with plotted results. The sampling results for each nutrient are briefly discussed in the following sections.

Nitrogen

Nitrogen is needed by microorganisms for protein and nucleic acid synthesis. The most common inorganic source is ammonia, but nitrate can also be reduced by microbes to obtain ammonia. As indicated in **Table 3-8**, ammonia was detected in all samples, and nitrate was detected in three of nine

711 samples.

Phosphorous

- 712 Phosphate is utilized by microorganisms for synthesizing phospholipids and nucleic acids, and is also
- respective transfer reactions involving adenine triphosphate (ATP). As indicated in Table 3-8,
- phosphorous (as total phosphorous or TP) was detected in 8 of 9 groundwater samples, with detected
- 715 concentrations ranging from 0.0579 to 1.37 mg/L. Phosphorous was not detected in groundwater at well
- 716 BRPZ-9, and may be a limiting factor to biodegradation at that location (see **Figure 3-7**). It is noted,
- however, that high total phosphorous concentrations were detected in nearby benzene plume monitoring wells PBP7 4 (1.37 mg(l)) MISS 5P (0.604 mg(l)) and MIV 2CD (0.201 mg(l)). However, it should be
- wells BRPZ-4 (1.37 mg/L), MISS-5B (0.604 mg/L), and MW-26D (0.201 mg/L). However, it should be noted that phosphorous may also be sorbed to the aquifer matrix, and that nutrient cycling will occur
- among dving and growing populations of microorganisms.
 - 20 unlong dying and growing populations of

Total Organic Carbon

Microorganisms require carbon sources for cell growth, and are capable of using a wide variety of carbon bearing compounds. They also obtain energy by transferring electrons from donors such as carbon, to compounds that accept electrons. As indicated in **Table 3-8**, and depicted on **Figure 3-7**, TOC was detected in 5 of 9 samples at concentrations ranging from 0.38 to 34 mg/L. Total organic carbon was detected in all benzene impacted wells, with the highest concentrations reported at wells BRPZ-9 (25 mg/L) and MW-26D (34 mg/L). Total organic carbon was not detected in downgradient monitoring wells B38W17B, MW-2D, and MW-31D, which lie outside the plotted extent of the benzene plume.

3.3.4 Oxygen Demand

Biological oxygen demand (BOD₅) was evaluated in groundwater as an indicator of biologic activity.
 Chemical oxygen demand (COD) measures the non-biologic oxygen demand from reduced compounds.

- 729 Chemical oxygen demand (COD) measures the non-biologic oxygen demand from reduced compounds, 730 and is used to gauge the degree of aquifer reduction. BOD and COD data will also be used in the
- Feasibility Study to estimate aquifer oxygen demand for remedial design purposes. BOD and COD
- sample results are summarized in **Table 3-8**, and spatially depicted on **Figure 3-8**.

\textbf{BOD}_{5}

BOD₅ is the amount of dissolved oxygen consumed in 5 days by biological processes breaking down organic matter. The sample is initially spiked with bacteria, and incubated over a 5-day period under aerobic conditions. Typically, BOD₅ represents 45-55% of the Theoretical Oxygen Demand (THOD),

- with COD comprising the balance of the oxygen demand (Corbitt, 1990). BOD₅ was measured in 8 of 9
- ranging from 0.42 to 20 mg/L. As shown on Figure 3-8, the highest BOD₅

- values were measured in benzene plume monitoring wells MW-26D (20 mg/L), BRPZ-9 (9.4 mg/L),
- MISS-5B (9.1 mg/L), and BRPZ-4 (4.8 mg/L). Noting that the mass ratio of benzene is 0.326:1, benzene
- present within the center of the plume could only account for 1.5 to 6.4 mg/L of the BOD. This may be
- attributed to the presence of other organics (e.g. chlorotoluene, surfactants, amines) at these locations.
- The high BOD5 values are attributed to the presence of benzene (and potentially other organics) and other
- partially oxidized organic substrates, and nutrients in strongly reduced groundwater samples.

Chemical Oxygen Demand (COD)

COD is a measure of the oxygen required to oxidize all compounds, both organic and inorganic, in water to carbon dioxide. COD is also used to assess the ORP of groundwater, where increasing COD values correspond to reduced redox conditions. COD was detected in 6 of 9 samples at concentrations ranging from 9.82 to 125 mg/L. As shown on Figure 3-8, the highest COD values were detected at benzene plume monitoring wells (BRPZ-9), MW-26D (105 mg/L), BRPZ-4 (40.3 mg/L), MISS-5B (19.7 mg/L), and offsite well B38W17B (33.6 mg/L). Downgradient COD concentrations generally decrease to non-detect with distance from the MISS.

751 Monitoring well COD concentrations correspond well with the measured ORP and electron acceptors, and 752 supports the distribution of redox and electron acceptor (reduction) zones in the study area.

3.3.5 Microbiologic Activity

753 Direct biologic activity is measured by bacterial plate counts on non-selective (total heterotroph) and/or 754 selective (BTEX) media. Noting that groundwater is moderately to strongly reduced in the site aquifer, 755 replication of the aquifer environment would require incubation on an electron acceptor specific growth 756 media, under anaerobic conditions. Unfortunately, anaerobic bacteria are difficult to grow, and the results 757 are often inconsistent. Total heterotroph bacteria counts (THC) are the most commonly used indicator of 758 microbiologic activity in groundwater. Groundwater samples were also evaluated for BTEX degraders, 759 which utilized a selective media with BTEX as the sole carbon source. However, according to the 760 American Society for Testing and Materials (ASTM), microbial counts are often unreliable indicators of 761 biodegradation. The results of the THC and BTEX Degrader counts are summarized in Table 3-9, and 762 are spatially shown on Figure 3-8. Plate count results for each method are discussed in the following 763 sections.

Total Heterotroph Bacteria

764 Nine groundwater samples were collected and evaluated for THC as a general indicator of bacterial 765 activity. Heterotrophic bacteria were detected in seven of nine samples, with a reported range of 160 to 766 75,000 colony forming units (CFU) per milliliter (CFU/mL). Heterotroph bacteria counts are highest in 767 downgradient areas, and probably reflect the relative abundance of facultative (oxygen tolerant) bacteria 768 in less reduced aquifer areas. Heterotrophic bacteria were not reported in samples from benzene plume 769 area wells MW-26D and BRPZ-4, and probably indicate the dominance of obligate anaerobic sulfur 770 reducing and methanogenic bacteria at those locations. Redox potential (Eh), electron acceptor, and COD 771 data all indicate strongly reduced conditions at wells MW-26D and BRPZ-4. As noted, obligate 772 anaerobic bacteria will not grow in aerobic (THC and BTEX degrader) test environments. Metals toxicity 773 at wells MW-26D and BRPZ-4 is unlikely, noting the growth of spiked bacteria and high BOD₅ 774 measurements at those wells.

BTEX Degrader Bacteria

Nine groundwater samples were evaluated for BTEX degrader bacteria. As noted, groundwater samples are incubated in a selective media, where BTEX is the only available carbon source. The BTEX degrader test should give a more realistic count of organisms that can degrade BTEX compounds than the THC. The BTEX degrader test also incubates samples under aerobic conditions, and will have limited utility with respect to evaluation of anaerobic biodegradation.

BTEX Degrader bacteria were detected in seven of nine wells, with counts ranging from 270 CFU/mL (B38W15D) to 1,700 CFU/mL (MW-32D). Like the THC data, the highest BTEX degrader counts were obtained in downgradient well locations. The relative abundance of BTEX degraders mirror the THC, but actual counts were lower than THC in four of seven detected samples, and the same (at the detection limit of 300 CFU/mL) in two samples. The BTEX degrader counts should be lower due to the more selective growth media. BTEX degraders were also not detected at benzene plume wells MW-26D and BRPZ-4, and may indicate the prevalence of methanogenic (anaerobic) bacteria at these locations.

3.4 DISCUSSION

787 Historical bedrock benzene sampling results were evaluated with current data to further characterize the 788 benzene plume. Historical benzene sampling data is presented in Table 3-10, and shows intermittent 789 bedrock benzene exceedances from the start of sampling in 1985 at downgradient (MISS) wells MISS-5B 790 and MISS-7B. Downgradient MISS well B38W19D also shows intermittent low level exceedances from 791 the onset of sampling in 1994. This data suggests the existence of a MISS benzene plume from at least 792 1985, including intermittent exceedances at wells B38W19D and MISS-7B, which are currently mapped 793 at the margin or outside the bedrock plume. The fluctuation of benzene concentrations at well MISS-5B 794 and other wells with time is likely influenced by a number of factors, including: (1) the change in 795 sampling methods from dedicated bladder pumps in 1999 to low flow sampling in 2000; (2) groundwater 796 level at the time of sampling; (3) variable benzene concentrations within a residual / stable plume over 797 time; and/or (4) variable benzene source loading or intermittent source of benzene.

798 As noted in Section 3.2.1, a potential bedrock benzene source area was plotted using sampling data, and 799 represents the probable upgradient extent of elevated benzene plume concentrations. It is not known 800 whether the detected benzene in bedrock is derived from an active source, or is part of a residual bedrock 801 plume. The relatively low benzene plume concentrations, and lack of apparent benzene sources to 802 bedrock in the plotted "source area" favor the latter interpretation. A comparison of MISS bedrock 803 benzene data from the Phase II GWRI sampling event (Figure 1-2) and RI Addendum sampling event 804 (Figure 3-3) show decreasing benzene concentrations in 10 of 12 wells, including well MISS-5B (3500 to 805 680 μg/L). Benzene concentrations increased in bedrock well BRPZ-5 (5000 to 9500 μg/L) and MW-3D 806 (5 to 15 μ g/L). The overall decrease in MISS benzene groundwater concentrations may be attributed to 807 attenuation.

As noted in Sections 1.4.1 and 1.4.2, benzene is not detected in the plotted potential bedrock source area soils and overburden groundwater. While this data does not indicate a current soil and/overburden groundwater source to bedrock, past benzene releases may have occurred and since been attenuated in the soil and shallow groundwater environment. Alternatively, benzene may have been introduced directly into bedrock by piping or well, or from spills in (offsite) areas with shallow bedrock.

813Downgradient offsite well B38W17B shows intermittent low level exceedances from the start of sampling814in 1991, with no exceedances detected at well B38W15D (from 1989). As noted in Section 3.2.1, well

- 815 B38W17B is located along the projected downgradient axis of the plotted benzene plume. The limited
- 816 downgradient extent of benzene over time suggests a stable (or degrading) plume, and ongoing

- 817 attenuation of benzene in groundwater. Biogeochemical sampling (Section 3.3) data show strongly
- 818 reduced groundwater conditions, high COD / BOD, and utilization of alternate electron acceptors in
- 819 benzene impacted wells. This data suggests an ongoing anaerobic degradation in plume areas, and
- 820 probable aerobic degradation along the plume fringe

4.0 SUMMARY / CONCLUSIONS AND RECOMMENDATIONS

4.1 SUMMARY / CONCLUSIONS

- Bedrock groundwater flow is predominantly west-southwest, with a component of flow towards the south. The slope of the water table ranges from 0.035 ft/ft on the MISS and Stepan Property, to 0.01 ft/ft further west and downgradient from the site in Rochelle Park. All shallow / deep bedrock clusters showed slightly higher groundwater heads in shallow wells, indicating a downward vertical gradient within bedrock. This may be attributed to aquifer recharge following an extended wet month (8.33 inches) in June 2003.
- 2. Specific capacity tests were conducted on all newly installed wells following development. The calculated mean well hydraulic conductivity ranges from 2.79×10^{-3} to 3.01×10^{-2} cm/sec, with a geometric mean of 7.05×10^{-3} cm/sec. This is higher than the computed median (1.63 x 10^{-3} cm/sec) and mean (1.48 x 10^{-3} cm/sec) hydraulic conductivity values reported in the GWRI (USACE 2003a), and may be attributed to the effect of two high yielding wells.
- Borehole geophysics was conducted at five of the six newly installed wells. Borehole fractures show a dominant NW dip direction, with a lesser number of fractures dipping west, southeast, and east. Most fractures dip at 10 to 20 degrees, however, steeply dipping water bearing fractures were noted in wells MW-31D and MW-32D. The overall fracture dip direction and angle data are similar to those reported in the GWRI, and likewise correspond with the GWRI bedrock strike and dip data.
- 837 4. Bedrock groundwater samples were collected from 38 wells, and analyzed for TCL VOCs and biogeochemical (bioremediation) parameters. Benzene was detected in 19 of 38 samples, with 14 samples exceeding the New Jersey Groundwater Quality Criteria (GWQC) of 1.0 μg/L. The maximum concentration of benzene (9,500 μg/L) was detected at MISS well BRPZ-5. The plotted benzene plume extends approximately 1,075 feet, and is oriented NNE–SSW along the plume axis.
 842 As noted in the GWRI, the apparent SSW plume flow direction does not follow the predicted groundwater flow, and may reflect local flow conditions.
- A potential benzene bedrock source area was delineated based upon benzene sampling data. Noting
 that there is no detected product in bedrock, the potential source area represents the predicted
 upgradient extent of elevated benzene concentrations in bedrock. The source of the benzene in
 bedrock was not confirmed by previous and/or current soil and groundwater investigations within the
 MISS.
- 849 6. Benzene (15 ppb) was detected at upgradient, offsite well MW-3D. The plotted benzene isopleth map
 850 (Figure 3-3) shows an open 10 ppb. contour at the head of the benzene plume. Although unlikely,
 851 this data suggests a potential upgradient (inactive or intermittent) benzene source to the MISS.
- The downgradient extent of the plume is extrapolated between MISS well MW-24D, and downgradient offsite wells B38W17B, MW-31D, and MW-32D. Wells B38W17B and MW-31D are located approximately 150 feet downgradient from the plotted 1.0 μg/L benzene isopleth, and along the projected path of the plume. These wells should be effective compliance / sentry wells for downgradient monitoring of the benzene plume.
- 8. Eight other VOC compounds were detected in groundwater at concentrations exceeding the
 NJDEP/EPA water quality standards. Tetrachloroethene (PCE) and trichloroethene (TCE)
 exceedances were detected in eleven and eight wells, respectively. Very low concentrations of PCE

- and TCE were detected in a number of MISS wells. A potential offsite, upgradient source was
 identified in the GWRI.
- 862 9. Geochemical sampling was conducted at nine bedrock wells, and included dissolved oxygen and ORP
 863 (field parameters), total and dissolved manganese, total and dissolved iron, nitrate, ammonia, sulfate,
 864 sulfide, methane, total phosphorous, BOD, COD, total heterotrophic bacteria, and BTEX degraders.
- 10. Twenty-nine (29) wells measured DO concentrations less than 1.0 mg/L, with 20 wells below
 0.5 mg/L. ORP values ranged from -626.3 to +332.6 mV, with 31 of 38 values below +0.0 mV. The
 lowest ORP values were measured in wells located within the plotted benzene plume. The DO and
 ORP data indicate anaerobic groundwater conditions at a majority of tested wells.
- 11. Alternate electron acceptor compounds, and reduced acceptors, were sampled to identify available
 receptors and provide evidence of specific acceptor utilization and biologic activity. The electron
 acceptor / reduced compounds include nitrate / ammonia, Mn_{solid}/Mn_{dis}, Fe_{solid}/Fe_{dis}, sulfate/sulfide,
 and carbon dioxide/methane.
- 873 12. The absence / low concentrations of nitrate and Mn_{solid} in wells, and accumulation of reduced ammonia and Mn_{dis}, indicate that nitrate and manganese acceptors concentrations are substantially 874 875 diminished in the aquifer. Iron sampling data indicates that Fe_{solid} concentrations are substantially 876 diminished in two wells in the benzene plume, however, Fe_{solid} is being used as an electron acceptor 877 in other plume and plume fringe areas. Sulfide was detected in three of nine samples, and may be 878 indicative of limited sulfate reduction in benzene plume wells. Elevated methane concentrations were 879 also detected in three benzene plume wells, indicating probable methanogenesis and reduction of 880 carbon dioxide in the bedrock aquifer.
- 13. The essential microbial nutrients include ammonia, phosphorous (TP), and carbon (TOC). Ammonia
 was detected in all wells, and total phosphorous was detected in eight of nine wells. High TOC
 concentrations were detected in all wells within the mapped benzene plume, but were absent from
 downgradient wells.
- 885 14. BOD was analyzed in order to determine the biologic oxygen demand, and is an indicator of potential 886 biologic activity. COD, also analyzed as part of the program, measures non-biologic oxygen demand 887 from reduced compounds and is used to gauge the degree of aquifer reduction. BOD was detected in 888 eight of nine wells, with the highest values measured in the benzene plume wells. The high BOD_5 889 values are attributed to the relative abundance of benzene and other partially oxidized organic 890 substrates, and nutrients in strongly reduced groundwater samples. COD was detected in six of nine 891 wells, with the highest values measured in the benzene plume monitoring wells. Monitoring well 892 COD concentrations correspond well with the measured ORP and electron acceptors, and supports the 893 distribution of redox and electron acceptor reduction zones.
- 894 15. Microbiologic activity was measured by sampling / enumeration of total heterotroph and BTEX 895 degrader bacteria in groundwater. Both tests incubate samples under aerobic conditions, and have 896 limited utility with respect to evaluation of anaerobic biodegradation. Bacteria counts were highest in 897 downgradient areas, and probably reflect the relative abundance of facultative (oxygen tolerant) 898 bacteria in less reduced aquifer areas. Total heterotrophic and BTEX degrader bacteria were not 899 detected in two benzene impacted wells, and probably indicates the dominance of obligate anaerobic 900 sulfur reducing and methanogenic bacteria at those locations. Metals toxicity at these wells is 901 unlikely, since the elevated BOD_5 concentrations indicate rapid growth of spiked bacteria.

- 902 16. Historic MISS benzene sampling data indicates a long-term source of benzene in the bedrock aquifer.
 903 It is unclear whether benzene in bedrock is currently derived from an active source, or is part of a residual bedrock plume. While soil and overburden groundwater data do not indicate a recent benzene source to bedrock, a past source may have attenuated in soil and/or shallow groundwater.
 906 Alternatively, benzene may have been introduced directly to bedrock by piping or well, or from spills in (offsite) areas with shallow bedrock.
- 17. The low detected (and non-detect) concentration of benzene at downgradient wells over time indicate
 a stable or degrading plume. Biogeochemical sampling indicates ongoing anaerobic degradation in
 plume areas, and probable aerobic degradation along the plume fringe.

4.2 **RECOMMENDATIONS**

- Low concentrations of benzene are detected at well MW-3D, which is located upgradient from the MISS on the New York Susquehanna & Western Railroad property. Annual groundwater sampling for VOCs is recommended at well MW-3D, and upgradient MISS bedrock well MW-27D, to monitor for any potential upgradient contribution and/or source of benzene to the MISS.
- A benzene plume well monitoring program shall be developed as part of the Monitored Natural Attenuation (MNA) alternative in the Feasibility Study, and will be proposed in the Long-Term Monitoring Plan (LTMP). The MNA sampling program shall include the sampling of VOCs and bioremedial parameters (i.e., D.O., and nitrate, iron, manganese, sulfate, and methane species) at selected benzene plume monitoring wells.

This page intentionally left blank.

5.0 **REFERENCES**

- ASTM 1998. American Society for Testing and Materials. Standard Guide for Remediation of
 Groundwater by Natural Attenuation at Petroleum Release Sites. E-1943-98. August 1998.
- 923 CH2M Hill, 1994. Final Remedial Investigation Report. Corbitt 1990. Corbitt, Robert, Standard
 924 Handbook of Environmental Engineering, McGraw Hill, NY.
- DOE 1992. Remedial Investigation Report for the Maywood Site; Volume I. Prepared for the U.S.
 Department of Energy by Bechtel National, Inc., October 1992.
- 927 EPA 1997. Anaerobic Biodegradation of BTEX in Aquifer Material. EPA/600/s-97/003. August 1997.
- 928 EPA 1998a. Groundwater Sampling Procedure Low Stress (Low Flow) Purging and Sampling.929 March 16, 1998.
- BPA 1998b. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in
 Groundwater. EPA/600/R-98/128. September 1998.
- 932 EPA 1998c. Seminars: Monitored Natural Attenuation for Groundwater. EPA/625/K-98/001. September
 933 1998.
- EPA 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and
 Underground Storage Tank Sites. Directive Number 9200.4-17P. April 21, 1999.
- 936 Fetter 1994. Applied Hydrogeology. Third Edition. 1994.
- 937 Fetter 1999. Contaminant Hydrogeology. Second Edition. 1999.
- 938 NJDEP 1992. Field Sampling Procedures Manual. May 1992
- 939 USACE 1999. Data Quality Evaluation Guidance. CENWK-PE-ES. July 26, 1999.
- 940 USACE 2000a. Final Pilot Demonstration Work Plan, prepared for USACE by Stone & Webster941 Environmental Technology & Services. June 2000.
- 942 USACE 2000b. Draft Phase I Groundwater Data Report, prepared for USACE by Stone & Webster,943 Inc. November 2000.
- 944 USACE 2002a. Groundwater Remedial Investigation Addendum Work Plan, prepared for
 945 USACE-Kansas City District by Shaw Environmental, Inc., May 2002.
- 946 USACE 2002b. Chemical Data Quality Management Plan, Revision 01, prepared for USACE by Stone947 & Webster, Inc. October 2002.
- 948 USACE 2003a. Draft Groundwater Remedial Investigation Report, prepared for USACE-Kansas City
 949 District by Shaw Environmental, Inc., June 2003.
- 950 USACE 2003b. Draft Groundwater Feasibility Study Approach and Initial Screening of Technologies
- 951 Interim Submittal, prepared by Shaw Environmental, Inc. for U.S. Army Corps of Engineers-Kansas

952 City District, July 2003.

- USACE 2003c. Draft Groundwater Baseline Risk Assessment Report, prepared by Shaw Environmental,
 Inc. for U.S. Army Corps of Engineers-Kansas City District, July 2003.
- USACE 2003d. Annual Environmental Monitoring Report, 2002, prepared by Shaw Environmental, Inc.
 for U.S. Army Corps of Engineers-Kansas City District, August 2003.

USACE 2003e. Remedial Action Work Plan, 2003, prepared by Shaw Environmental, Inc. for U.S.
 Army Corps of Engineers-Kansas City District, September 2003.

TABLES

SUMMARY OF HISTORICAL BENZENE SOIL RESULTS

FUSRAP MAYWOOD SUPERFUND SITE, MAYWOOD, NJ

No. of	No. of Sample			Unsaturated/ Saturated			Investigative
Samples	Location	Boring Name	Sample Depth	Sample	Benzene (µg/kg)	Sample Type	Program
1	1	CP2	6'-8'	Unsaturated	ND	Grab Sample	DOE, 1992
2	2	CP3	0'-2'	Unsaturated	ND	Grab Sample	DOE, 1992
3	2	CP3	2'-4'	Unsaturated	ND	Grab Sample	DOE, 1992
4	3	CP4	2'-4'	Unsaturated	ND	Grab Sample	DOE, 1992
5	4	CP8	0'-2'	Unsaturated	ND	Grab Sample	DOE, 1992
6	5	CP9	6'-8'	Unsaturated	ND	Grab Sample	DOE, 1992
7	6	CP10	0'-2'	Unsaturated	ND	Grab Sample	DOE, 1992
8	6	CP10	2'-4'	Unsaturated	2	Grab Sample	DOE, 1992
9	6	CP10	6'-8'	Unsaturated	ND	Grab Sample	DOE, 1992
10	7	CP11	2'-6'	Unsaturated	ND	Grab Sample	DOE, 1992
10	7	CP11	6'-8'	Unsaturated	ND	Grab Sample	DOE, 1992
12	8	CP12	4'-8'	Unsaturated	2	Grab Sample	DOE, 1992
12	8	CP12 CP12	<u>4-0</u> 8'-9.6'				,
13	9		8'-12'	Unsaturated	ND	Grab Sample	DOE, 1992
	9 10	CP14	0'-2'	Unsaturated	ND	Grab Sample	DOE, 1992
15	-	CP15		Unsaturated	ND	Grab Sample	DOE, 1992
16	11	CP16	4'-6'	Unsaturated	ND	Grab Sample	DOE, 1992
17	12	CP18	6'-8'	Unsaturated	ND	Grab Sample	DOE, 1992
18	13	CP20	0'-2'	Unsaturated	ND	Grab Sample	DOE, 1992
19	13	CP20	2'-6'	Unsaturated	ND	Grab Sample	DOE, 1992
20	13	CP20	6'-8'	Unsaturated	ND	Grab Sample	DOE, 1992
21	14	CP22	6'-8'	Unsaturated	ND	Grab Sample	DOE, 1992
22	14	CP22	12'-14.5'	Unsaturated	ND	Grab Sample	DOE, 1992
23	15	CP28	2'-4'	Unsaturated	ND	Grab Sample	DOE, 1992
24	15	CP28	4'-6'	Unsaturated	ND	Grab Sample	DOE, 1992
25	15	CP28	8'-11'	Unsaturated	ND	Grab Sample	DOE, 1992
26	16	CP32	0'-2'	Unsaturated	ND	Grab Sample	DOE, 1992
27	17	CP35	0'-2'	Unsaturated	ND	Grab Sample	DOE, 1992
28	18	CP37	8'-12'	Unsaturated	ND	Grab Sample	DOE, 1992
29	19	C001	0'-2	Unsaturated	ND	Soil Boring	DOE, 1992
30	19	C001	4'-6'	Unsaturated	ND	Soil Boring	DOE, 1992
31	19	C001	6'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
32	19	C001	10'-12'	Saturated	ND	Soil Boring	DOE, 1992
33	20	C002	4'-6'	Unsaturated	ND	Soil Boring	DOE, 1992
34	20	C002	10'-12'	Unsaturated	ND	Soil Boring	DOE, 1992
35	21	C003	0'-2'	Unsaturated	ND	Soil Boring	DOE, 1992
36	21	C003	2'-4'	Unsaturated	ND	Soil Boring	DOE, 1992
37	21	C003	4'-6'	Unsaturated	ND	Soil Boring	DOE, 1992
38	21	C003	10'-12'	Saturated	ND	Soil Boring	DOE, 1992
39	22	C004	16'-17.5'	Saturated	ND	Soil Boring	DOE, 1992
40	22	C004	17.5'-19.5'	Saturated	ND	Soil Boring	DOE, 1992
41	22	C004	19.5'-21.5'	Saturated	ND	Soil Boring	DOE, 1992
42	23	C005		Unsaturated	ND	Soil Boring	DOE, 1992
43	24	C006	4'-6'	Unsaturated	ND	Soil Boring	DOE, 1992
44	24	C006	6'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
45	25	C008	0'-2'	Unsaturated	ND	Soil Boring	DOE, 1992
46	25	C008	14'-16'	Saturated	ND	Soil Boring	DOE, 1992
47	26	C009	8'-10'	Unsaturated	ND	Soil Boring	DOE, 1992
48	27	C010	0'-2'	Unsaturated	ND	Soil Boring	DOE, 1992
49	27	C010	4'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
50	27	C010	6'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
51	28	C011	12'-14'	Saturated	ND	Soil Boring	DOE, 1992
52	29	C012	10'-12'	Unsaturated	ND	Soil Boring	DOE, 1992
53	29	C012	14'-16'	Unsaturated	ND	Soil Boring	DOE, 1992
54	30	C012	12'-14'	Unsaturated	ND	Soil Boring	DOE, 1992
55	31	C013	12'-14'	Unsaturated	ND	Soil Boring	DOE, 1992
55		C014 C015	12'-14	Saturated	ND	Soil Boring	DOE, 1992

SUMMARY OF HISTORICAL BENZENE SOIL RESULTS

FUSRAP MAYWOOD SUPERFUND SITE, MAYWOOD, NJ

No. of				Unsaturated/			laure etime time
No. of	No. of Sample			Saturated	.	o	Investigative
Samples	Location	Boring Name	Sample Depth	Sample	Benzene (µg/kg)	Sample Type	Program
57	33	C016	14'-16'	Unsaturated	ND	Soil Boring	DOE, 1992
58	34	C017	12'-14'	Unsaturated	ND	Soil Boring	DOE, 1992
59	35	C018	4'-6'	Unsaturated	ND	Soil Boring	DOE, 1992
60	36	C019	6'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
61	37	C020	0'-2'	Unsaturated	ND	Soil Boring	DOE, 1992
62	37	C020	8'-10'	Unsaturated	ND	Soil Boring	DOE, 1992
63	38	C021	6'-8'	Unsaturated	21	Soil Boring	DOE, 1992
64	39	C022	4'-6'	Unsaturated	ND	Soil Boring	DOE, 1992
65	40	C022	8'-10'	Unsaturated	ND	Soil Boring	DOE, 1992
66	40	C022	12'-12.8'	Unsaturated	ND	Soil Boring	DOE, 1992
67	40	C022	13'-13.9'	Unsaturated	ND	Soil Boring	DOE, 1992
68	40	C022	14'-16'	Unsaturated	ND	Soil Boring	DOE, 1992
69	41	C023	2'-4'	Unsaturated	ND	Soil Boring	DOE, 1992
70	42	C024	0'-2'	Unsaturated	ND	Soil Boring	DOE, 1992
71	42	C024	6'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
72	42	C024	10'-12'	Unsaturated	ND	Soil Boring	DOE, 1992
73	43	C025	10'-12'	Unsaturated	ND	Soil Boring	DOE, 1992
74	44	C026	0'-2'	Unsaturated	ND	Soil Boring	DOE, 1992
75	44	C026	12'-14'	Saturated	ND	Soil Boring	DOE, 1992
76	45	C027	5'-7'	Saturated	ND	Soil Boring	DOE, 1992
77	45	C027	8'-10'	Saturated	ND	Soil Boring	DOE, 1992
78	46	C028	6'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
79	46	C028	8'-11'	Unsaturated	2	Soil Boring	DOE, 1992
80	47	C029	12'-14'	Unsaturated	ND	Soil Boring	DOE, 1992
81	48	C030	4'-6'	Unsaturated	ND	Soil Boring	DOE, 1992
82	48	C030	10'-14'	Saturated	ND	Soil Boring	DOE, 1992
83	49	C031	10'-12'	Saturated	ND	Soil Boring	DOE, 1992
84	50	C032	4'-6'	Unsaturated	ND	Soil Boring	DOE, 1992
85	51	C033	5'-7'	Unsaturated	ND	Soil Boring	DOE, 1992
86	52	C034	6'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
87	53	10a001	5'-8'	Saturated	ND	Geoprobe	USACE, 2003
88	54	10a002	6'-9'	Saturated	ND	Geoprobe	USACE, 2003
89	55	10a003	5-8	NR	ND	Geoprobe	USACE, 2003
90	56	10a004	10'-13'	Saturated	ND	Geoprobe	USACE, 2003
91	57	10a005	5'-9'	Unsaturated	ND	Geoprobe	USACE, 2003
92	58	10a006	5'-9'	Unsaturated	ND	Geoprobe	USACE, 2003
93	59	10a007	2'-5'	Saturated	ND	Geoprobe	USACE, 2003
94	60	10a008	10'-15'	Saturated	ND	Geoprobe	USACE, 2003
95	61	12b001	16'-20'	Saturated	ND	Geoprobe	USACE, 2003
96	62	12b001	7'-10'	Saturated	ND	Geoprobe	USACE, 2003
97	63	12b002 12b003	8'-12'	Saturated	ND	Geoprobe	USACE, 2003
98	64	12b003	8'-12'	Unsaturated	ND	Geoprobe	USACE, 2003
99	65	12b004	8'-12'	Saturated	ND	Geoprobe	USACE, 2003
100	66	12b005	4'-8'	Saturated	ND	Geoprobe	USACE, 2003
100	67	12b006	1-3.5	Unsaturated	ND	Geoprobe	USACE, 2003
101	68	12b007	7'-9'	Unsaturated	ND	Geoprobe	USACE, 2003
102	68	12b009	9 - 11	Saturated	ND	Geoprobe	USACE, 2003
103	69	12b009	4 - 6	Unsaturated	ND	Geoprobe	USACE, 2003
104	69	12b010 12b010	10 - 12	Unsaturated	ND	Geoprobe	USACE, 2003
105	70	12b010 12b011	0 - 4	Unsaturated	ND	Geoprobe	USACE, 2003
106	70	12b011 12b011	6 - 8	Unsaturated	ND	Geoprobe	
107	70	12b011 12b012	2 - 4	Unsaturated	120	Geoprobe	USACE, 2003 USACE, 2003
	71	12b012 12b012	6 - 8	Unsaturated	330		USACE, 2003 USACE, 2003
109						Geoprobe	
110	72	12b013	3 - 5	Unsaturated	200	Geoprobe	USACE, 2003
111 112	72	12b013	6 - 8	Unsaturated	ND	Geoprobe	USACE, 2003
117	73	12b014	2 - 4	Unsaturated	ND	Geoprobe	USACE, 2003

SUMMARY OF HISTORICAL BENZENE SOIL RESULTS

FUSRAP MAYWOOD SUPERFUND SITE, MAYWOOD, NJ

No. of	No. of Sample			Unsaturated/ Saturated			Investigative
Samples	Location	Boring Name	Sample Depth	Sample	Benzene (µg/kg)	Sample Type	Program
113	73	12b014	4'-6'	Unsaturated	ND	Geoprobe	USACE, 2003
114	74	12b014	0'-2'	Unsaturated	ND	Geoprobe	USACE, 2003
115	74	12b015	2 - 4	Unsaturated	ND	Geoprobe	USACE, 2003
116	75	12b015	1-3	Unsaturated	ND	Geoprobe	USACE, 2003
117	75	12b010	5'-7'	Unsaturated	ND	Geoprobe	USACE, 2003
118	76	12b010	0'-2'	Unsaturated	ND	Geoprobe	USACE, 2003
119	70	12b018	2'-4'	Unsaturated	ND	Geoprobe	USACE, 2003
120	77	12b018	0'-2'	Unsaturated	ND	Geoprobe	USACE, 2003
120	77	12b019	2'-4'	Saturated	ND	Geoprobe	USACE, 2003
121	78	12b019	13'-14'	Saturated	ND	Geoprobe	USACE, 2003
122	78	12b020	8'-9'	Unsaturated	ND	Geoprobe	USACE, 2003
123	80	MW-20S	6'-8'	Unsaturated	ND		USACE, 2003
124	81	MW-3S	6'-8'	Unsaturated	ND	Soil Boring Soil Boring	USACE, 2003 USACE, 2003
		TP1RELO	6'-9'		ND		
126	82			Unsaturated		Test Pit	USACE, 2000
127	83	TP1REOV	0'-2'	Unsaturated	ND	Test Pit	USACE, 2000
128	84	TP1REUP	2'-6'	Unsaturated	ND	Test Pit	USACE, 2000
129	85	TP1SULO	6'-9'	Unsaturated	ND	Test Pit	USACE, 2000
130	86	TP1SUOV	0'-2'	Unsaturated	ND	Test Pit	USACE, 2000
131	87	TP1SUUP	2'-6'	Unsaturated	ND	Test Pit	USACE, 2000
132	88	TP1TRLO	6'-9'	Unsaturated	ND	Test Pit	USACE, 2000
133	89	TP1TROV	0'-2'	Unsaturated	ND	Test Pit	USACE, 2000
134	90	TP1TRUP	2'-5'	Unsaturated	ND	Test Pit	USACE, 2000
135	91	TP2RELO	8'-10'	Unsaturated	ND	Test Pit	USACE, 2000
136	92	TP2REOV	0'-1'	Unsaturated	ND	Test Pit	USACE, 2000
137	93	TP2REUP	1'-8'	Unsaturated	ND	Test Pit	USACE, 2000
138	94	TP2SULO	7'-10'	Unsaturated	ND	Test Pit	USACE, 2000
139	95	TP2SUOV	0'-1'	Unsaturated	ND	Test Pit	USACE, 2000
140	96	TP2SUUP	1'-2'	Unsaturated	ND	Test Pit	USACE, 2000
141	97	TP2TRLO	8'-10'	Unsaturated	ND	Test Pit	USACE, 2000
142	98	TP2TROV	0'-1'	Unsaturated	ND	Test Pit	USACE, 2000
143	99	TP2TRUP	1'-8'	Unsaturated	ND	Test Pit	USACE, 2000
144	100	TP3RELO	7'-9'	Unsaturated	ND	Test Pit	USACE, 2000
145	101	TP3REOV	0'-1'	Unsaturated	ND	Test Pit	USACE, 2000
146	102	TP3REUP	0'-8'	Unsaturated	ND	Test Pit	USACE, 2000
147	103	TP3REUP	0'-8'	Unsaturated	ND	Test Pit	USACE, 2000
148	104	TP3SULO	7'-9'	Unsaturated	ND	Test Pit	USACE, 2000
149	105	TP3SUOV	0'-1'	Unsaturated	ND	Test Pit	USACE, 2000
150	106	TP3SUUP	1'-8'	Unsaturated	4300	Test Pit	USACE, 2000
151	107	TP3TRLO	7'-9'	Unsaturated	ND	Test Pit	USACE, 2000
152	108	TP3TROV	0'-1'	Unsaturated	ND	Test Pit	USACE, 2000
153	109	TP3TRUP	1'-3'	Unsaturated	ND	Test Pit	USACE, 2000
154	110	TP4RELO	6'-8'	Unsaturated	640	Test Pit	USACE, 2000
155	111	TP4REOV	0'-1'	Unsaturated	ND	Test Pit	USACE, 2000
156	112	TP4REUP	1'-2'	Unsaturated	ND	Test Pit	USACE, 2000
157	113	TP4SULO	3'-4'	Unsaturated	ND	Test Pit	USACE, 2000
158	114	TP4SUOV	0'-1'	Unsaturated	850	Test Pit	USACE, 2000
159	115	TP4SUUP	1'-3'	Unsaturated	3600	Test Pit	USACE, 2000
160	116	TP4TRLO	3'-4'	Unsaturated	730	Test Pit	USACE, 2000
161	117	TP4TROV	0'-1'	Unsaturated	ND	Test Pit	USACE, 2000
162	118	TP4TRUP	2'-3'	Unsaturated	ND	Test Pit	USACE, 2000
163	119	TP5LWER	6'-8'	Unsaturated	ND	Test Pit	USACE, 2000
164	120	TP50VER	0'-2'	Unsaturated	ND	Test Pit	USACE, 2000
165	120	TP5UPER	2'-6'	Unsaturated	380000	Test Pit	USACE, 2000
166	122	C207	0'-2'	Unsaturated	ND	Soil Boring	DOE, 1992
167	123	C296	0'-2'	Unsaturated	ND	Soil Boring	DOE, 1992
		0200	0-2	Jugardian		oon bonng	DOC, 1002

SUMMARY OF HISTORICAL BENZENE SOIL RESULTS

FUSRAP MAYWOOD SUPERFUND SITE, MAYWOOD, NJ

				Unsaturated/			
No. of	No. of Sample			Saturated			Investigative
Samples	Location	Boring Name	Sample Depth	Sample	Benzene (µg/kg)	Sample Type	Program
169	124	C299	2'-4'	Unsaturated	ND	Soil Boring	DOE, 1992
170	124	C299	6'-8'	Unsaturated	ND	Soil Boring	DOE, 1992
171	125	C701	0'-2'	Unsaturated	87	Soil Boring	DOE, 1992
172	125	C701	2'-4'	Unsaturated	ND	Soil Boring	DOE, 1992
173	125	C701	6'-8'	Saturated	ND	Soil Boring	DOE, 1992
174	125	C701	8'-10'	Saturated	87	Soil Boring	DOE, 1992
175	126	TP-22	2'	Unsaturated	ND	Test Pit	Stepan, 1994
176	127	TP-23	3.5	Unsaturated	ND	Test Pit	Stepan, 1994
177	128	TP-25	0.6	Unsaturated	ND	Test Pit	Stepan, 1994
178	129	TP-32	3'	Unsaturated	ND	Test Pit	Stepan, 1994
179	130	C-20	2.5'-4.5'	Unsaturated	ND	Soil Boring	Stepan, 1994
180	130	C-20	4.5'-6.5'	Unsaturated	ND	Soil Boring	Stepan, 1994
181	130	C-20	6.5'-8.5'	Unsaturated	ND	Soil Boring	Stepan, 1994
182	131	C-38	8'-10'	Unsaturated	ND	Soil Boring	Stepan, 1994
183	131	C-38	10'-12'	Unsaturated	ND	Soil Boring	Stepan, 1994
184	131	C-38	12'-14	Unsaturated	ND	Soil Boring	Stepan, 1994
185	132	C-39	0'-2'	Unsaturated	ND	Soil Boring	Stepan, 1994
186	132	C-39	4'-6'	Unsaturated	ND	Soil Boring	Stepan, 1994
187	132	C-39	6'-8'	Unsaturated	ND	Soil Boring	Stepan, 1994
188	133	C-40	2'-4'	Unsaturated	ND	Soil Boring	Stepan, 1994
189	133	C-40	4'-6'	Unsaturated	ND	Soil Boring	Stepan, 1994
190	133	C-40	6'-8'	Unsaturated	ND	Soil Boring	Stepan, 1994
191	134	C-41	0'-2'	Unsaturated	ND	Soil Boring	Stepan, 1994
192	134	C-41	4'-6'	Unsaturated	2	Soil Boring	Stepan, 1994
193	134	C-41	6'-8'	Unsaturated	ND	Soil Boring	Stepan, 1994
194	135	C-42	4'-6'	Unsaturated	ND	Soil Boring	Stepan, 1994
195	135	C-42	6'-8'	Unsaturated	ND	Soil Boring	Stepan, 1994
196	135	C-42	10'-12'	Unsaturated	ND	Soil Boring	Stepan, 1994
197	136	C-43	3'-5'	Unsaturated	ND	Soil Boring	Stepan, 1994
198	136	C-43	7'-9'	Unsaturated	ND	Soil Boring	Stepan, 1994
199	136	C-43	11'-13'	Unsaturated	ND	Soil Boring	Stepan, 1994
200	137	C-44	4'-6'	Unsaturated	4700	Soil Boring	Stepan, 1994
201	137	C-44	6'-8'	Unsaturated	8	Soil Boring	Stepan, 1994
202	137	C-44	10'-12'	Unsaturated	890	Soil Boring	Stepan, 1994

Legend

μg/kg = micrograms per kilogram ND = Non-Detect

DOE 1992. Remedial Investigation Report Prepared for the U.S. Department of Energy by Bechtel National, Inc., October 1992.

Stepan 1994. Final Remedial Investigation Report. Prepared by CH2M Hill, November 1994

USACE 2000. Final Pilot Demonstration Work Plan, Volume 5, Results of Engineering Test Pits Program At MISS. Prepared by Stone & Webster Engineering Technology & Services, June 2000

USACE 2003. Groundwater Remedial Investigation Report. Prepared by Shaw Environmental, Inc., June 2003.

Table 2-1 Well Construction Data Table

FUSRAP Maywood Superfund Site, Maywood, NJ

					Depth to		Riser Type				Top of Screen, ft	Bottom of		
Well Name	Installation Date	Permit No.	Driller	Aquifer Type	Bedrock(ft bgs)	Drilling Method	(Steel/PVC)	Riser I.D. (inch)	Screen Type	Screen Length (ft)	BGS	Screen, ft BGS	Well Depth (ft BGS)	Surface Construction
MW-27D	8/6-8/9/02	26-65219	B&B Drilling	Bedrock	20	Air Rotary	Steel	6	Open	25	33.5	58.5	58.5	Stick-up
MW-28D	8/7-8/12/02	26-65220	B&B Drilling	Bedrock	20	Air Rotary	Steel	6	Open	25	32.0	57.0	57	Stick-up
MW-31D	2/12-2/14/03	26-66774	B&B Drilling	Bedrock	10	Air Rotary	Steel	6	Open	25	20.0	45.0	45	Flush-Mount
MW-32D	5/2-5/5/03	26-67268	B&B Drilling	Bedrock	18	Air Rotary	Steel	6	Open	25	32.0	57.0	57	Flush-Mount
MW-33D	9/10-9/12/02	26-65221	B&B Drilling	Bedrock	20	Air Rotary	PVC	2	10-slot PVC	20	45.5	65.5	68	Stick-up
MW-34D	9/12-9/16/02	26-65218	B&B Drilling	Bedrock	18	Air Rotary	Steel	6	Open	25	28.0	53.0	53	Stick-up

Legend

BGS = Below Ground Surface

Table 2-2

Well Survey Data Table

FUSRAP Maywood Superfund Site, Maywood, NJ

Site Name	Surveyor	Northing	Easting	Ground Surface Elv. (NGVD)	Top of Inner Casing, where Applicable (NGVD)	Top of Outer Protective Casing (NGVD)	Survey Date
MW-27D	Garden State Surveyors	752837.122	2164483.608	62.68	N/A	65.16	06/25/2003
MW-28D	Garden State Surveyors	752687.422	2164516.466	61.90	N/A	64.50	06/25/2003
MW-31D	Garden State Surveyors	752208.120	2163533.829	49.08	48.62	49.08	06/25/2003
MW-32D	Garden State Surveyors	752117.873	2163781.760	49.18	48.83	49.18	06/25/2003
MW-33D	Garden State Surveyors	752771.805	2164339.602	59.44	62.00	62.24	06/25/2003
MW-34D	Garden State Surveyors	752623.464	2164426.546	58.35	N/A	60.63	06/25/2003

NGVD = National Geodetic Vertical Datum, 1929

N/A = Not Applicable

Table 2-3 Field Parameters Measured Prior to Groundwater Sampling FUSRAP Maywood Superfund Site, Maywood, NJ

No. of Groundwater Samples	Well	Sample Date	Sample Time	pH (S.U.)	Temp (deg. C)	Specific Conductivity (uS/cm)	Eh (mv)	DO (mg/L)	Field Qualifier	Turbidity (NTU)
1	B38W02D	7/17/2002	9:55	6.70	15.40	534.00	113.90	0.30		2.60
2	B38W07B	7/25/2002	13:35	6.59	15.57	427.00	133.40	0.32		2.20
3	B38W14D	7/24/2002	14:00	6.90	18.01	1228.00	-19.40	0.31		4.90
4	B38W15D	3/18/2003	12:55	7.43	13.95	2050.00	218.30	0.04		0.00
5	B38W17B	7/2/2002	10:35	6.87	17.24	2796.00	-82.80	0.22		0.00
6	B38W18D	7/18/2002	9:15	5.54	19.39	724.00	332.60	0.50		10.90
7	B38W19D	7/9/2002	13:35	6.30	17.02	3749.00	1.30	12.90	R	0.00
8	B38W24D	7/15/2002	10:45	5.96	19.64	717.00	-15.40	0.28		2.20
9	B38W25D	7/10/2002	11:20	6.33	16.91	1160.00	-15.80	15.50	R	0.00
10	BRPW-1DRE	8/13/2002	15:05	6.68	16.16	3027.00	-254.70	0.64		25.20
11	BRPZ-3RE	8/13/2002	10:55	6.14	18.05	6685.00	-578.00	0.48		43.20
12	BRPZ-4	8/6/2002	11:05	6.01	15.64	14309.00	-55.40	0.04		NR
13	BRPZ-5RE	8/7/2002	17:30	5.69	18.63	21948.00	-332.60	1.58		21.00
14	BRPZ-9	8/7/2002	10:25	6.26	15.84	10839.00	-72.80	0.07		NR
15	MISS-02B	7/8/2002	14:10	6.64	16.10	4889.00	-20.10	11.67	R	8.80
16	MISS03B	7/29/2002	9:45	6.25	16.46	1364.00	-3.80	0.30		11.80
17	MISS04B	7/29/2002	11:05	6.58	16.73	1553.00	-70.80	0.31		37.00
18	MISS05B	7/31/2002	11:45	6.18	16.57	13128.00	-88.90	1.16		31.60
19	MISS07B	7/11/2002	14:00	6.91	17.70	7785.00	-40.90	0.26		29.10
20	MISS01B	7/18/2002	14:55	7.28	20.68	682.00	136.00	2.24		87.70
21	MW-20D	8/5/2002	14:45	6.81	15.89	4184.00	-72.30	0.11		NR
22	MW-23D	7/26/2002	13:00	6.58	17.02	2230.00	-10.30	0.46		24.90
23	MW-24D	7/25/2002	9:35	6.47	15.74	4835.00	-39.70	0.34		1.20
24	MW-24DD	7/25/2002	10:25	6.94	15.77	3685.00	-103.80	0.77		17.60
25	MW-25D	7/26/2002	10:35	7.49	15.48	2305.00	-212.80	0.18		35.20
26	MW-26D	8/15/2002	13:25	6.90	19.60	8858.00	-626.30	1.67		3.20
27	MW-27D	10/14/2002	16:15	6.84	16.38	3870.00	-64.40	0.92		7.30
28	MW-28D	10/15/2002	10:55	6.75	15.70	2980.00	-71.10	0.73		7.70
29	MW-2D	7/30/2002	15:00	7.33	20.37	1831.00	-74.20	0.20		31.10
30	MW-31D	3/13/2003	12:15	6.75	13.97	2940.00	-71.40	0.02		38.40
31	MW-32D	5/28/2003	12:00	7.37	14.60	3460.00	-68.30	0.05		14.20
32	MW-33D	10/15/2002	14:10	6.49	14.76	8110.00	-47.20	0.80		1.00
33	MW-34D	10/15/2002	16:30	6.66	16.20	4110.00	-71.30	0.59		1.70
34	MW-3D	8/8/2002	15:30	6.37	14.86	8458.00	-31.70	0.52		9.90
35	MW-4D	8/1/2002	15:25	6.99	18.34	587.00	-40.10	0.66		55.10
36	MW-5D	8/2/2002	13:30	7.30	20.49	572.00	149.30	4.02	_	12.60
37	MW-6D MW-7D	8/14/2002 8/5/2002	14:30 10:45	7.21 6.72	20.59 16.69	819.00 1422.00	-164.70 -85.80	0.56 0.08		660.90 NR
38		0/0/2002	10.43	0.72	10.09	1422.00	-00.00	0.00		INFX

Legend

S.U. = Standard Units

Temp = Temperature

deg. C = Degrees Centigrade

uS/cm = Microsiemens per centimeter

Eh = Oxidation-Reduction Potential

mv = Millivolts

DO = Dissolved Oxygen

mg/L = Milligrams per Liter

NTU = Nephelometric Turbidity Unit

R = Data was rejected since reported result exceeded theoretical limit of dissolved oxygen in groundwater

NR = Not Recorded

Table 3-1 Synoptic Water Level Measurements for Bedrock Monitoring Wells FUSRAP Maywood Superfund Site, Maywood, NJ

					wood Superiuliu Sil	,				
GWRI Site Name	Well Type	Top of Measuring Point, ft NGVD	Water Level, ft BTOMP	GW Elv. NGVD	Top of Screen, ft NGVD	Bottom of Screen, ft. NGVD	Top of Screen, ft BGS	Bottom of	Well Depth (ft BGS)	MeasurementDate
B38W02D	Bedrock	78.04	13.01	65.03	37.94	32.94	37.00	42.00	43	6/23/2003
B38W03B	Bedrock	58.27	7.4	50.87	27.13	17.43	29.80	39.50	40.5	6/23/2003
B38W04B	Bedrock	65.64	8.02	57.62	40.01	35.01	22.70	27.70	36.3	6/23/2003
B38W05B	Bedrock	70.98	7.6	63.38	45.56	35.26	22.70	33.00	44.5	6/23/2003
B38W07B	Bedrock	54.98	6.04	48.94	34.09	23.79	18.50	28.80	39.2	6/23/2003
B38W14D	Bedrock	43.79	0	43.79	-1.84	-7.34	46.00	51.50	51.5	6/23/2003
B38W15D	Bedrock	47.04	3.12	43.92	6.47	1.47	41.00	46.00	46	6/24/2003
B38W17B	Bedrock	53.28	6.43	46.85	31.98	21.68	18.70	29.00	44.4	6/23/2003
B38W18D	Bedrock	57.85	2.46	55.39	23.02	18.02	35.00	40.00	41	6/23/2003
B38W18D B38W19D	Bedrock	59.98	13.4	46.58	35.79	25.59	21.70	31.90	47.9	6/23/2003
B38W24D	Bedrock	54.91	6.05	48.86	33.29	28.29	22.00	27.00	28	6/23/2003
B38W25D	Bedrock	57.66	4.65	53.01	34.05	29.05	21.60	26.60	27.6	6/23/2003
BRMW1	Bedrock	49.06	4.05	44.75	12.35	29.05	37.00	47.00	47	6/24/2003
BRMW10	Bedrock	59.33	7.82	51.51	29.78	19.78	30.00	40.00	40	6/23/2003
BRMW10 BRMW14	Bedrock	46.20	3.14	43.06	19.50	9.50	27.00	37.00	37	6/24/2003
BRMW14 BRMW15		71.63	7.4	64.23	50.31	40.31	20.00	30.00	30	6/23/2003
BRMW15 BRMW16	Bedrock	67.94	6.82	61.12	47.60	37.60	20.00	30.00	30	6/23/2003
BRMW16 BRMW17	Bedrock	62.02	3.6	58.42	35.49	25.49	20.00	30.00	30	6/23/2003
BRPW-1DRE	Bedrock	56.30	8.4	47.90	-33.58	-53.58	90.00	110.00	110	6/23/2003
BRPZ-2RE	Bedrock	55.74	7.02	47.90	-33.56	-6.11	42.00	62.00	62	6/23/2003
BRPZ-3RE	Bedrock									
	Bedrock	56.90	7.8	49.10	19.92	-0.08	37.00	57.00	57	6/23/2003
BRPZ-4 BRPZ-5RE	Bedrock	55.58	7.55	48.03 48.27	15.30 13.25	-5.70	40.00 42.00	61.00 62.00	61 62	6/23/2003
-	Bedrock	55.37	7.1			-6.75				6/23/2003
BRPZ-9 MISS01B	Bedrock	55.97 61.98	8.02	47.95	24.07 37.42	0.07	32.00	56.00	56	6/23/2003
	Bedrock		13.93	48.05		6.92	23.00	53.50	53.5	6/23/2003
MISS02B	Bedrock	61.38	9.85	51.53	32.70	2.70	28.50	58.50	58.5	6/23/2003
MISS03B	Bedrock	57.66	7.28	50.38	36.78	6.78	20.00	50.00	50	6/23/2003
MISS04B	Bedrock	56.42	8.6	47.82	38.38	8.38	17.00	47.00	47	6/23/2003
MISS05B	Bedrock	59.76	12.97	46.79	33.09	3.09	25.00	55.00	55	6/23/2003
MISS07B	Bedrock	55.77	8.58	47.19	34.99	4.99	19.00	49.00	49	6/23/2003
MW-13D	Bedrock	46.12	3.99	42.13	21.30	-3.70	25.00	50.00	50	6/23/2003
MW-19D	Bedrock	55.96	5.82	50.14	39.17	14.17	17.00	42.00	42	6/23/2003
MW-19DD	Bedrock	55.81	6.36	49.45	4.64	-19.86	51.50	76.00	76	6/23/2003
MW-20D	Bedrock	58.88	7.7	51.18	28.46	3.46	30.00	55.00	55	6/23/2003
MW-23D	Bedrock	56.19	9	47.19	5.11	-14.89	51.00	71.00	71	6/23/2003
MW-23DD	Bedrock	56.98	10.17	46.81	-25.15	-45.15	82.00	102.00	102	6/23/2003
MW-24D	Bedrock	57.28	9.93	47.35	7.33	-12.67	47.70	67.70	67.7	6/23/2003
MW-24DD	Bedrock	57.08	9.82	47.26	-24.93	-49.93	80.00	105.00	105	6/23/2003
MW-25D	Bedrock	58.13	9.84	48.29	23.11	-1.89	33.00	58.00	59	6/23/2003
MW-26D	Bedrock	60.12	8.07	52.05	23.33	-1.67	33.50	58.50	59	6/23/2003
MW-27D	Bedrock	65.16	14.3	50.86	29.18	4.18	33.50	58.50	58.5	6/23/2003
MW-28D	Bedrock	64.50	14.29	50.21	29.90	4.90	32.00	57.00	57	6/23/2003
MW-2D	Bedrock	46.91	3.2	43.71	25.66	-1.34	21.50	48.50	48.5	6/23/2003
MW-31D	Bedrock	48.62	4.41	44.21	29.08	4.08	20.00	45.00	45	6/23/2003
MW-32D	Bedrock	48.83	2.45	46.38	17.18	-7.82	32.00	57.00	57	6/23/2003
MW-33D	Bedrock	62.00	13.27	48.73	13.94	-6.06	45.50	65.50	68	6/23/2003
MW-34D	Bedrock	60.63	6.76	53.87	30.35	5.35	28.00	53.00	53	6/23/2003
MW-3D	Bedrock	54.77	5.25	49.52	25.06	0.06	30.00	55.00	55	6/23/2003
MW-5D	Bedrock	45.15	5.1	40.05	13.43	-6.57	32.00	52.00	52	6/23/2003
MW-6D	Bedrock	42.34	3.66	38.68	13.84	-11.16	29.00	54.00	54	6/23/2003
MW-7D	Bedrock	53.73	5.21	48.52	32.99	7.99	21.00	46.00	46	6/23/2003
MW-8D	Bedrock	54.15	5	49.15	27.34	2.34	27.00	52.00	52	6/23/2003
PT-1DA	Bedrock	55.92	8.4	47.52	27.26	17.26	29.00	39.00	13	6/24/2003
PT-1DB	Bedrock	55.79	8.5	47.29	4.26	-5.74	52.00	62.00	13	6/24/2003

Legend

ft NGVD = Feet relative to the National Geodetic Vertical Datum EI. = Elevation BTOMP = Below Top of Measuring Point BGS = Below Ground Surface

Table 3-2Summary of Hydraulic Conductivity Values Obtained from Specific Capacity TestsFUSRAP Maywood Superfund Site

	Specific Capacity,	Transmissivity	Saturated	Hydraulic Conductivity	
Well	Q/s (gpm/ft)	(ft ² /day)	Thickness (ft)	(cm/sec)	Date of Test
MW-27D	0.09	197.37	25.00	2.79E-03	8/15/2002
MW-28D	0.16	307.87	25.00	4.34E-03	8/14/2002
MW-31D	2.55	2133.05	25.00	3.01E-02	2/21/2003
MW-32D	1.24	1312.99	29.00	1.60E-02	5/6/2003
MW-33D	0.16	339.21	22.00	5.44E-03	9/16/2002
MW-34D	0.13	275.12	25.00	3.88E-03	9/17/2002
Minimum	0.09	197.37	22.00	2.79E-03	
Maximum	2.55	2133.05	29.00	3.01E-02	
Geometric Mean	0.31	501.36	N/A	7.05E-03	

Legend

Q/s = Specific Capacity

Q = Flow rate in gallons per minute (gpm)

s = Drawdown in feet (ft)

Table 3-3 Summary of Benzene Results for Bedrock Groundwater Samples - RI Addendum FUSRAP Maywood Superfund Site, Maywood, NJ

			i oortaa maywood oup				
Well	Sample ID:	Analysis Name:	Result (µg/L)	Result Qualifier	Detection Limit (µg/L)	Sample Type	Collection Date
B38W17B	20a-024645	Benzene	5	U	5	REG	7/2/2002
MISS02B	12b-024633	Benzene	0.2	J	0.5	REG	7/8/2002
B38W19D	12b-024648	Benzene	0.7		0.5	REG	7/9/2002
B38W25D	12b-024652	Benzene	0.5	U	0.5	REG	7/10/2002
MISS07B	12b-024638	Benzene	0.5	U	0.5	REG	7/11/2002
B38W24D	10a-024650	Benzene	0.5	Ŭ	0.5	REG	7/15/2002
B38W02D	12a-024639	Benzene	0.5	Ŭ	0.5	REG	7/17/2002
B38W18D	12b-024681	Benzene	0.5	Ŭ	0.5	REG	7/18/2002
MISS01B	12b-024631	Benzene	0.5	Ŭ	0.5	REG	7/18/2002
B38W14D	19a-024641	Benzene	0.5	ŭ	0.5	REG	7/24/2002
B38W07B	12b-021647	Benzene	0.5	Ŭ	0.5	REG	7/25/2002
MW-24D	12b-021645	Benzene	29		0.5	REG	7/25/2002
MW-24DD	12b-021646	Benzene	9		0.5	REG	7/25/2002
MW-23D	12b-021651	Benzene	0.5	U	0.5	REG	7/26/2002
MW-25D	12b-021652	Benzene	0.4	J	0.5	REG	7/26/2002
MISS03B	10a-021655	Benzene	0.5	Ŭ	0.5	REG	7/29/2002
MISS04B	10a-021656	Benzene	5		2	DIL	7/29/2002
MW-2D	23b-021661	Benzene	1	U	1	DIL	7/30/2002
MISS05B	12b-024635	Benzene	680		25	DIL	7/31/2002
MW-4D	23b-021666	Benzene	0.5	U	0.5	REG	8/1/2002
MW-5D	23b-021667	Benzene	0.5	U	0.5	REG	8/2/2002
MW-20D	12a-021680	Benzene	0.5	Ŭ	0.5	REG	8/5/2002
MW-7D	23b-021669	Benzene	0.4	.1	0.5	REG	8/5/2002
BRPZ-4	12b-021684	Benzene	760	-	20	DIL	8/6/2002
BRPZ-5	12b-021671	Benzene	9500	J	200	DIL	8/7/2002
BRPZ-9	12b-021672	Benzene	1800		50	DIL	8/7/2002
MW-3D	12a-021665	Benzene	15		2	DIL	8/8/2002
BRPW-1DRE	12b-021664	Benzene	0.5	U	0.5	REG	8/13/2002
BRPZ-3	12b-021670	Benzene	130	-	5	DIL	8/13/2002
MW-6D	23b-021668	Benzene	1	U	1	DIL	8/14/2002
MW-26D	12b-021703	Benzene	180		5	DIL	8/15/2002
MW-27D	12b-021721	Benzene	5		0.5	REG	10/14/2002
MW-28D	12b-021722	Benzene	6		0.5	REG	10/15/2002
MW-33D	12b-021725	Benzene	10		0.5	REG	10/15/2002
MW-34D	12b-021726	Benzene	16		0.5	REG	10/15/2002
MW-31D	23b-021734	Benzene	0.5	U	0.5	REG	3/13/2003
B38W15D	20a-021738	Benzene	0.42	J		REG	3/18/2003
MW-32D	23b-021742	Benzene	1	Ŭ	1	DIL	5/28/2003

Legend: ug/L = Micrograms per Liter U = Non-Detect J = Estimated Result Reg = Regular Sample (Non-Diluted) Result Dil = Diluted Sample Result

Table 3-4Summary of Benzene Results Exceeding Groundwater Standards - RI AddendumFUSRAP Maywood Superfund Site, Maywood, NJ

							Greater of NJ		Federal	
		Analysis	Result	Result	Detection	Sample	GWQC or NJ	NJ MCL	MCL	
Well	Sample ID	Name:	(ug/L)	Qualifier	Limit (ug/L)	Type:	PQL (ug/L)	(ug/L)	(ug/L)	Collection Date:
BRPZ-3	12b-021670	Benzene	130		5	DIL	1	1	5	8/13/2002
BRPZ-4	12b-021684	Benzene	760		20	DIL	1	1	5	8/6/2002
BRPZ-5	12b-021671	Benzene	9500	J	200	DIL	1	1	5	8/7/2002
BRPZ-9	12b-021672	Benzene	1800	J	50	DIL	1	1	5	8/7/2002
MISS04B	10a-021656	Benzene	5		2	DIL	1	1	5	7/29/2002
MISS05B	12b-024635	Benzene	680		25	DIL	1	1	5	7/31/2002
MW-24D	12b-021645	Benzene	29		0.5	REG	1	1	5	7/25/2002
MW-24DD	12b-021646	Benzene	9		0.5	REG	1	1	5	7/25/2002
MW-26D	12b-021703	Benzene	180		5	DIL	1	1	5	8/15/2002
MW-27D	12b-021721	Benzene	5		0.5	REG	1	1	5	10/14/2002
MW-28D	12b-021722	Benzene	6		0.5	REG	1	1	5	10/15/2002
MW-33D	12b-021725	Benzene	10		0.5	REG	1	1	5	10/15/2002
MW-34D	12b-021726	Benzene	16		0.5	REG	1	1	5	10/15/2002
MW-3D	12a-021665	Benzene	15		2	DIL	1	1	5	8/8/2002

Legend:

µg/L = Micrograms per Liter

J = Estimated Result

Reg = Regular Sample (Non-Diluted) Result

Dil = Diluted Sample Result

NJ GWQC = New Jersey Groundwater Quality Criteria

MCL = Maximum Contaminant Level

Table 3-5
Summary of Detectable TCL VOCs - RI Addendum
FUSRAP Maywood Superfund Site, Maywood, NJ

				Detection	Result		Date of Samp
Well	Sample I.D.	Analysis Name	Result (ug/L)	Limit (ug/L)	Qualifier	Result Type	Collection
B38W02D	12a-024639	Chloromethane	0.7	0.5		REG	7/17/2002
B38W14D	19a-024641	1,1-Dichloroethane	1	0.5		REG	7/24/2002
B38W14D	19a-024641	1,1-Dichloroethene	3	0.5		REG	7/24/2002
B38W14D	19a-024641	1,2-Dichloroethene (trans)	1	0.5		REG	7/24/2002
B38W14D	19a-024641	1,2-Dichloropropane	0.5	0.5		REG	7/24/2002
B38W14D	19a-024641	Chloromethane	0.4	0.5	J	REG	7/24/2002
B38W14D	19a-024641	cis-1,2-Dichloroethene	100	25	-	DIL	7/24/2002
B38W14D	19a-024641	Tetrachloroethene	640	25		DIL	7/24/2002
B38W14D	19a-024641	Trichloroethene	160	25		DIL	7/24/2002
B38W14D	19a-024641	Vinyl Chloride	0.3	0.5	J	REG	7/24/2002
B38W15D	20a-021738	1,1,1-Trichloroethane	0.45	0.5	J	REG	3/18/2003
B38W15D	20a-021738 20a-021738	1,1-Dichloroethene	2.1	0.5	J	REG	3/18/2003
B38W15D	20a-021738	1,2-Dichloroethene (cis)	43	0.5	J	REG	3/18/2003
B38W15D	20a-021738	1,2-Dichloroethene (total)	43	0.5	J	REG	3/18/2003
B38W15D	20a-021738	1,2-Dichloroethene (total)	32	0.5	J	REG	3/18/2003
B38W15D	20a-021738	1,2-Dichloropropane	0.25	0.5	J	REG	3/18/2003
B38W15D	20a-021738		0.25		J	REG	3/18/2003
B38W15D	20a-021738 20a-021738	Benzene Chloroform	0.42	0.5	J	REG	3/18/2003
B38W15D	20a-021738 20a-021738	Tetrachloroethene	150	0.5	J	REG	3/18/2003
B38W15D	20a-021738	Toluene	0.68	0.5	J	REG	3/18/2003
B38W15D	20a-021738 20a-021738	Trichloroethene	37	0.5	J	REG	3/18/2003
B38W15D	20a-021738	Vinyl chloride	1.1	0.5	J	REG	3/18/2003
B300015D	208-021736	Villyi chionde	1.1	0.5		REG	3/16/2003
B38W17B	20a-021659	Acetone	89	250	J	DIL	7/30/2002
B38W17B	20a-024645	cis-1,2-Dichloroethene	0.5	5	J	REG	7/2/2002
B38W18D	12b-024681	Acetone	3	5	J	REG	7/18/2002
B38W19D	12b-024648	Benzene	0.7	0.5		REG	7/9/2002
B38W19D	12b-024648	Chlorobenzene	0.2	0.5	J	REG	7/9/2002
B38W19D	12b-024648	cis-1,2-Dichloroethene	0.2	0.5	J	REG	7/9/2002
B38W24D	10a-024650	Chloromethane	0.3	0.5	J	REG	7/15/2002
D30W24D	108-024030	Chloromethane	0.5	0.0	5	REG	1/13/2002
B38W25D	12b-024652	Chloromethane	0.2	0.5	J	REG	7/10/2002
BRPW-1DRE	12b-021664	1,1-Dichloroethane	0.2	0.5	J	REG	8/13/2002
BRPW-1DRE	12b-021664	cis-1,2-Dichloroethene	0.5	0.5	1	REG	8/13/2002
BRPW-1DRE	12b-021664	Tetrachloroethene	4	0.5		REG	8/13/2002
BRPW-1DRE	12b-021664	Trichloroethene	0.8	0.5		REG	8/13/2002
BRPZ-3	12b-021670	Benzene	130	5		DIL	8/13/2002
BRPZ-3	12b-021670	Chlorobenzene	130	5		DIL	8/13/2002
BRPZ-3	12b-021670	Ethylbenzene	1	5	J	DIL	8/13/2002
BRPZ-3	12b-021670	Toluene	5	5	J	DIL	8/13/2002
BRPZ-3	12b-021670	Total Xylene	5	10	J	DIL	8/13/2002
BRPZ-4	12b-021684	Benzene	760	20		DIL	8/6/2002
BRPZ-4	12b-021684	Toluene	10	20	J	DIL	8/6/2002
BRPZ-5	12b-021671	Benzene	9500	200	J	DIL	8/7/2002

Table 3-5
Summary of Detectable TCL VOCs - RI Addendum
FUSRAP Maywood Superfund Site, Maywood, NJ

Well	Sample I.D.	Analysis Name	Result (ug/L)	Detection Limit (ug/L)	Result Qualifier	Result Type	Date of Samp Collection
BRPZ-5	12b-021671	Toluene	610	200	Qualifier	DIL	8/7/2002
BRPZ-5	120-021671	loluene	610	200		DIL	8/7/2002
BRPZ-9	12b-021672	Benzene	1800	50	J	DIL	8/7/2002
MISS01B	12b-024631	Acetone	5	5	J	REG	7/18/2002
MISS01B	12b-024631	Bromodichloromethane	3	0.5	-	REG	7/18/2002
MISS01B	12b-024631	Chloroform	7	0.5		REG	7/18/2002
MISS01B	12b-024631	Chloromethane	0.6	0.5	J	REG	7/18/2002
MISS01B	12b-024631	cis-1,2-Dichloroethene	0.4	0.5	J	REG	7/18/2002
MISS01B	12b-024631	Dibromochloromethane	0.9	0.5		REG	7/18/2002
MISS01B	12b-024631	Tetrachloroethene	4	0.5		REG	7/18/2002
MISS01B	12b-024631	Total Xylene	0.4	1	J	REG	7/18/2002
MISS01B	12b-024631	Trichloroethene	0.3	0.5	J	REG	7/18/2002
MISS02B	12b-024633	1,1-Dichloroethane	0.1	0.5	J	REG	7/8/2002
MISS02B	12b-024633	Benzene	0.2	0.5	J	REG	7/8/2002
MISS03B	10a-021655	Chloromethane	0.2	0.5	J	REG	7/29/2002
MISS04B	10a-021656	Benzene	5	2		DIL	7/29/2002
MISS04B	10a-021656	cis-1,2-Dichloroethene	7	2		DIL	7/29/2002
MISS04B	10a-021656	Vinyl chloride	57	2		DIL	7/29/2002
MISS05B	12b-024635	Benzene	680	25		DIL	7/31/2002
MISS05B	12b-024635	Toluene	6	25	J	DIL	7/31/2002
MISS07B	12b-024638	1,1-Dichloroethane	0.6	0.5		REG	7/11/2002
MISS07B	12b-024638	1,1-Dichloroethene	0.3	0.5	J	REG	7/11/2002
MISS07B	12b-024638	cis-1,2-Dichloroethene	2	0.5		REG	7/11/2002
MISS07B	12b-024638	Tetrachloroethene	4	0.5		REG	7/11/2002
MISS07B	12b-024638	trans-1,2-Dichloroethene	3	0.5		REG	7/11/2002
MISS07B	12b-024638	Trichloroethene	1	0.5		REG	7/11/2002
MISS07B	12b-024638	Vinyl chloride	0.9	0.5		REG	7/11/2002
MW-24D	12b-021645	1,1-Dichloroethane	0.2	0.5	J	REG	7/25/2002
MW-24D	12b-021645	Acetone	2	5	J	REG	7/25/2002
MW-24D	12b-021645	Benzene	29	0.5		REG	7/25/2002
MW-24D	12b-021645	Chlorobenzene	4	0.5		REG	7/25/2002
MW-24D	12b-021645	cis-1,2-Dichloroethene	2	0.5		REG	7/25/2002
MW-24D	12b-021645	Tetrachloroethene	0.1	0.5	J	REG	7/25/2002
MW-24D	12b-021645	trans-1,2-Dichloroethene	0.6	0.5		REG	7/25/2002
MW-24DD	12b-021646	1,1-Dichloroethane	0.2	0.5	J	REG	7/25/2002
MW-24DD	12b-021646	Acetone	12	5	J	REG	7/25/2002
MW-24DD	12b-021646	Benzene	9	0.5		REG	7/25/2002
MW-24DD	12b-021646	Chlorobenzene	0.9	0.5		REG	7/25/2002
MW-24DD	12b-021646	cis-1,2-Dichloroethene	2	0.5		REG	7/25/2002
MW-24DD	12b-021646	Tetrachloroethene	0.1	0.5	J	REG	7/25/2002
MW-24DD	12b-021646	trans-1,2-Dichloroethene	0.8	0.5		REG	7/25/2002
MW-24DD	12b-021646	Trichloroethene	0.4	0.5	J	REG	7/25/2002
MW-25D	12b-021652	Benzene	0.4	0.5	J	REG	7/26/2002

Table 3-5
Summary of Detectable TCL VOCs - RI Addendum
FUSRAP Maywood Superfund Site, Maywood, NJ

				Detection	Result		Date of Samp
Well	Sample I.D.	Analysis Name	Result (ug/L)	Limit (ug/L)	Qualifier	Result Type	Collection
MW-26D	12b-021703	Benzene	180	5		DIL	8/15/2002
MW-26D	12b-021703	Chloroform	100	5	J	DIL	8/15/2002
10100-200	120-021703	Chioroionn	1	5	0	DIL	0/13/2002
MW-27D	12b-021721	1,1-Dichloroethane	0.2	0.5	J	REG	10/14/2002
MW-27D	12b-021721	Acetone	1	5	J	REG	10/14/2002
MW-27D	12b-021721	Benzene	5	0.5		REG	10/14/2002
MW-27D	12b-021721	cis-1,2-Dichloroethene	0.8	0.5		REG	10/14/2002
MW-27D	12b-021721	Toluene	0.2	0.5	J	REG	10/14/2002
MW-27D	12b-021721	Trichloroethene	1	0.5		REG	10/14/2002
MW-28D	12b-021722	1,1-Dichloroethane	0.2	0.5	J	REG	10/15/2002
MW-28D	12b-021722	Benzene	6	0.5	Ŭ	REG	10/15/2002
MW-28D	12b-021722	cis-1,2-Dichloroethene	0.3	0.5	J	REG	10/15/2002
MW-28D	12b-021722	Trichloroethene	0.5	0.5	Ŭ	REG	10/15/2002
10100-200	120-021122	Themoroethene	0.5	0.5		NLG	10/13/2002
MW-2D	23b-021661	1,1-Dichloroethane	0.4	1	J	DIL	7/30/2002
MW-2D	23b-021661	1,1-Dichloroethene	0.5	1	J	DIL	7/30/2002
MW-2D	23b-021661	cis-1,2-Dichloroethene	11	1		DIL	7/30/2002
MW-2D	23b-021661	Tetrachloroethene	46	1		DIL	7/30/2002
MW-2D	23b-021661	trans-1,2-Dichloroethene	6	1		DIL	7/30/2002
MW-2D	23b-021661	Trichloroethene	4	1		DIL	7/30/2002
MW-2D	23b-021661	Vinyl chloride	0.7	1	J	DIL	7/30/2002
MW-31D	23b-021734	1,1-Dichloroethane	0.8	0.5		REG	3/13/2003
MW-31D	23b-021734	cis-1.2-Dichloroethene	14	0.5		REG	3/13/2003
MW-31D	23b-021734	Tetrachloroethene	7	0.5		REG	3/13/2003
MW-31D	23b-021734	trans-1,2-Dichloroethene	20	0.5		REG	3/13/2003
MW-31D	23b-021734	Trichloroethene	3	0.5		REG	3/13/2003
MW-31D	23b-021734	Vinyl chloride	5	0.5		REG	3/13/2003
	200 021101	VillyFolloride	0	0.0		TILO	0,10,2000
MW-32D	23b-021742	1,1-Dichloroethane	0.6	1		REG	5/28/2003
MW-32D	23b-021742	cis-1,2-Dichloroethene	2	1		REG	5/28/2003
MW-32D	23b-021742	Tetrachloroethene	2	1		REG	5/28/2003
MW-32D	23b-021742	Toluene	0.4	1	J	REG	5/28/2003
MW-32D	23b-021742	trans-1,2-Dichloroethene	0.7	1		REG	5/28/2003
MW-32D	23b-021742	Trichloroethene	0.3	1	J	REG	5/28/2003
MW-32D	23b-021742	Vinyl chloride	3	1		REG	5/28/2003
MW-33D	12b-021725	Benzene	10	0.5		REG	10/15/2002
MW-33D MW-33D	12b-021725	cis-1,2-Dichloroethene	10	0.5		REG	10/15/200
MW-33D	12b-021725	Ethylbenzene	0.2	0.5	J	REG	10/15/200
MW-33D MW-33D	12b-021725	Toluene	0.2	0.5	J	REG	10/15/2002
MW-33D	12b-021725	Total Xylene	0.1	0.5	J	REG	10/15/2002
10100-330	120-021125		0.2		5	NLG	10/13/2004
MW-34D	12b-021726	Benzene	16	0.5		REG	10/15/2002
MW-34D	12b-021726	cis-1,2-Dichloroethene	0.2	0.5	J	REG	10/15/200
MW-34D	12b-021726	Ethylbenzene	0.1	0.5	J	REG	10/15/2002
MW-34D	12b-021726	Toluene	3	0.5		REG	10/15/2002
MW-34D	12b-021726	Total Xylene	0.2	1	J	REG	10/15/2002
N/14/ 05	40- 00/007					D	0/0/0000
MW-3D	12a-021665	Benzene	15	2		DIL	8/8/2

Table 3-5
Summary of Detectable TCL VOCs - RI Addendum
FUSRAP Maywood Superfund Site, Maywood, NJ

				Detection	Result		Date of Sample
Well	Sample I.D.	Analysis Name	Result (ug/L)	Limit (ug/L)	Qualifier	Result Type	Collection
MW-3D	12a-021665	cis-1,2-Dichloroethene	0.9	2	J	DIL	8/8/2002
MW-3D	12a-021665	Total Xylene	0.6	1	J	REG	8/8/2002
MW-3D	12a-021665	Trichloroethene	0.9	2	J	DIL	8/8/2002
MW-4D	23b-021666	1,1-Dichloroethene	0.7	0.5		REG	8/1/2002
MW-4D	23b-021666	Chloroform	0.3	0.5	J	REG	8/1/2002
MW-4D	23b-021666	Tetrachloroethene	13	0.5	5	REG	8/1/2002
MW-4D	23b-021666	Trichloroethene	0.4	0.5	J	REG	8/1/2002
1VIVV-4D	230-021000	Thenlordethene	0.4	0.5	J	REG	0/1/2002
MW-5D	23b-021667	Chloroform	1	0.5		REG	8/2/2002
MW-5D	23b-021667	Tetrachloroethene	0.8	0.5		REG	8/2/2002
MW-6D	23b-021668	1.1-Dichloroethane	0.3	1	J	DIL	8/14/2002
MW-6D	230-021668	1.1-Dichloroethene	0.3	1	J	DIL	8/14/2002
MW-6D	23b-021668	Chloroform	2	1		DIL	8/14/2002
MW-6D	23b-021668	cis-1.2-Dichloroethene	2	1		DIL	8/14/2002
	23b-021668		1	1			
MW-6D		Tetrachloroethene	39			DIL	8/14/2002
MW-6D	23b-021668	Trichloroethene	3	1		DIL	8/14/2002
MW-7D	23b-021669	1,1,1-Trichloroethene	4	0.5		REG	8/5/2002
MW-7D	23b-021669	1,1-Dichloroethane	4	0.5		REG	8/5/2002
MW-7D	23b-021669	1,2-Dichloropropane	1	0.5		REG	8/5/2002
MW-7D	23b-021669	1,1-Dichloroethene	3	0.5		REG	8/5/2002
MW-7D	23b-021669	Benzene	0.4	0.5	J	REG	8/5/2002
MW-7D	23b-021669	Chloroform	1	0.5		REG	8/5/2002
MW-7D	23b-021669	Chloromethane	0.2	0.5	J	REG	8/5/2002
MW-7D	23b-021669	cis-1,2-Dichloroethene	320	25		DIL	8/5/2002
MW-7D	23b-021669	Tetrachloroethene	1300	25		DIL	8/5/2002
MW-7D	23b-021669	trans-1,2-dichloroethene	2	0.5		REG	8/5/2002
MW-7D	23b-021669	Trichloroethene	300	25		DIL	8/5/2002
MW-7D	23b-021669	Vinyl Chloride	1	0.5		REG	8/5/2002

Legend:

ug/L = Micrograms per Liter J = Estimated Result Reg = Regular Sample (Non-Diluted) Result Dil = Diluted Sample Result

 Table 3-6

 Summary of TCL VOCs Exceeding Groundwater Standards - RI Addendum

 FUSRAP Maywood Superfund Site, Maywood, NJ

				ood Superfund	,			-	-	1
			Result	Detection Limit		Sample	Greater of NJ GWQC or NJ	NJ MCL	Federal MCL	
Well	Sample I.D.	Analysis Name	(ug/L)	(ug/L)	Qualifier	Туре	PQL (ug/L)	(ug/L)	(ug/L)	Collection Date
B38W14D	19a-024641	Tetrachloroethene	640	25		DIL	1	1	5	7/24/2002
B38W14D	19a-024641	Trichloroethene	160	25		DIL	1	1	5	7/24/2002
B38W15D	20a-021738	1,1-Dichloroethene	2.1	0.5		REG	2	2	7	3/18/2003
									-	
B38W15D	20a-021738	1,2-Dichloroethene (cis)	43	0.5	J	REG	10	70	70	3/18/2003
B38W15D	20a-021738	1,2-Dichloroethene (total)	76	0.5	J	REG	10	70	70	3/18/2003
B38W15D	20a-021738	Tetrachloroethene	150	0.5	J	REG	1	1	5	3/18/2003
B38W15D	20a-021738	Trichloroethene	37	0.5	J	REG	1	1	5	3/18/2003
BRPW-1DRE	12b-021664	Tetrachloroethene	4	0.5		REG	1	1	5	8/13/2002
BRPZ-3	12b-021670	Benzene	130	5		DIL	1	1	5	8/13/2002
BRPZ-4	12b-021684	Benzene	760	20		DIL	1	1	5	8/6/2002
BRPZ-5	12b-021671	Benzene	9500	200	J	DIL	1	1	5	8/7/2002
BRPZ-9	12b-021672	Benzene	1800	50	J	DIL	1	1	5	8/7/2002
MISS01B	12b-024631	Bromodichloromethane	3	0.5		REG	1	NA	NA	7/18/2002
MISS01B	12b-024631	Chloroform	7	0.5		REG	6	NA	NA	7/18/2002
MISS01B	12b-024631	Tetrachloroethene	4	0.5		REG	1	1	5	7/18/2002
	40.004050								_	7/00/0000
MISS04B MISS04B	10a-021656 10a-021656	Benzene	5 57	2 2		DIL	<u>1</u> 5	1 2	5	7/29/2002 7/29/2002
IVII5504B	108-021050	Vinyl chloride	57	2		DIL	5	2	2	1/29/2002
MISS05B	12b-024635	Benzene	680	25		DIL	1	1	5	7/31/2002
MISS05D	120-024035	Benzene	000	25		DIL	1	1	5	1/31/2002
MISS07B	12b-024638	Tetrachloroethene	4	0.5		REG	1	1	5	7/11/2002
MISS07B	12b-024638	Trichloroethene	1	0.5		REG	1	1	5	7/11/2002
				0.0					0	
MW-24D	12b-021645	Benzene	29	0.5		REG	1	1	5	7/25/2002
									-	
MW-24DD	12b-021646	Benzene	9	0.5		REG	1	1	5	7/25/2002
									-	
MW-26D	12b-021703	Benzene	180	5		DIL	1	1	5	8/15/2002
				-					-	
MW-27D	12b-021721	Benzene	5	0.5		REG	1	1	5	10/14/2002
MW-27D	12b-021721	Trichloroethene	1	0.5		REG	1	1	5	10/14/2002
			1							
MW-28D	12b-021722	Benzene	6	0.5		REG	1	1	5	10/15/2002
								1		

Table 3-6 Summary of TCL VOCs Exceeding Groundwater Standards - RI Addendum FUSRAP Maywood Superfund Site, Maywood, NJ

			<u> </u>	oou ouperium				-		
			Result	Detection Limit	Result	Sample	Greater of NJ GWQC or NJ	NJ MCL	Federal MCL	
Well	Sample I.D.	Analysis Name	(ug/L)	(ug/L)	Qualifier	Туре	PQL (ug/L)	(ug/L)	(ug/L)	Collection Date
MW-2D	23b-021661	Tetrachloroethene	46	1		DIL	1	1	5	7/30/2002
MW-2D	23b-021661	Trichloroethene	4	1		DIL	1	1	5	7/30/2002
MW-31D	23b-021734	Tetrachloroethene	7	0.5		REG	1	1	5	3/13/2003
MW-31D	23b-021734	Trichloroethene	3	0.5		REG	1	1	5	3/13/2003
MW-31D	23b-021734	Vinyl chloride	5	0.5		REG	5	2	2	3/13/2003
MW-32D	23b-021742	Tetrachloroethene	2	1		DIL	1	1	5	5/28/2003
MW-32D	23b-021742	Vinyl chloride	3	1		DIL	5	2	2	5/28/2003
MW-33D	12b-021725	Benzene	10	0.5		REG	1	1	5	10/15/2002
MW-34D	12b-021726	Benzene	16	0.5		REG	1	1	5	10/15/2002
MW-3D	12a-021665	Benzene	15	2		DIL	1	1	5	8/8/2002
MW-4D	23b-021666	Tetrachloroethene	13	0.5		REG	1	1	5	8/1/2002
MW-6D	23b-021668	Tetrachloroethene	39	1		DIL	1	1	5	8/14/2002
MW-6D	23b-021668	Trichloroethene	3	1		DIL	1	1	5	8/14/2002
MW-7D	23b-021669	Tetrachloroethene	1300	25		DIL	1	1	5	8/5/2002
MW-7D	23b-021669	Trichloroethene	300	25		DIL	1	1	5	8/5/2002
MW-7D	23b-021669	1,1-Dichloroethene	3	0.5		REG	2	2	7	8/5/2002

Legend:

ug/L = Micrograms per Liter

J = Estimated Result

Reg = Regular Sample (Non-Diluted) Result

Dil = Diluted Sample Result

NJ GWQC = New Jersey Groundwater Quality Criteria

NJ PQL = New Jersey Practical Quantitation Limit

MCL = Maximum Contaminant Level

Table 3-7
Field Parameters Measured Prior to Groundwater Sampling
FUSRAP Maywood Superfund Site, Maywood, NJ

No. of Groundwater Samples	Well	Sample Date	Sample Time	рН (S.U.)	Temp (deg. C)	Specific Conductivity (uS/cm)	Eh (mv)	DO (mg/L)	Turbidity (NTU)
1	B38W02D	7/17/2002	9:55	6.70	15.40	534.00	113.90	0.30	2.60
2	B38W07B	7/25/2002	13:35	6.59	15.57	427.00	133.40	0.32	2.20
3	B38W14D	7/24/2002	14:00	6.90	18.01	1228.00	-19.40	0.31	4.90
4	B38W15D	3/18/2003	12:55	7.43	13.95	2050.00	218.30	0.04	0.00
5	B38W17B	7/2/2002	10:40	6.87	6.78	2322.00	-20.80	31.64	-0.30
6	B38W18D	7/18/2002	9:15	5.54	19.39	724.00	332.60	0.50	10.90
7	B38W19D	7/9/2002	13:35	6.30	17.02	3749.00	1.30	12.90	0.00
8	B38W24D	7/15/2002	10:45	5.96	19.64	717.00	-15.40	0.28	2.20
9	B38W25D	7/10/2002	11:20	6.33	16.91	1160.00	-15.80	15.50	-1.20
10	BRPW-1DRE	8/13/2002	15:05	6.68	16.16	3027.00	-254.70	0.64	25.20
11	BRPZ-3RE	8/13/2002	10:55	6.14	18.05	6685.00	-578.00	0.48	43.20
12	BRPZ-4	8/6/2002	11:05	6.01	15.64	14309.00	-55.40	0.04	NR
13	BRPZ-5RE	8/7/2002	17:30	5.69	18.63	21948.00	-332.60	1.58	21.00
14	BRPZ-9	8/7/2002	10:25	6.26	15.84	10839.00	-72.80	0.07	NR
15	MISS-02B	7/8/2002	14:10	6.64	16.10	4889.00	-20.10	11.67	8.80
16	MISS03B	7/29/2002	9:45	6.25	16.46	1364.00	-3.80	0.30	11.80
17	MISS04B	7/29/2002	11:05	6.58	16.73	1553.00	-70.80	0.31	37.00
18	MISS-05B	7/31/2002	11:45	6.18	16.57	13128.00	-88.90	1.16	31.60
19	MISS07B	7/11/2002	14:00	6.91	17.70	7785.00	-40.90	0.26	29.10
20	MISS-1B	7/18/2002	14:55	7.28	20.68	682.00	136.00	2.24	87.70
21	MW-20D	8/5/2002	14:45	6.81	15.89	4184.00	-72.30	0.11	NR
22	MW-23D	7/26/2002	13:00	6.58	17.02	2230.00	-10.30	0.46	24.90
23	MW-24D	7/25/2002	9:35	6.47	15.74	4835.00	-39.70	0.34	1.20
24	MW-24DD	7/25/2002	10:25	6.94	15.77	3685.00	-103.80	0.77	17.60
25	MW-25D	7/26/2002	10:35	7.49	15.48	2305.00	-212.80	0.18	35.20
26	MW-26D	8/15/2002	13:25	6.90	19.60	8858.00	-626.30	1.67	3.20
27	MW-27D	10/14/2002	16:15	6.84	16.38	3870.00	-64.40	0.92	7.30
28	MW-28D	10/15/2002	10:55	6.75	15.70	2980.00	-71.10	0.73	7.70
29	MW-2D	7/30/2002	15:00	7.33	20.37	1831.00	-74.20	0.20	31.10
30	MW-31D	3/13/2003	12:15	6.75	13.97	2940.00	-71.40	0.02	38.40
31	MW-32D	5/28/2003	12:00	7.37	14.60	3460.00	-68.30	0.05	14.20
32	MW-33D	10/15/2002	14:10	6.49	14.76	8110.00	-47.20	0.80	1.00
33	MW-34D	10/15/2002	16:30	6.66	16.20	4110.00	-71.30	0.59	1.70
34	MW-3D	8/8/2002	15:30	6.37	14.86	8458.00	-31.70	0.52	9.90
35	MW-4D	8/1/2002	15:25	6.99	18.34	587.00	-40.10	0.66	55.10
36	MW-5D	8/2/2002	13:30	7.30	20.49	572.00	149.30	4.02	12.60
37	MW-6D	8/14/2002	14:30	7.21	20.59	819.00	-164.70	0.56	660.90
38	MW-7D	8/5/2002	10:45	6.72	16.69	1422.00	-85.80	0.08	NR

Legend

S.U. = Standard Units Temp = Temperature deg. C = Degrees Centigrade

uS/cm = Microsiemens per centimeter

Eh = Oxidation-Reduction Potential

mv = Millivolts

DO = Dissolved Oxygen mg/L = Milligrams per Liter

NTU = Nephelometric Turbidity Unit

Table 3-8 Electron Acceptor Data - RI Addendum FUSRAP Maywood Superfund Site, Maywood, NJ

				Result			Date of Sample
Well	Sample I.D.	Analysis Name	Result	Qualifier	IDL	Units	Collection
B38W15D	20A-021731	Nitrate, nitrogen	0.11		0.1	mg/L	3/12/2003
B38W17B	20a-021659	Nitrate, nitrogen	0.1	U	0.1	mg/L	7/30/2002
BRPZ-4	12b-021684	Nitrate, nitrogen	0.067	В	0.1	mg/L	8/6/2002
BRPZ-9	12b-021729	Nitrate, nitrogen	0.1	U	0.1	mg/L	10/17/2002
MISS05B	12b-024635	Nitrate, nitrogen	0.1	U	0.1	mg/L	7/31/2002
MW-26D	12b-021703	Nitrate, nitrogen	0.1	U	0.1	mg/L	8/15/2002
MW-2D	23b-021661	Nitrate, nitrogen	0.14		0.1	mg/L	7/30/2002
MW-31D	23b-021734	Nitrate, nitrogen	0.1	U	0.1	mg/L	3/13/2003
MW-32D	23b-021742	Nitrate, nitrogen	0.04		0.1	mg/L	5/28/2003
B38W15D	20A-021731	Ammonia, nitrogen	2		0.04	mg/L	3/12/2003
B38W17B	20a-021659	Ammonia, nitrogen	9.6		0.04	mg/L	7/30/2002
BRPZ-4	12b-021684	Ammonia, nitrogen	2.2		0.04	mg/L	8/6/2002
BRPZ-9	12b-021729	Ammonia, nitrogen	2.9		0.04	mg/L	10/17/2002
MISS05B	12b-024635	Ammonia, nitrogen	19		0.04	mg/L	7/31/2002
MW-26D	12b-021703	Ammonia, nitrogen	5.3		0.04	mg/L	8/15/2002
MW-2D	23b-021661	Ammonia, nitrogen	0.88		0.04	mg/L	7/30/2002
MW-31D	23b-021734	Ammonia, nitrogen	2.5		0.04	mg/L	3/13/2003
MW-32D	23b-021742	Ammonia, nitrogen	2.1		0.04	mg/L	5/28/2003
B38W15D	20A-024737	Manganese, Total	1.06		5.4	mg/L	7/1/2003
B38W17B	20a-021659	Manganese, Total	3.01		15	mg/L	7/30/2002
BRPZ-4	12b-021684	Manganese, Total	9.39		15	mg/L	8/6/2002
BRPZ-9	12b-021729	Manganese, Total	4.73	J	15	mg/L	10/17/2002
MISS05B	12b-024635	Manganese, Total	3.01		15	mg/L	7/31/2002
MW-26D	12b-021703	Manganese, Total	1.42		15	mg/L	8/15/2002
MW-2D	23b-021661	Manganese, Total	0.379		15	mg/L	7/30/2002
MW-31D	23b-024788	Manganese, Total	0.871		5.4	mg/L	7/1/2003
MW-32D	23b-021742	Manganese, Total	0.971		15	mg/L	5/28/2003
B38W15D	20A-024790	Manganese (Filtered)	0.991		5.4	mg/L	7/1/2003
B38W17B	20a-021660	Manganese (Filtered)	2.89		15	mg/L	7/30/2002
BRPZ-4	12b-021686	Manganese (Filtered)	5.26		15	mg/L	8/6/2002
BRPZ-9	12b-021729	Manganese (Filtered)	5.15	J	15	mg/L	10/17/2002
MISS05B	12b-024723	Manganese (Filtered)	2.91		15	mg/L	7/31/2002

Table 3-8 Electron Acceptor Data - RI Addendum FUSRAP Maywood Superfund Site, Maywood, NJ

				Result			Date of Sample
Well	Sample I.D.	Analysis Name	Result	Qualifier	IDL	Units	Collection
MW-26D	12b-021704	Manganese (Filtered)	1.39		15	mg/L	8/15/2002
MW-2D	23b-021662	Manganese (Filtered)	0.358		15	mg/L	7/30/2002
MW-31D	23b-024789	Manganese (Filtered)	0.868		5.4	mg/L	7/1/2003
MW-32D	N/A	Manganese (Filtered)	NA		NA	NA	NA
B38W15D	20A-024737	Iron, Total	ND	U	104	mg/L	7/1/2003
B38W17B	20a-021659	Iron, Total	5.55		200	mg/L	7/30/2002
BRPZ-4	12b-021684	Iron, Total	13.9		200	mg/L	8/6/2002
BRPZ-9	12b-021729	Iron, Total	11.5	J	200	mg/L	10/17/2002
MISS05B	12b-024635	Iron, Total	6.22		200	mg/L	7/31/2002
MW-26D	12b-021703	Iron, Total	63.6		200	mg/L	8/15/2002
MW-2D	23b-021661	Iron, Total	5		200	mg/L	7/30/2002
MW-31D	23b-024788	Iron, Total	0.19		104	mg/L	7/1/2003
MW-32D	23b-021742	Iron, Total	1.42		200	mg/L	5/28/2003
B38W15D	20A-024790	Iron (Filtered)	ND	U	104	mg/L	7/1/2003
B38W17B	20a-021660	Iron (Filtered)	5.14		200	mg/L	7/30/2002
BRPZ-4	12b-021686	Iron (Filtered)	7.07		200	mg/L	8/6/2002
BRPZ-9	12b-021729	Iron (Filtered)	9.07	J	200	mg/L	10/17/2002
MISS05B	12b-024723	Iron (Filtered)	2.82		200	mg/L	7/31/2002
MW-26D	12b-021704	Iron (Filtered)	62.7		200	mg/L	8/15/2002
MW-2D	23b-021662	Iron (Filtered)	0.44		200	mg/L	7/30/2002
MW-31D	23b-024789	Iron (Filtered)	ND		104	mg/L	7/1/2003
MW-32D	N/A	Iron (Filtered)	NA		NA	NA	NA
B38W15D	20A-021731	Sulfate	1	U	1	mg/L	3/12/2003
B38W17B	20a-021659	Sulfate	670		1	mg/L	7/30/2002
BRPZ-4	12b-021684	Sulfate	1500		1	mg/L	8/6/2002
BRPZ-9	12b-021729	Sulfate	1400		1	mg/L	10/17/2002
MISS05B	12b-024635	Sulfate	800		1	mg/L	7/31/2002
MW-26D	12b-021703	Sulfate	3000		1	mg/L	8/15/2002
MW-2D	23b-021661	Sulfate	350		1	mg/L	7/30/2002
MW-31D	23b-021734	Sulfate	890		1	mg/L	3/13/2003
MW-32D	23b-021742	Sulfate	1100		1	mg/L	5/28/2003

Table 3-8Electron Acceptor Data - RI AddendumFUSRAP Maywood Superfund Site, Maywood, NJ

				Result			Date of Sample
Well	Sample I.D.	Analysis Name	Result	Qualifier	IDL	Units	Collection
B38W15D	20A-021731	Sulfide	1	U	1	mg/L	3/12/2003
B38W17B	20a-021659	Sulfide	1	U	1	mg/L	7/30/2002
BRPZ-4	12b-021684	Sulfide	0.2	J	1	mg/L	8/6/2002
BRPZ-9	12b-021729	Sulfide	1		1	mg/L	10/17/2002
MISS05B	12b-024635	Sulfide	1	U	1	mg/L	7/31/2002
MW-26D	12b-021703	Sulfide	1	U	1	mg/L	8/15/2002
MW-2D	23b-021661	Sulfide	1	U	1	mg/L	7/30/2002
MW-31D	23b-021734	Sulfide	1	U	1	mg/L	3/13/2003
MW-32D	23b-021742	Sulfide	0.5		1	mg/L	5/28/2003
B38W15D	20A-021731	Methane	0.002	NV	2	mg/L	3/12/2003
B38W17B	20a-021659	Methane	0.059	D	10	mg/L	7/30/2002
BRPZ-4	12b-021684	Methane	3.1	D	40	mg/L	8/6/2002
BRPZ-9	12b-021729	Methane	2.9	NV	40	mg/L	10/17/2002
MISS05B	12b-024635	Methane	0.22		2	mg/L	7/31/2002
MW-26D	12b-021703	Methane	1.8	D	40	mg/L	8/15/2002
MW-2D	23b-021661	Methane	0.28		2	mg/L	7/30/2002
MW-31D	23b-021734	Methane	0.0046	NV	2	mg/L	3/13/2003
MW-32D	23b-021742	Methane	0.038	NV	2	mg/L	3/13/2003

Legend

mg/L = Milligrams per Liter

U = Non-Detect Result

D = Diluted Sample Result

NV = Not Validated

J = Estimated Result Concentration

B = Detected in Blank Sample

Table 3-9 Nutrient Results - RI Addendum FUSRAP Maywood Superfund Site, Maywood, NJ

			Result	Result	Detection Limit	
Well	Sample I.D.	Analysis Name	(mg/L)	Qualifier	(mg/L)	Collection Date
MISS05B	12b-024635	Nitrate, nitrogen	0.1	U	0.1	7/31/2002
MISS05B	12b-024635	Phosphorous, Total	0.604		0.1	7/31/2002
MISS05B	12b-024635	Total Organic Carbon	3.5		1	7/31/2002
B38W15D	20A-021731	Nitrate, nitrogen	0.11		0.1	3/12/2003
B38W15D	20A-021731	Phosphorous, total	0.0579	J	0.1	3/12/2003
B38W15D	20A-021731	Total Organic Carbon	2.2		1	3/12/2003
DAGUULED	20, 021(50	NT: / NT:	0.1	T T	0.1	7/20/2002
B38W17B	20a-021659	Nitrate, Nitrogen	0.1	U	0.1	7/30/2002
B38W17B	20a-021659	Phosphorous, total	0.474		0.1	7/30/2002
B38W17B	20a-021659	Total Organic Carbon	2.2	U	1	7/30/2002
BRPZ-4	12b-021684	Nitrate, nitrogen	0.067	J	0.1	8/6/2002
BRPZ-4	12b-021684	Phosphorous, total	1.37	Ū.	0.5	8/6/2002
BRPZ-4	12b-021684	Total Organic Carbon	0.38	J	1	8/6/2002
				-		
BRPZ-9	12b-021729	Nitrate, nitrogen	0.1	U	0.1	10/17/2002
BRPZ-9	12b-021729	Phosphorous, total	0.0059	U	0.1	10/17/2002
BRPZ-9	12b-021729	Total Organic Carbon	25		1	10/17/2002
MW-26D	12b-021703	Nitrate, nitrogen	0.1	U	0.1	8/15/2002
MW-26D	12b-021703	Phosphorous, total	0.201		0.1	8/15/2002
MW-26D	12b-021703	Total Organic Carbon	34		1	8/15/2002
MW-2D	23b-021661	Nitrate, Nitrogen	0.14	U	0.1	7/30/2002
MW-2D	23b-021661	Phosphorous, total	0.0952	J	0.1	7/30/2002
MW-2D	23b-021661	Total Organic Carbon	0.41	U	1	7/30/2002
NULL 21D	221 021724		0.1	U	0.1	2/12/2002
MW-31D	23b-021734	Nitrate, nitrogen	0.1	U	0.1	3/13/2003
MW-31D	23b-021734	Phosphorous, total	0.125		0.1	3/13/2003
MW-31D	23b-021734	Total Organic Carbon	0.78	U	1	3/13/2003
MW-32D	23b-021742	Nitrate, nitrogen	0.04		0.1	5/28/2003
MW-32D MW-32D	23b-021742	Phosphorous, total	0.302		0.1	5/28/2003
MW-32D MW-32D	23b-021742	Total Organic Carbon	3.3	U	1	5/28/2003
101 00 5210	250 021/42	15tul Olgunie Carboli	5.5	U	1	512012005

Legend mg/L = Milligrams per Liter

FUSRAP Maywood Superfund Site, Maywood, NJ							
Well	Benzene Result (ppb)	Result Qualifier	Detection Limit (ppb)	Collection Date			
B38W02D	0.7	J	1	11/8/2000			
		-					
B38W05B	ND	U	1	11/17/2000			
	110			11112000			
B38W06B	ND	UJ	1	11/29/2000			
50011005	THE .	00	•	11/20/2000			
B38W07B	0.1	J	1	11/7/2000			
B38W07B	ND	Ű	0.5	7/25/2002			
600076	ND	0	0.0	1120/2002			
B38W14D	0.1	J	1	11/16/2000			
B38W14D B38W14D	ND	J	0.5	7/24/2002			
B30W14D	ND		0.5	1/24/2002			
	0.7		4	11/0/2000			
B38W15D	0.7	J	1	11/9/2000			
B38W15D	0.42	J	1	3/18/2003			
B38W15D	ND	U	1	3/18/2003			
B38W17B	ND	U	10	11/1/2000			
B38W17B	ND	U	25	7/30/2002			
B38W18D	ND	U	1	11/13/2000			
B38W19D	1		1	11/7/2000			
B38W24D	0.2	J	1	11/15/2000			
B38W25D	0.4	J	1	11/27/2000			
BRPW-1DRE	8		1	8/15/2001			
BRPW-1DRE	ND	U	0.5	8/13/2002			
BRPZ-2RE	850	D	50	8/14/2001			
BRPZ-3RE	200	D	100	8/14/2001			
BRPZ-3RE	130		5	8/13/2002			
	100		<u> </u>	0,10,2002			
BRPZ-4	890		25	7/19/2001			
BRPZ-4	760		20	8/6/2002			
	,		20	0.0.2002			
BRPZ-5 (Deep Packer Sample)	290		10	6/19/2001			
BRPZ-5 (Middle Packer Zone Sample)	480		25	6/19/2001			
BRPZ-5 (Middle Facker Zone Sample) BRPZ-5 (Shallow Packer Zone Sample)	5000		200	6/19/2001			
· · · ·		I					
BRPZ-5	9500	J	200	8/7/2002			
	040		40	014/0004			
BRPZ-7	210		10	6/4/2001			
5557 4	4500		=	7400001			
BRPZ-9	1500		50	7/19/2001			

Table 3-10Summary of Benzene Groundwater Results for Wells Presented in Figure 3-3FUSRAP Maywood Superfund Site, Maywood, NJ

FUSRAP Maywood Superfund Site, Maywood, NJ					
Well	Benzene Result (ppb)	Result Qualifier	Detection Limit (ppb)	Collection Date	
BRPZ-9	1800	J	50	8/7/2002	
MISS01B	ND	U	0.9	6/20/2000	
MISS01B	ND	U	1	12/21/2000	
MISS01B	ND	U	1	6/19/2001	
MISS01B	ND	U	0.5	7/18/2002	
MISS01B	ND	U	0.2	7/9/2003	
MISS02B	150		NA	1/1/1985	
MISS02B	180		NA	1/1/1986	
MISS02B	150		NA	1/1/1987	
MISS02B	62		NA	1/1/1988	
MISS02B	70		NA	1/1/1989	
MISS02B	180		NA	1/1/1990	
MISS02B	ND	U	NA	1/1/1991	
MISS02B	3	J	5	10/15/1992	
MISS02B	7		5	7/20/1993	
MISS02B	2	J	5	5/13/1994	
MISS02B	1	J	5	5/9/1995	
MISS02B	1		1	5/14/1996	
MISS02B	1		0.5	6/23/2000	
MISS02B	0.6	J	1	11/21/2000	
MISS02B	0.7	J	1	11/21/2000	
MISS02B	0.3	J	1	7/5/2001	
MISS02B	0.2	J	0.5	7/8/2002	
MISS02B	0.2		0.08	6/30/2003	
MISS03B	ND	U	NA	1/1/1985	
MISS03B	47		NA	1/1/1986	
MISS03B	ND	U	NA	1/1/1987	
MISS03B	ND	U	NA	1/1/1988	
MISS03B	ND	U	NA	1/1/1989	
MISS03B	ND	U	NA	1/1/1990	
MISS03B	ND	U	NA	1/1/1991	
MISS03B	ND	U	1	11/13/2000	
MISS03B	ND	U	1	7/12/2001	
MISS03B	ND	U	0.5	7/29/2002	
		-			
MISS04B	6	J	1	11/14/2000	
MISS04B	5	0	2	7/29/2002	
MI3304D	5		2	172972002	
MISS05B	660		NA	1/1/1985	
MISS05B MISS05B	ND	U	NA	1/1/1985	
MISS05B MISS05B	ND	U	NA	1/1/1986	
MISS05B MISS05B	ND	U	NA	1/1/1987	
MISS05B MISS05B	ND	U	NA	1/1/1988	
MISS05B MISS05B	ND	U U	NA NA	1/1/1990	
MISS05B MISS05B	200	U	5 NA	10/14/1992	
IVIIOOUDB	200		Э	10/14/1992	

Table 3-10Summary of Benzene Groundwater Results for Wells Presented in Figure 3-3FUSRAP Maywood Superfund Site, Maywood, NJ

FUSRAP Maywood Superfund Site, Maywood, NJ					
Well	Benzene Result	Result Qualifier	Detection Limit	Collection Date	
MISS05B	(ppb) 83	Quaimer	(ppb) 5	8/12/1993	
MISS05B	170		5	5/17/1994	
MISS05B	89		5	5/11/1995	
MISS05B MISS05B	97		2	5/16/1996	
MISS05B	62		5	5/14/1997	
MISS05B	15		5	6/30/1998	
MISS05B	6		5	7/11/2000	
MISS05B	3500	D	100	11/6/2000	
MISS05B	330	D	25	6/18/2001	
MISS05B	680		25	7/31/2002	
MISS07B	7		NA	1/1/1985	
MISS07B	31		NA	1/1/1986	
MISS07B	77		NA	1/1/1987	
MISS07B	ND	U	NA	1/1/1988	
MISS07B MISS07B	ND	U	NA	1/1/1988	
MISS07B	ND	U	NA	1/1/1990	
MISS07B	ND	U	5	7/12/2000	
MISS07B	0.2	J	1	11/6/2000	
MISS07B	0.2	J	1	6/11/2001	
MISS07B	ND	U	0.5	7/11/2002	
MW-19D	ND	U	1	2/28/2001	
MW-19DD	0.1	J	1	3/1/2001	
		•		0	
MW-20D	0.4	J	1	3/14/2001	
MW-20D	ND	U	0.5	8/5/2002	
MW-23D	ND	U	1	7/9/2001	
MW-23D	ND	U	0.5	7/26/2002	
MW-23DD	ND	U	1	7/9/2001	
	70		10	0/0/0004	
MW-24D	78		10	9/6/2001	
MW-24D	29		0.5	7/25/2002	
MW-24DD	33		5	9/6/2001	
MW-24DD	9		0.5	7/25/2002	
MW-25D	0.3	J	1	1/3/2002	
		J	0.5		
MW-25D	0.4	J	0.0	7/26/2002	
MW-26D	520	D	25	1/3/2002	
MW-26D	180		5	8/15/2002	
MW-27D	5		0.5	10/14/2002	
	6		0.5	10/15/2002	
MW-28D	6		0.5	10/15/2002	

Table 3-10Summary of Benzene Groundwater Results for Wells Presented in Figure 3-3FUSRAP Maywood Superfund Site, Maywood, NJ

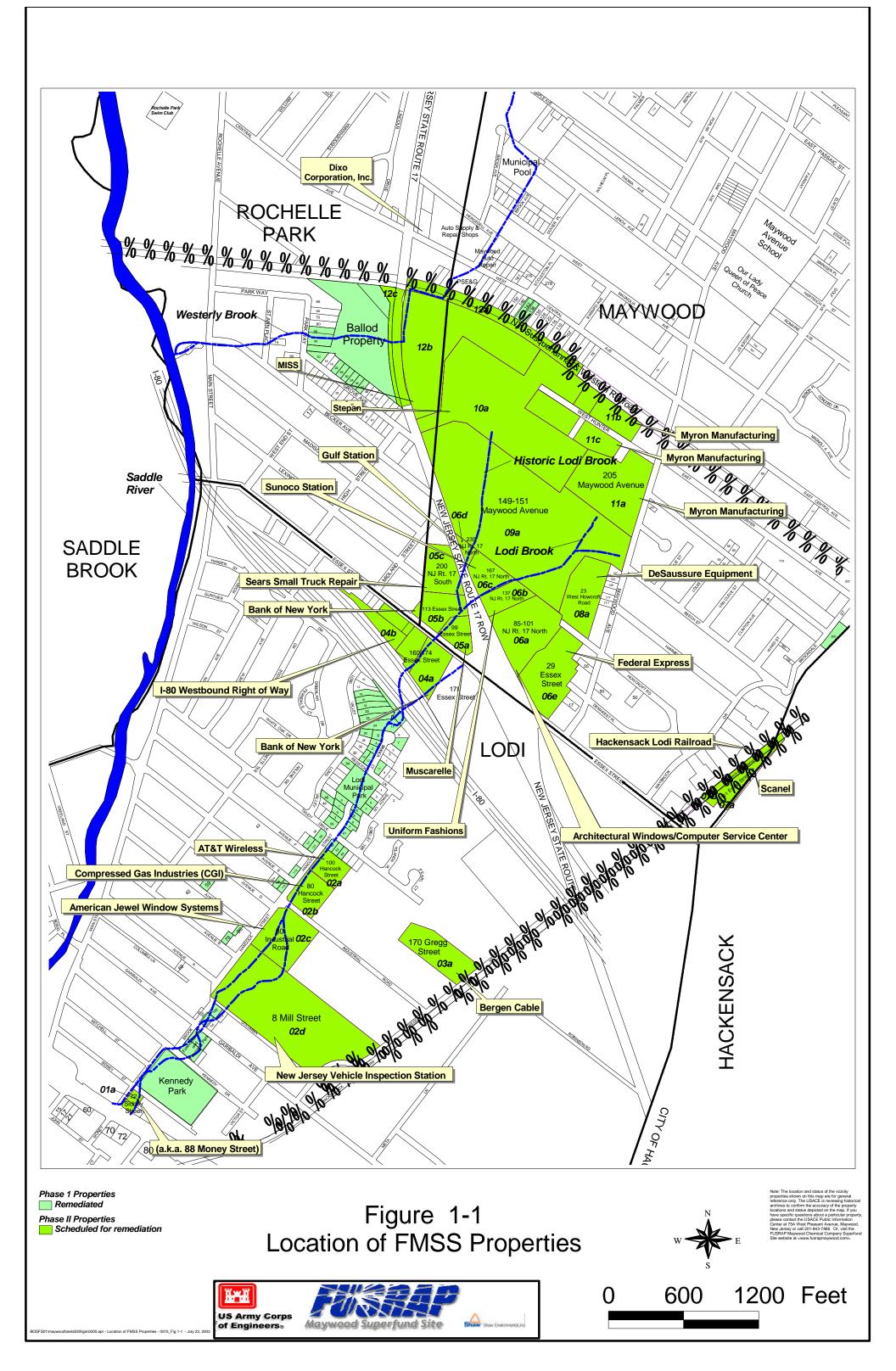
FUSRAP Maywood Superfund Site, Maywood, NJ				
Well	Benzene Result (ppb)	Result Qualifier	Detection Limit (ppb)	Collection Date
MW-2D	ND	U	1	2/14/2001
MW-2D	ND	U	1	7/30/2002
MW-31D	ND	U	0.5	3/13/2003
MW-32D	0.2	J	0.5	5/28/2003
MW-33D	10		0.5	10/15/2002
MW-34D	16		0.5	10/15/2002
MW-3D	5		1	4/19/2001
MW-3D	15		2	8/8/2002
MW-4D	ND	U	1	2/20/2001
MW-4D	ND	U	0.5	8/1/2002
MW-5D	ND	U	1	2/15/2001
MW-5D	ND	U	0.5	8/2/2002
MW-6D	ND	U	1	2/21/2001
MW-6D	ND	U	1	8/14/2002
MW-7D	0.3	J	1	2/28/2001
MW-7D	0.4	J	0.5	8/5/2002

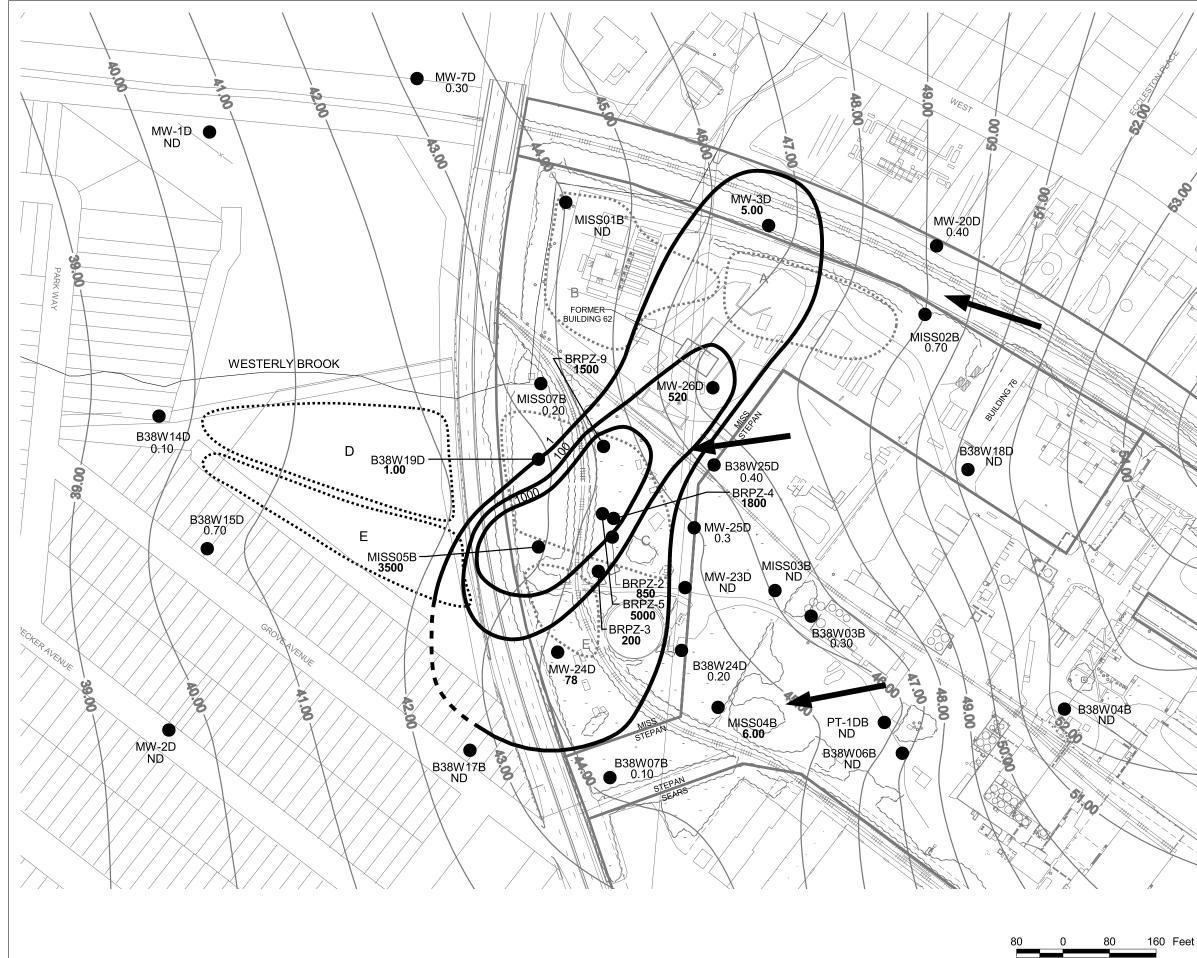
Table 3-10Summary of Benzene Groundwater Results for Wells Presented in Figure 3-3FUSRAP Maywood Superfund Site, Maywood, NJ

Legend

ppb - parts per billion

ND - Not Detected


U - Non-Detect Qualifier, result reported at the detection limit


NA - Historical Detection Limits not readily available

D - Diluted Sample Result

J - Estimated Concentration

FIGURES

● BRPZ-5 5000 ug/L
≁ 100 ≁
≠ ≈ 100 ≠ ≈
~~ 50 ~~
A
D
·

NA

8

CEN.

S.S.

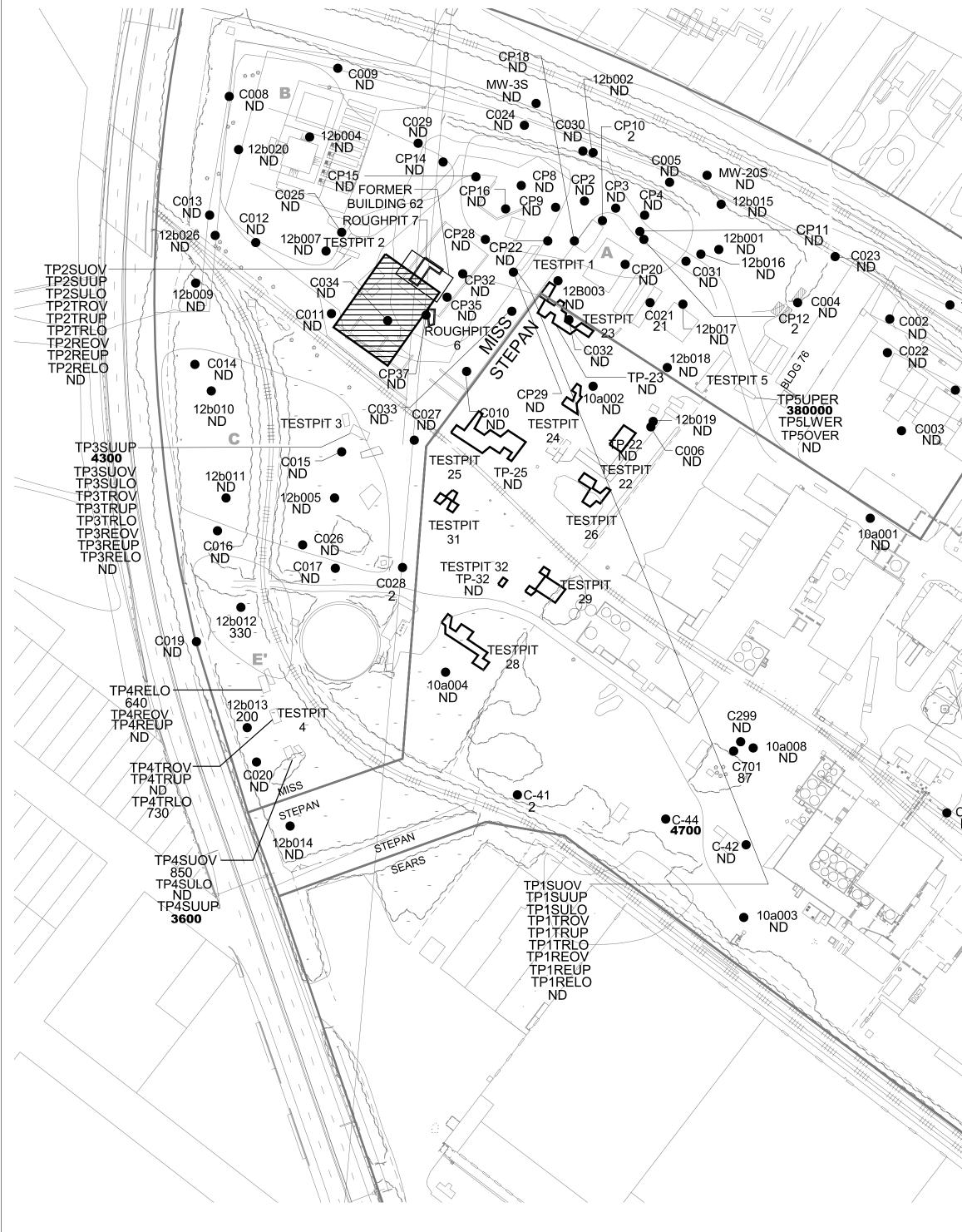
WELL IDENTIFICATION WITH BENZENE CONCENTRATION LINE OF EQUAL BENZENE CONCENTRATION DASHED WHERE INFERRED EQUIPOTENTIAL CONTOUR (DECEMBER 2001) GROUNDWATER FLOW DIRECTION FORMER RETENTION POND FORMER RETENTION POND - REMEDIATED

NRC BURIAL PIT

ND NON-DETECT

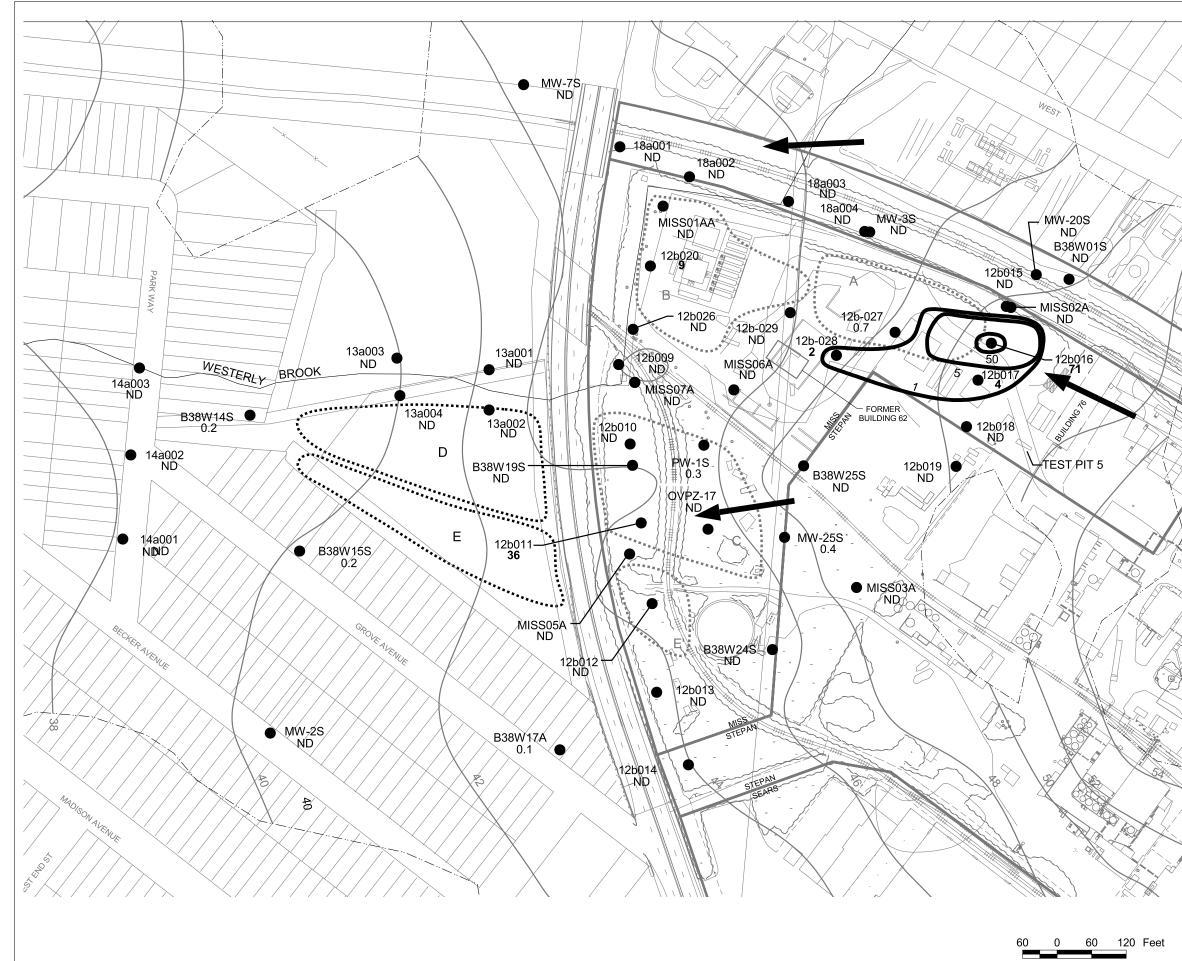
NOT ANALYZED

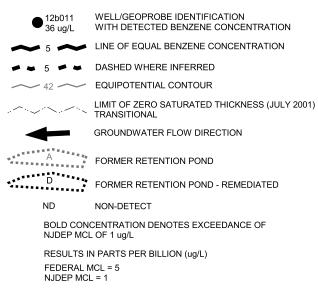
BOLD CONCENTRATION DENOTES EXCEEDANCE OF STATE MCL OF 1 ug/L


FEDERAL MCL = 5 NJDEP MCL = 1

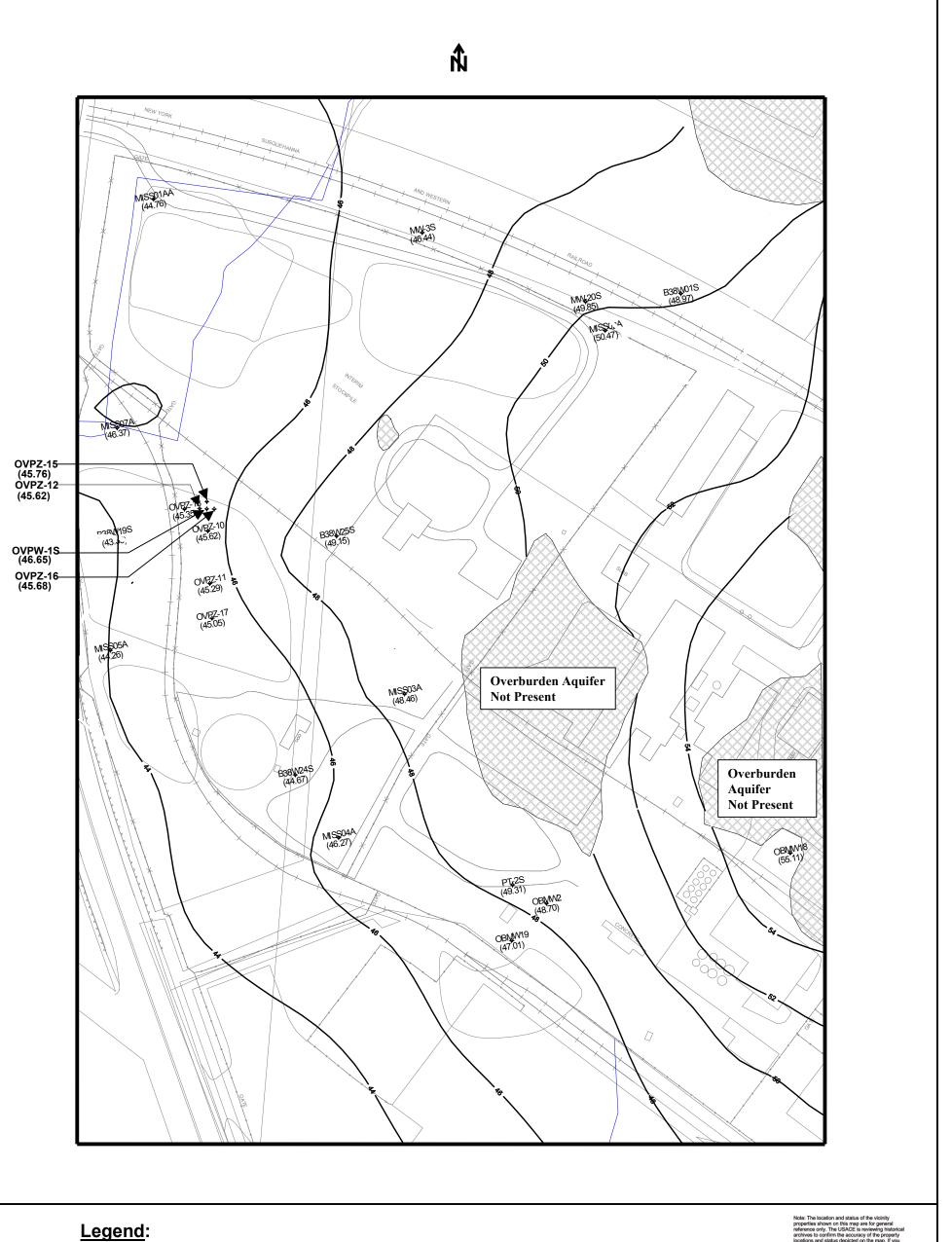
SOURCE: FIGURE 5-17 FROM GWRI REPORT (USACE 2003)

prease contact the USACE Public Infe Center at 75A West Pleasert * Jersey or call 201-843-7466. Or, visit the 24P Maywood Chemical Company Superf


FIGURE 1-2 BENZENE RESULTS FOR BEDROCK MONITORING WELL GROUNDWATER SAMPLES (2000 - 2002)



	LEGEND:
	CP10 2 ug/kgBORING IDENTIFICATION WITH DETECTED BENZENE CONCENTRATION WHERE:CP12BECHTEL CHEMICAL SOIL PILE SAMPLEC023BECHTEL CHEMICAL SOIL SAMPLE (NON-SOIL PILE)10a007SWEC PHASE I SOIL SAMPLETP5UPERSWEC PILOT PROGRAM TEST PIT SAMPLE (OR SIMILAR NOMENCLATURE)TP-32STEPAN TEST PIT SAMPLEC-20STEPAN CHEMICAL SOIL BORING REFER TO TABLE A-2 FOR SAMPLE DEPTHS. MAXIMUM DEDEDEDED
	CONCENTRATIONS DEPICTED ON FIGURE FOR A PARTICULAR BORING LOCATION.
	ND NON-DETECT
C001	RESULTS IN MICROGRAMS PER KILOGRAM (ug/kg)
	NJ SOIL IMPACT TO GROUNDWATER STANDARD FOR BENZENE = 1,000 ug/kg
	BOLDED CONCENTRATION DENOTES EXCEEDANCE OF NJ SOIL IMPACT TO GROUNDWATER STANDARD
	POTENTIAL SOURCE AREA
5 . 10a007 ● ND C296 ● ND	
Cr39 ND 10a005 ND	
	Note: The location and status of the vicinity properties shown on this map are for general reference only. The USACE is reviewing historical archives to confirm the accuracy of the property locations and status depicted on the map. If you have specific questions about a particular property, please contact the USACE Public Information Center at 75A West Pleasant Avenue, Maywood, New Jersey or call 201-843-7466. Or, visit the
C-40 ND	SU SU SU Feet New Jersey or call 201-843-7466. Or, visit the FUSRAP Maywood Chemical Company Superfund Site website at <www.fusrapmaywood.com>.</www.fusrapmaywood.com>
•C-43 ND	FIGURE 1-3 BENZENE IN OVERBURDEN SOILS
	US Army Corps of Engineers. A wood Superfund Site



SOURCE: FIGURE 5-6 FROM GWRI REPORT (USACE 2003)

FIGURE 1-4 OVERBURDEN BENZENE RESULTS FOR GEOPROBE AND OVERBURDEN MONITORING WELL GROUNDWATER SAMPLES (2000 - 2002)

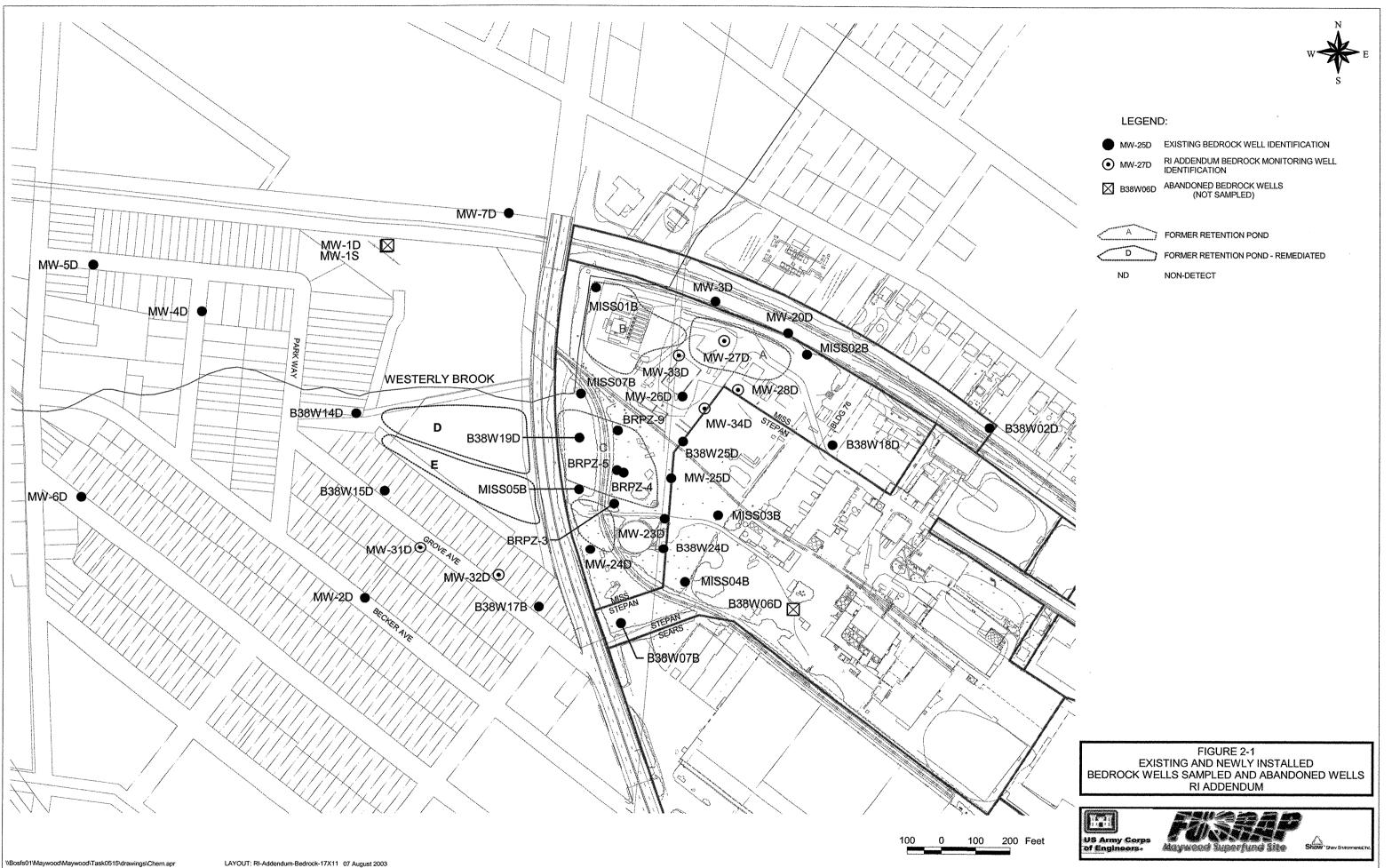
properties shown on this map are for general reference only. The USACE is reviewing historicat archives to confirm the accuracy of the property locations and status depicted on the map. If you have specific questions about a particular property please contact the USACE Public Information Center at 75A West Pleasent Avenue, Maywood, New Jensy or call 2014:847-846. Or, visit the FUSRAP Maywood Chemical Company Superfund Site website at www.fusragmarwood.com->

Overburden Monitoring Well

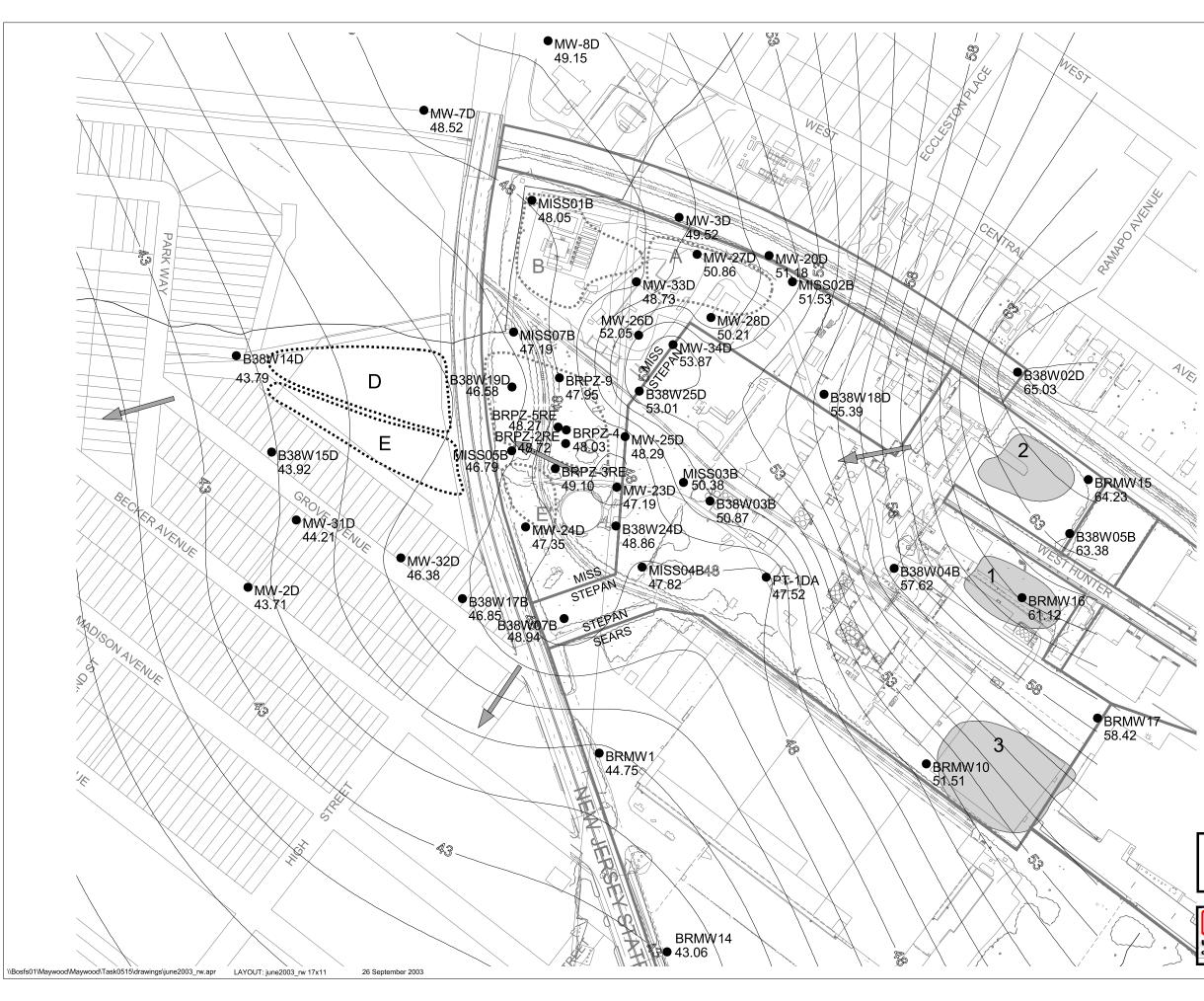
MISS-04A (46.27)

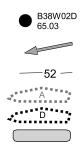
Zone of 0 ft. Saturated Thickness (i.e., Overburden Aquifer not Present).

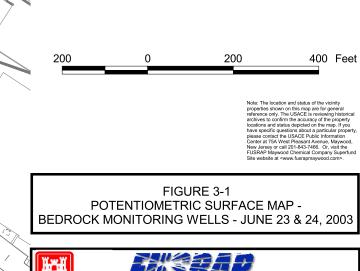
Equipotential Contour in feet above Mean Sea Level (MSL). Contour Interval = 2 feet.

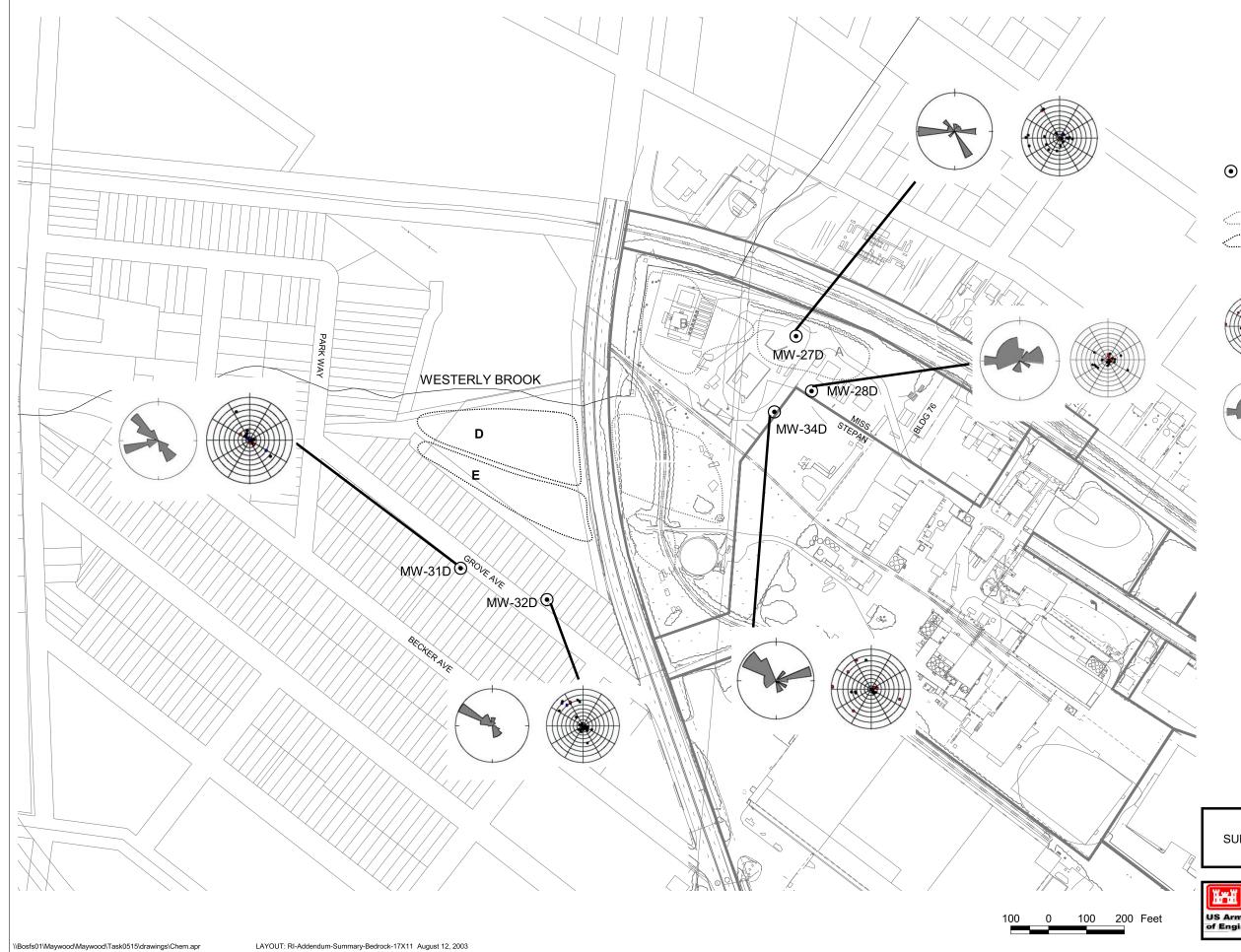

Horizontal Scale in feet

0 50 100 150 200


Figure 1-5: Overburden Groundwater Surface Elevation Map of MISS based on July 2001 Synoptic Event


Source: GWRI Figure 3-19b (USACE 2003)


LAYOUT: RI-Addendum-Bedrock-17X11 07 August 2003


B38W02D BEDROCK MONITORING WELL DEPICTING TOTAL HYDRAULIC HEAD GROUNDWATER FLOW DIRECTION LINE OF EQUAL HYDRAULIC HEAD FORMER RETENTION POND FORMER RETENTION POND - REMEDIATED NRC BURIAL PIT

Maywood Superfund Site

Shaw ' Shaw Environmenta, In

US Army Corps of Engineers®

MW-27D RI ADDENDUM BEDROCK MONITORING WELL IDENTIFICATION

A D

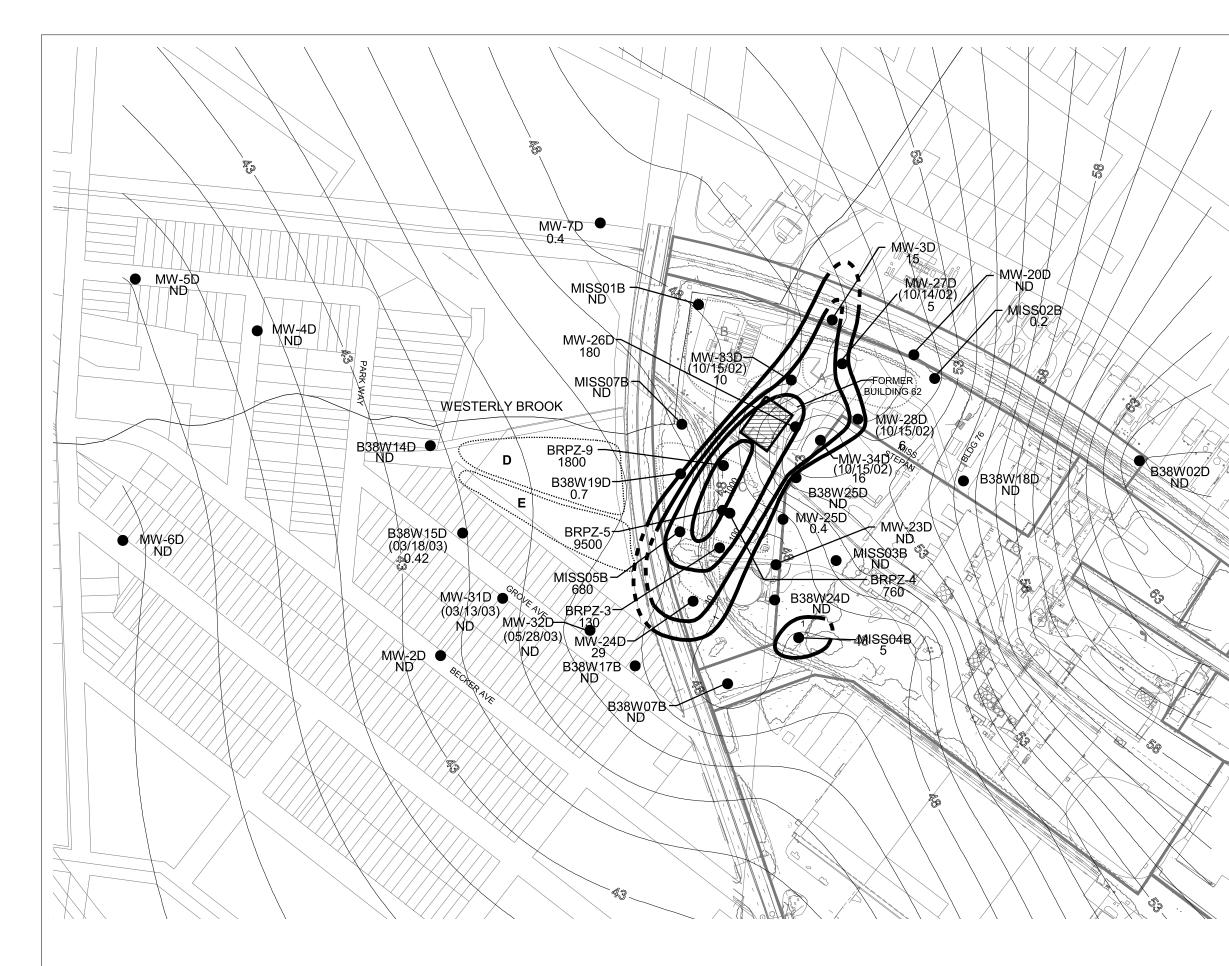
FORMER RETENTION POND

FORMER RETENTION POND - REMEDIATED

ND

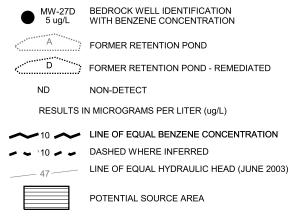
NON-DETECT

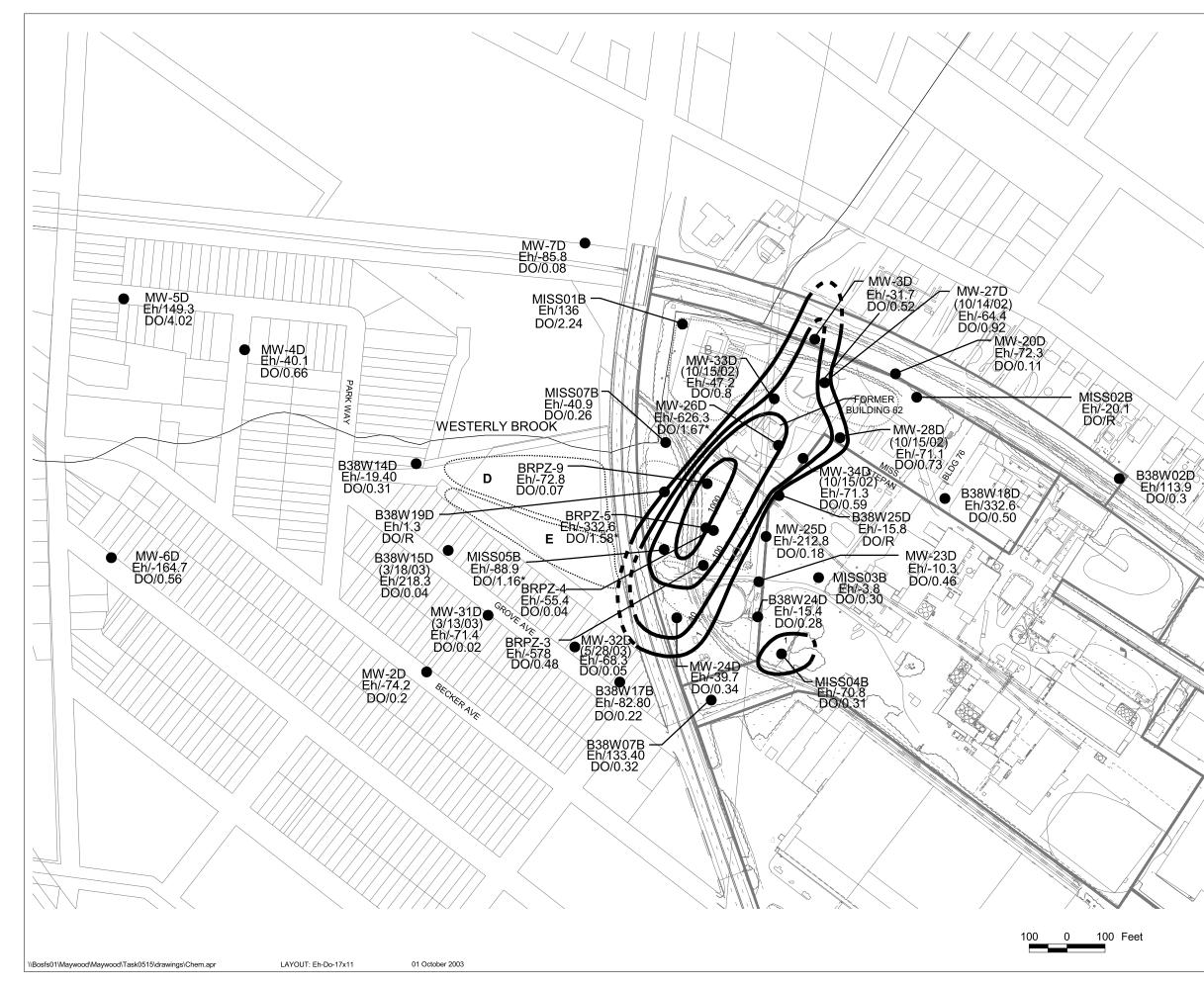
Summary stereonet is a lower hemisphere, equal angle, polar projection. Summary stereonet diagram displays the dominant down-dip fracture azimuth and angle of fracture dip observed within borehole geophysical data in all FMSS boreholes logged. Black stereonet pole plots indicate less open fractures. Red stereonet pole plots indicate more open fractures. Blue stereonet pole plots indicate water filled fractures.


Summary rose plot diagram displays the dominant down-dip fracture azimuth observed within borehole geophysical data in all FMSS boreholes logged.

Magnetic north is located to the top of each diagram.

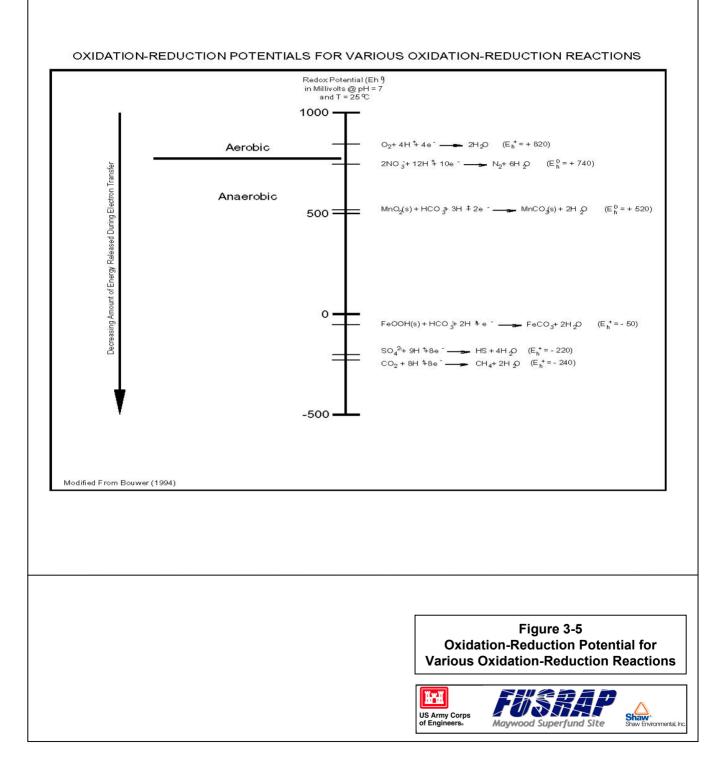
FIGURE 3-2 SUMMARY OF BEDROCK FRACTURE ORIENTATION **RI ADDENDUM WELLS**

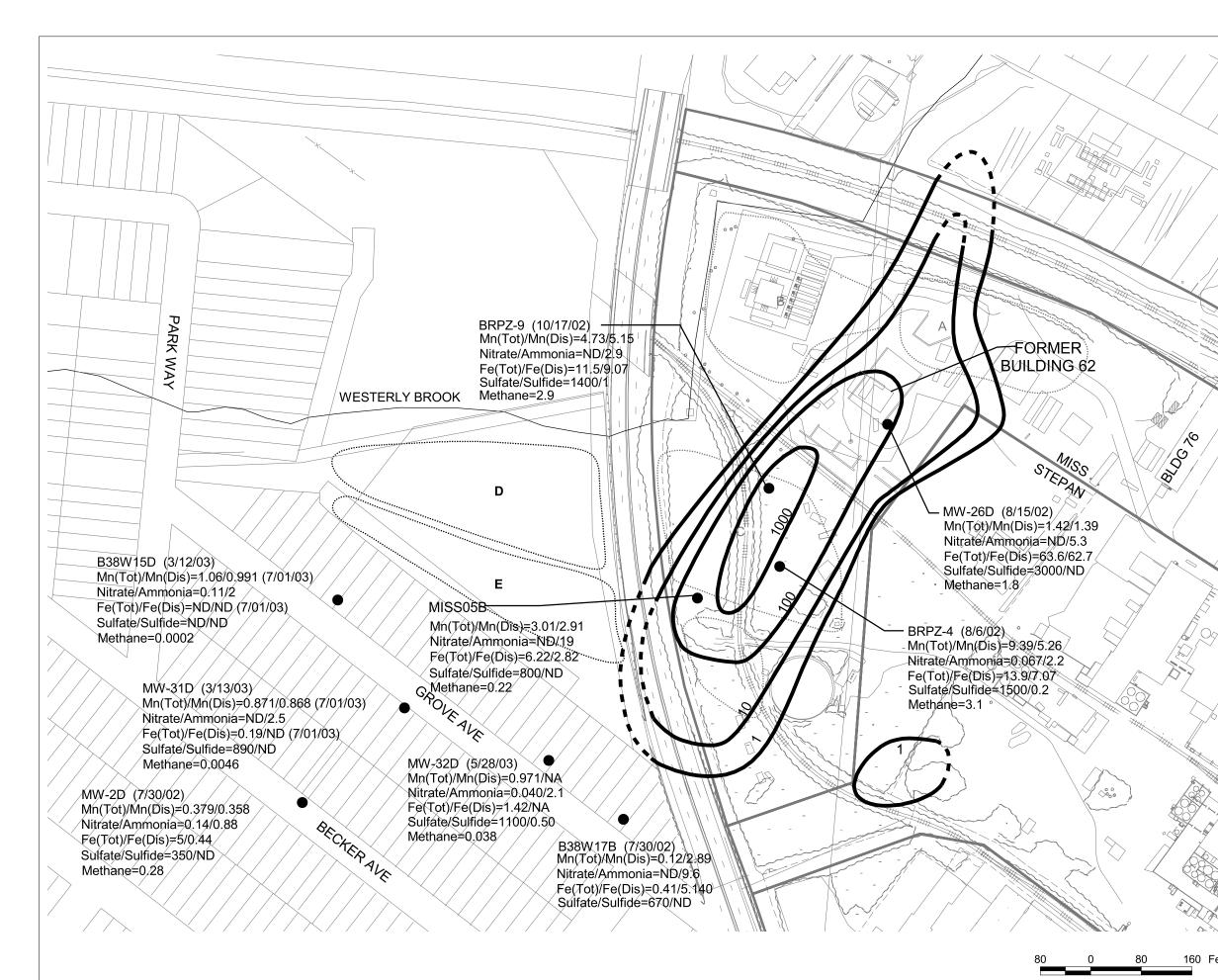

US Army Corps of Engineers.

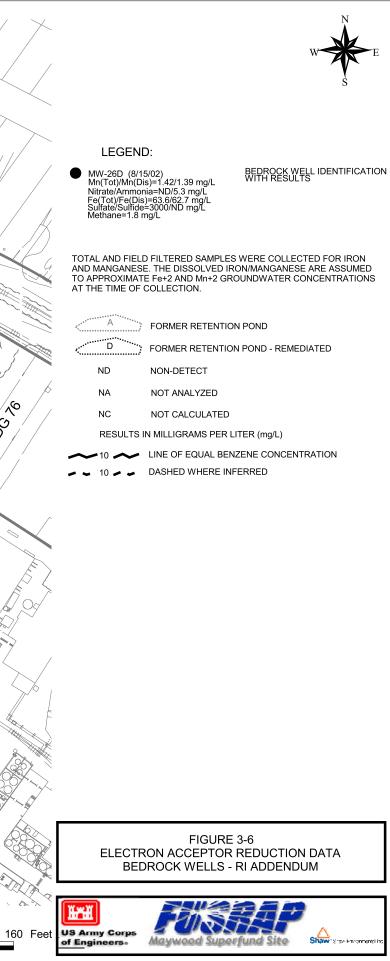


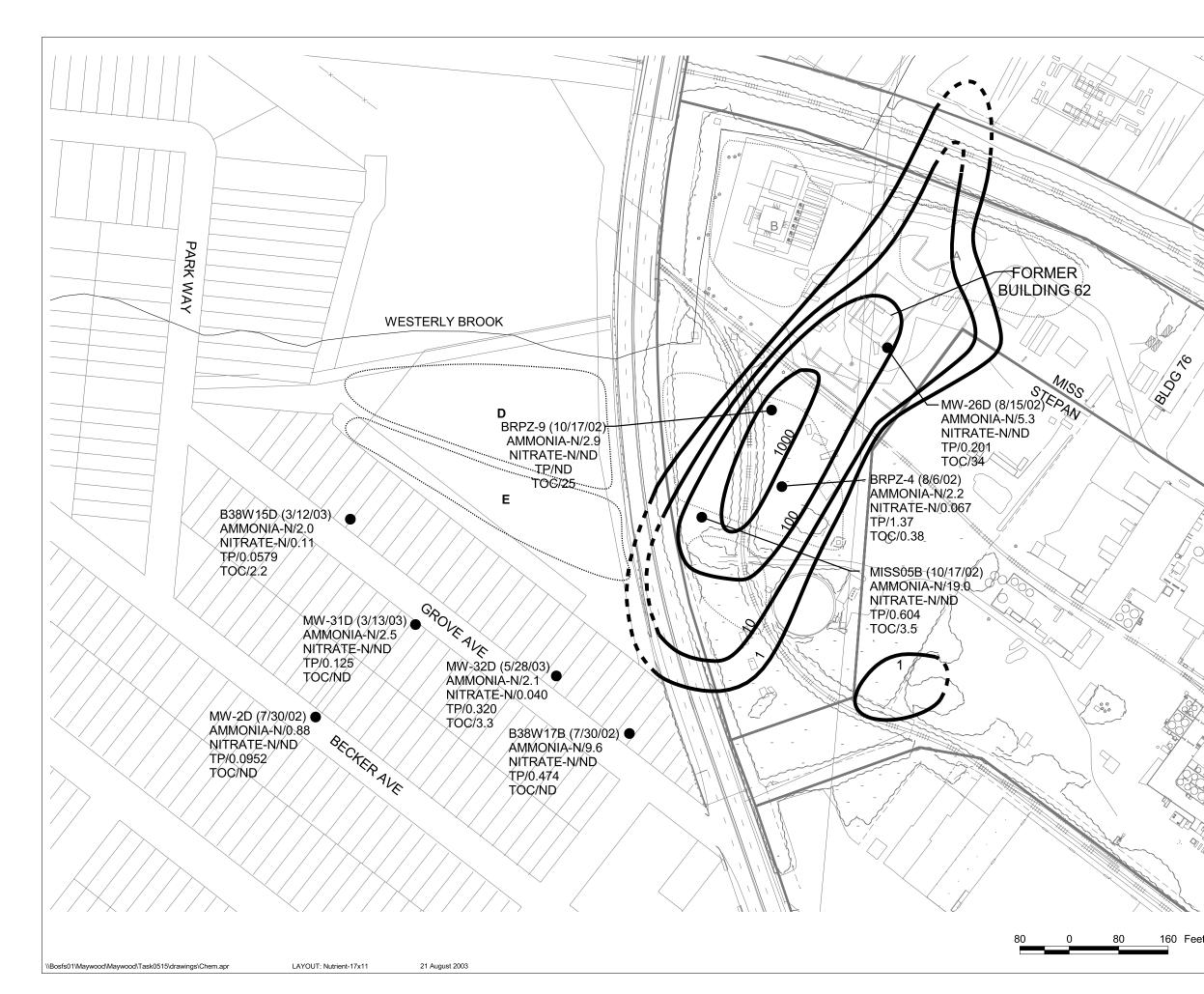
Note: The location and status of the vicinity properties shown on this map are for general reference only. The USACE is reviewing historical archives to confirm the accuracy of the property locations and status depicted on the map. If you have specific questions about a particular property please contact the USACE Public Information Central at TSA west Pleasant Avenue, Maywood, PUSRAP Maywood Chemical Company Superfund Site whisitia at oww. fuscamouverd, pom-

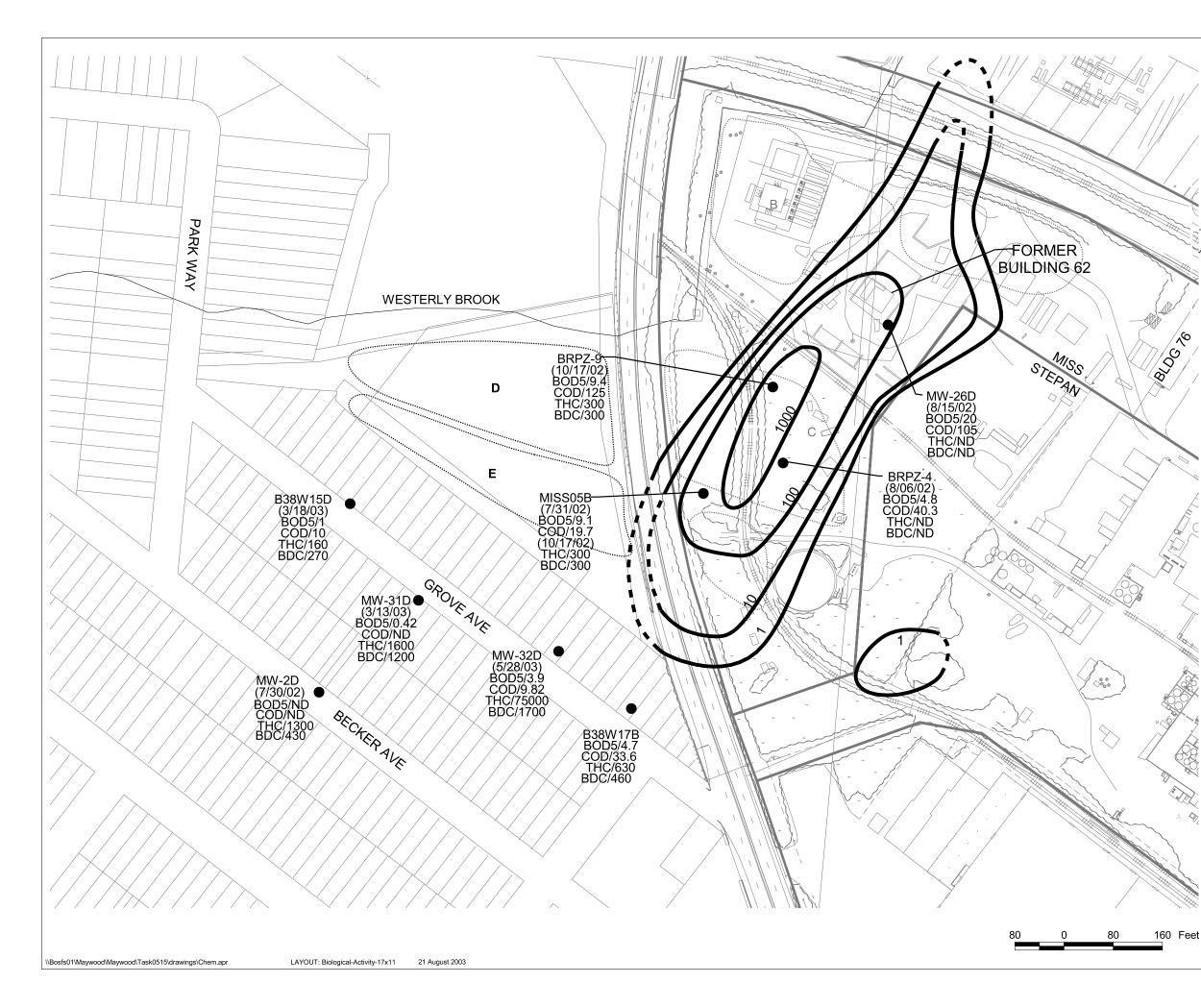
FIGURE 3-3 BENZENE RESULTS FOR BEDROCK WELL GROUNDWATER SAMPLES RI ADDENDUM INVESTIGATION








LEGEND: • MW-4D 149.3 mV 4.02 mg/L BEDROCK WELL IDENTIFICATION EH FIELD MEASURMENT DO FIELD MEASURMENT А FORMER RETENTION POND D FORMER RETENTION POND - REMEDIATED ND NON-DETECT R MEASURMENT REJECTED RESULTS IN MILLIGRAMS PER LITER (mg/L) FOR DO AND MILLIVOLTS (mV) FOR Eh. 10 LINE OF EQUAL BENZENE CONCENTRATION ✓ ✓ 10 ✓ ✓ DASHED WHERE INFERRED THESE VALUES ARE INCONSISTENT WITH OTHER SAMPLING DATA SHOWING DEEPLY REDUCED CONDITIONS AT THESE WELLS AND MAY REFLECT D.O. METER ERROR. FIGURE 3-4 Eh AND DO FIELD DATA **BEDROCK WELLS - RI ADDENDUM**



/	LEGEND:		
	MW-2D (7/30/02) AMMONIA-N/0.88 m NITRATE-N/0.14 mg	BEDROCK WELL IDENTIFICATION 1g/L AMMONIA-N 1/L NITRATE-N	
//-	TP/0.0952 mg/L TOC/0.41 mg/L	TOTAL PHOSPHOROUS (TP) TOTAL ORGANIC CARBON (TOC)	
	A	FORMER RETENTION POND	
2	D	FORMER RETENTION POND - REMEDIATED	
4	ND	NON-DETECT	
	RESULTS IN I	MILLIGRAMS PER LITER (mg/L)	
		LINE OF EQUAL BENZENE CONCENTRATION	
	10 1	DASHED WHERE INFERRED	
/			
,			
/			
>			
),			
~			
ĵ,			
17			
×			
~			
2			
X 17 11/			
10/0/4			
4		FIGURE 3-7 NUTRIENT DATA	
	BED	ROCK WELLS - RI ADDENDUM	
	_		
	Ĭ	Disead D	
ət	US Army Corps of Engineers	Maywood Superfund Site Shaw Shaw En	ironmental, Inc
1			

 MW-26D
 BEDROCK WELL IDENTIFICATION

 BOD5/20 mg/L
 BOD5

 COD/105 mg/L
 CHEMICAL OXYGEN DEMAND (COD)

 THC/ND CFU/mL
 TOTAL HETEROTROPH COUNT (THC)

 BDC/ND CFU/mL
 BTEX DEGRADER COUNT (BDC)

A FORMER RETENTION POND

D FORMER RETENTION POND - REMEDIATED

ND NON-DETECT

NA NOT ANALYZED

RESULTS IN MILLIGRAMS PER LITER (mg/L) FOR BOD5 AND COD CFUs/mL [COLONY FORMING UNITS] FOR TOTAL HETEROTROPHS AND BTEX DEGRADER

10 A LINE OF EQUAL BENZENE CONCENTRATION

→ → 10 → → DASHED WHERE INFERRED

FIGURE 3-8 OXYGEN DEMAND AND MICROBIOLOGIC DATA BEDROCK MONITORING WELLS - RI ADDENDUM

160 Feet US Army Corps of Engineers

APPENDIX A

RI ADDENDUM – PROPOSED SOURCE AND PLUME DELINEATION WORK PLAN

RI ADDENDUM - PROPOSED SOURCE AND PLUME DELINEATION

Introduction

The USACE has completed the additional Phase II Field Activities and data evaluation as proposed in the September 24, 2001 Memo. Field activities included the installation and sampling of two bedrock wells (MW-25D and MW-26D) to delineate the benzene source area. Benzene (520 ppb) was detected at monitoring well MW-26D, and will require further upgradient source area delineation. The results of the Additional Phase II activities will be included in the Draft Remedial Investigation (RI), which is scheduled for submission to regulators in December 02/January 03.

The USEPA has since requested further source area and downgradient delineation of benzene contamination on the MISS and offsite properties. The following scope of work is prepared as an addendum to the Groundwater Remedial Investigation Work Plan, December 2000. In this addendum, the USACE proposes to install and sample additional bedrock monitoring wells to complete the delineation of both the benzene source area and downgradient plume. Bioremediation sampling is proposed, and will provide baseline data for evaluation of monitored natural attenuation and other remedial alternatives. The field program is expected to start in August 2002 and last approximately three (3) to four (4) months. Results of the field investigation would be presented in a RI Addendum.

Background

Elevated benzene concentrations on the MISS were first identified in May 2001, and have been partially delineated by sampling of former bedrock test wells and other monitoring wells. Benzene sampling results from the Phase II and Additional Phase II investigation is presented in Figure 1. Figure 1 shows benzene concentration isopleths superimposed over the December 2001 bedrock groundwater elevation data. As shown, a contiguous benzene plume is plotted on site, extending NE-SW from upgradient wells MW-26D to MISS-5B, which is located at the downgradient property boundary. Maximum detected benzene concentrations within the plume were recorded at wells BRPZ-5 (5000 ppb) and MISS-5B (3500 ppb). Benzene was also detected in deep packer samples collected at bedrock wells BRPZ-5 (480 ppb) and BRPZ-7 (270 ppb duplicate sample). The sampling results indicate that the highest benzene concentrations are found in shallow bedrock, and that benzene concentrations decrease roughly an order of magnitude between shallow (35 to 60 feet bgs open interval) wells and deep (90 to 115 feet bgs open interval) wells.

The upper portion of the plume appears to be aligned with local groundwater flow, however, this changes further downgradient as bedrock groundwater flow turns west. Benzene transport is therefore expected to shift further west with the prevailing groundwater flow at downgradient plume locations. Benzene transport may also be impacted (or controlled) by aquifer anisotropy in the Passaic Formation. Aquifer anisotropy and permeability are typically greatest along bedrock strike which locally revisedRI ADDPOS PAPER1.doc 1

trends NNE. Both groundwater flow and potential aquifer anistropy elements were considered during selection of monitoring well locations.

Monitored natural attenuation (MNA) will be evaluated for remediation of the benzene plume. MNA is considered an attractive remedy because of (1) the low detected concentrations (<5ppm) of benzene, (2) distance (1750 feet) to the receptor (Saddle River), and (3) degradability of benzene in groundwater. The benzene source area will be delineated during the proposed investigation, with identification of any ongoing source areas. Bioremediation sampling is proposed to provide specific information about the utilization and availability of electron acceptors and nutrients in groundwater.

Recommendations for Additional Field Work

Installation of Source Area/Plume Delineation Wells MW-27D, MW-28D, MW-29D and MW-30D

Proposed bedrock well locations are shown in Figure 1. Bedrock well MW-27D (proposed) will be installed first and located approximately 200 feet northeast from well MW-26D, along the apparent plume axis. MW-28D (proposed) will be located approximately 160 feet northeast and upgradient (flow) of MW-26D. Screening VOC groundwater samples will be collected from each well during development and analyzed on an expedited turn around time (TAT). Based upon the screening results from MW-27D and MW-28D, wells Alt "A" and/or Alt "B" may be installed. For additional well installation data and rationale, see Table 1.

All source area wells will be inspected for product during installation and development. Prior to grouting the 6" well casing, the water column (within the bedrock or 10" drive casing) shall be inspected for product using a clear weighted bailer. This procedure would be repeated prior to and after well development.

Proposed downgradient well location MW-29D is located approximately 250 feet from MISS-5B and is oriented along the apparent plume axis. Proposed well MW-30D is located 160 feet northwest of MW-29D and 170 feet downgradient (flow) from MISS-5B. The relative concentrations of benzene at these locations, if present, may help determine the offsite plume orientation. If screening (VOC) groundwater samples detect benzene at MW-29D and/or MW-30D, a third well will be installed along the projected plume direction on Grove Ave. or other appropriate downgradient location.

All proposed wells will be installed using the air rotary method and will be completed as shallow bedrock wells with 25 feet of open borehole. Wells will be air developed by the rig for a minimum 45 minutes after completion to remove sediment and rock fragments from the bottom of the well. After a minimum 24 hour period, the wells will be developed by pumping until a minimum 50 NTU turbidity (and required 3X well volume evacuation) is achieved.

VOC and Bioremediation Sampling

Collection of a new round of VOC samples is proposed in the delineation study area. VOC sampling will be conducted at 20 bedrock wells and at all newly installed wells commencing early FY03. In addition, bedrock well VOC data collected during the Annual Environmental Sampling round (July 2002) will be utilized for plume delineation. Proposed sampling and compliance wells that will contribute to the VOC interpretation are listed in Table 2. As shown in Figure 2, all available bedrock wells in the plume and downgradient areas are proposed for sampling.

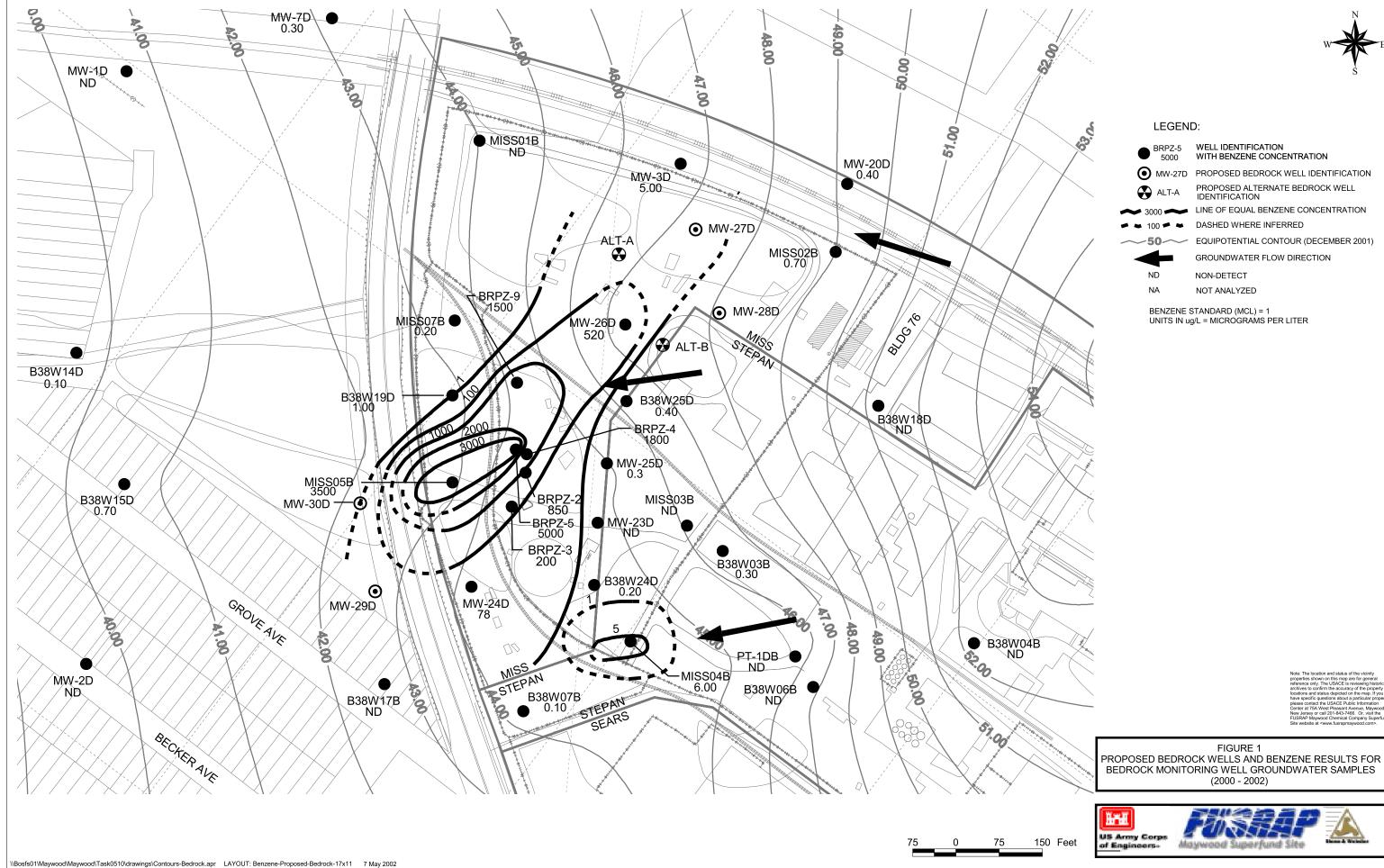
Bioremediation sampling is proposed at a total of eight bedrock monitoring wells (see Table 2) to determine the capacity of the bedrock aquifer to support intrinsic bioremediation. Proposed sampling wells are located within the mapped extent of the plume and projected downgradient areas. The bioremedial sampling parameters include dissolved oxygen, alternate electron acceptors (nitrate, manganese, iron, sulfate), nutrients and benzene degraders. The complete list of proposed sampling parameters and methods are shown in Table 3.

All wells would be sampled using the USEPA low flow sampling methodology and analyzed for VOCs using USEPA method 8260B. Quality assurance/quality control (QA/QC) samples will be collected as described in the Work Plan, excluding the bioremedial parameters.

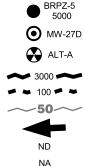
Well Logging/Slug Testing

All new bedrock wells and three (3) existing wells (MW-26D, BRPZ-9 and MW-2D) shall be slug tested to measure bulk permeability. This data may be utilized in a groundwater flow and fate/transport numerical model. Borehole logging is proposed at five (5) new well locations, and would include caliper, SPR, SP, natural gamma, fluid temperature, fluid resistivity, acoustic televiewer and heat-pulse flowmeter logging. Evaluation of the data shall provide fracture orientations and determine distribution of water bearing fractures.

Water Level Measurements

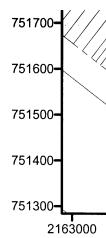

A partial synoptic water level round will be performed at 48 (existing) bedrock wells and five (5) or more newly installed bedrock wells. Proposed existing wells for measurement are listed in Table 4. As shown in Figure 2, all bedrock wells in and adjacent to the delineated/projected benzene plume are included for measurement. Deep bedrock monitoring wells PT-1DB, MW-23DD, MW-24DD, PW-1D and MW-19DD will be included in the synoptic round. All water level measurements will be conducted over a maximum eight (8) hour period to reduce the effect of water level changes on the data.

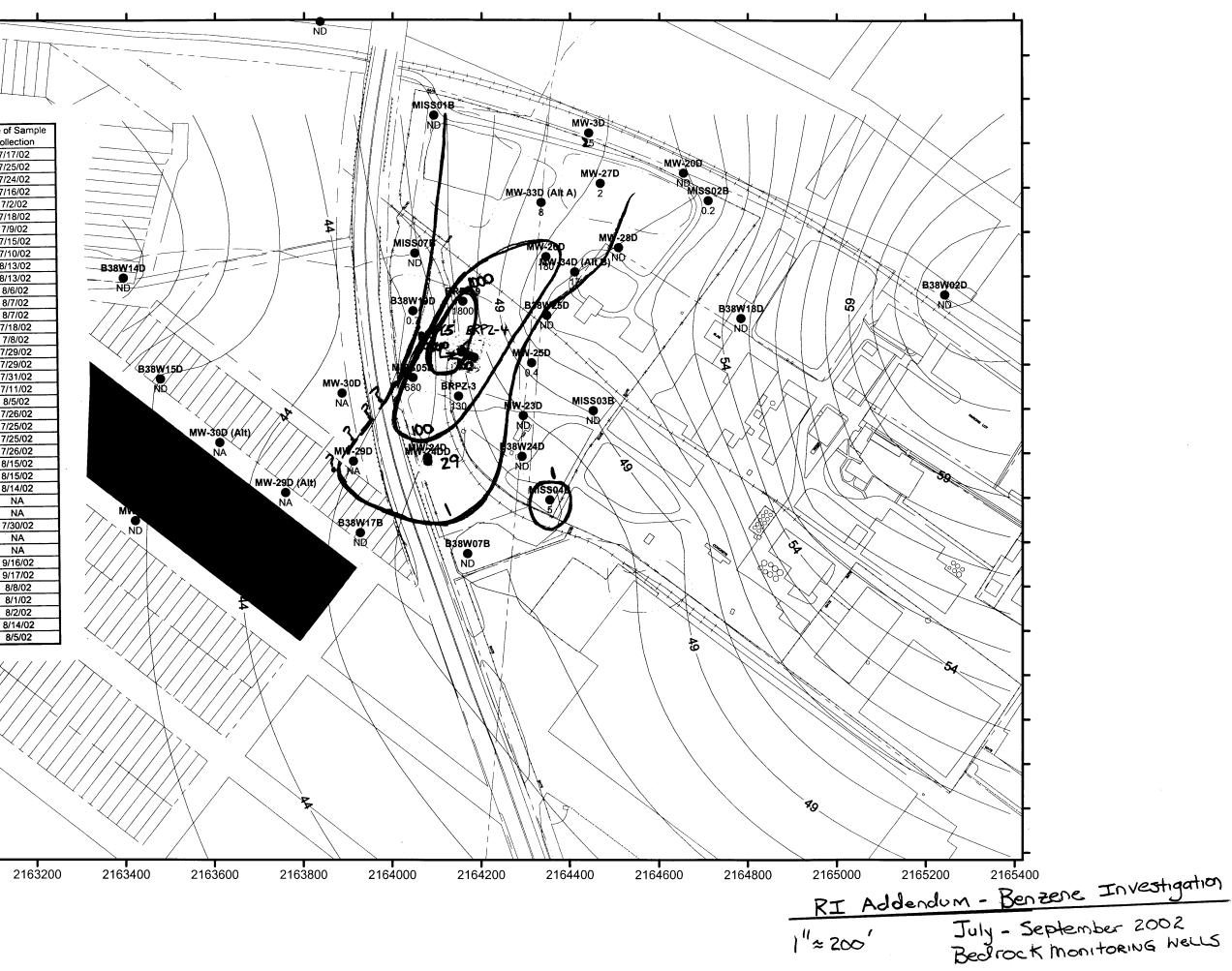
Data Evaluation and Report

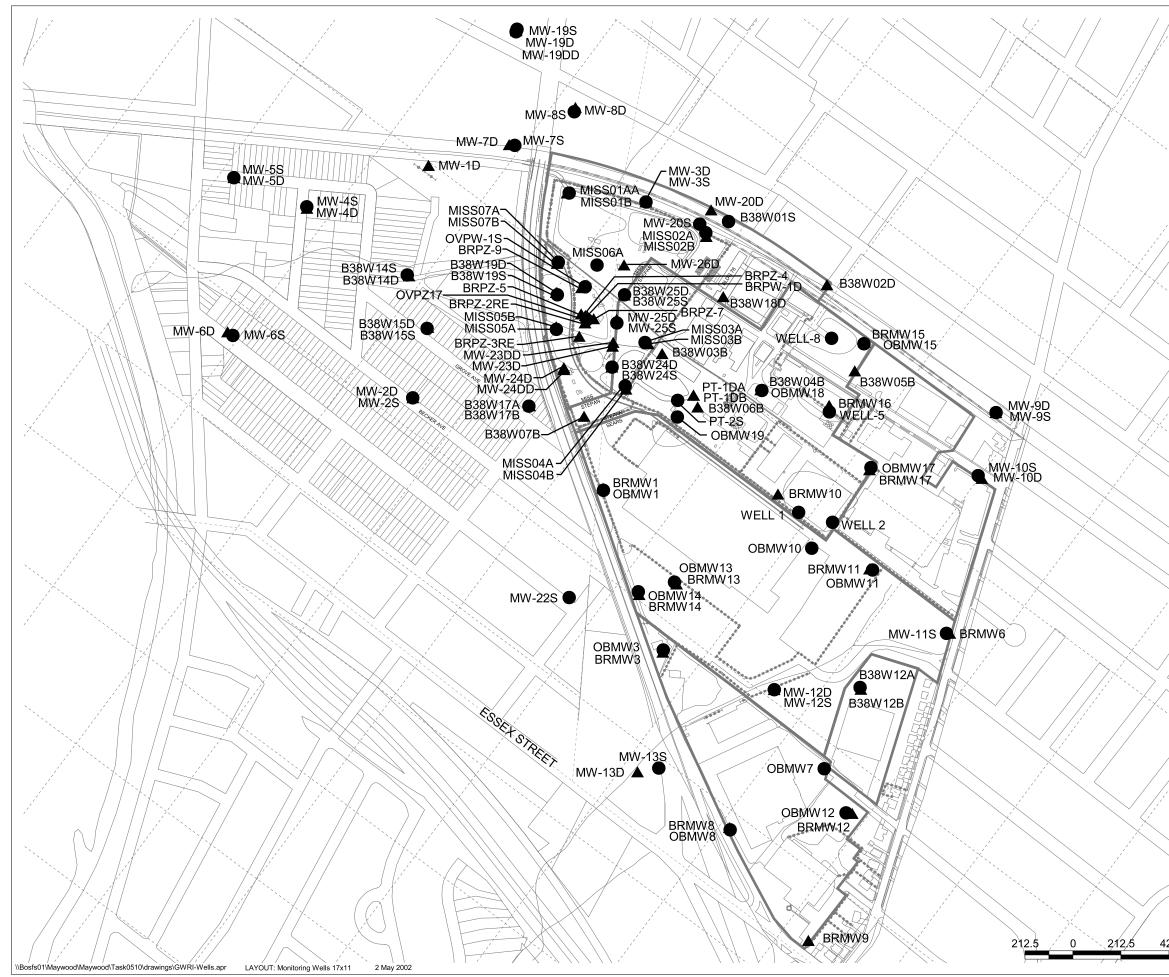

All field data and laboratory data shall be presented in a stand-alone RI Addendum, which will include evaluation of the data, conclusions and recommendations.

Schedule

- Site Access and Mobilization June and July 2002
- Annual Compliance Sampling July 2002
- Well Installation and Development August 2002
- Existing Monitoring Well and Newly Installed Well Sampling September/October 2002
- Submittal to Regulators of Draft RI Addendum Report April 2003







	1	Date of Sample
Well	Result (ug/L)	Collection
B38W02D	ND	7/17/02
B38W07B	ND	7/25/02
B38W14D	ND	7/24/02
B38W15D	ND	7/16/02
B38W17B	ND	7/2/02
B38W18D	ND	7/18/02
B38W19D	0.7	7/9/02
B38W24D	ND	7/15/02
B38W25D	ND	7/10/02
BRPW-1DRE	ND	8/13/02
BRPZ-3	130	8/13/02
BRPZ-4	760	8/6/02
BRPZ-5	9500	8/7/02
BRPZ-9	1800	8/7/02
MISS01B	ND	7/18/02
MISS02B	0.2	7/8/02
MISS03B	ND	7/29/02
MISS04B	5	7/29/02
MISS05B	680	7/31/02
MISS07B	ND	7/11/02
MW-20D	ND	8/5/02
MW-23D	ND	7/26/02
MW-24D	29	7/25/02
MW-24DD	9	7/25/02
MW-25D	0.4	7/26/02
MW-26D	180	8/15/02
MW-27D	2	8/15/02
MW-28D	ND	8/14/02
MW-29D	NA	NA
MW-29D (Alt)	NA	NA
MW-2D	ND	7/30/02
MW-30D	NA	NA
MW-30D (Alt)	NA	NA
MW-33D (Alt A)	8	9/16/02
MW-34D (Alt B)	17	9/17/02
MW-3D	25	8/8/02
MW-4D	ND	8/1/02
MW-5D	ND	8/2/02
MW-6D	ND	8/14/02
MW-7D	ND	8/5/02

LEGEND:

MW-8S

OVERBURDEN GROUNDWATER WELL (INCLUDES A, AA, OR S SUFFIX AND OB PREFIX)

MW-8D BEDROCK GROUNDWATER WELL (INCLUDES B, D, DD, DA, OR DB SUFFIX AND BR PREFIX)

> Note: The location and status of the vicinity properties shown on this map are for general reference only. The USACE is reviewing historical archives to coffinm the accuracy of the property locations and status depicted on the map. If you have specific questions about a particular property please contact the USACE Public Information Mew Jensery or call 2019-843-7466. Or visit the FUSRAP Maywood Chemical Company Superfund Site vebsite at witemaprov/www.discommund.com review discommund.

FIGURE 2 MONITORING WELL LOCATION MAP

425 Féet

TABLE 1 WELL CONSTRUCTION AND RATIONALE MAYWOOD FUSRAP SITE

		Depth	Borehole	
Well Identification/Description	Well Type	(ft.bgs)	(ft.)	Rationale
			Source D	Delineation Monitoring Wells
				Located 200' upgradient along plume axis from MW-26D. If high concentrations of benzene are
MW-27D	Shallow Bedrock	47	25	detected, an additional upgradient well may be installed.
				Located 160 feet upgradient (flow) from MW-26D and 125 feet South of MW-27D. If high
				concentrations of benzene are detected, another well may be installed at a further upgradient
MW-28D	Shallow Bedrock	47	25	(ENE) location.
Alternative Well Location -"A"	Shallow Bedrock	47	25	May be installed to delineate a source area/plume northwest of well MW-26D. May be installed if benzene is not detected at MW-27D and MW-28D, or alternatively, if benzene is only detected at MW-27D.
Alternative Well Location -"B"	Shallow Bedrock	47	25	Located 100 feet east of MW-26D, and may be installed to delineate a potential offsite (Stepan) source. May be installed if no benzene is detected at wells MW-27D and Alt A, and ND or low concentration of benzene at MW-28D.
			Downo	radient Delineation Wells
				Leasted 250 fact down and just from MICC 5D plans the platted horsens plyma pyje. An additional
MW-29D	Shallow Bedrock	47	25	Located 250 feet downgradient from MISS-5B along the plotted benzene plume axis. An additional downgradient well will be installed if benzene is detected at this location.
MW-30D	Shallow Bedrock	47	25	Located 170 feet downgradient (flow) from MISS-5B. As noted with well MW-29D, an additional
10100-200	Shallow Bedlock	47	25	well will be installed downgradient if benzene is detected at this well.

TABLE 2

Summary of Bedrock Wells Sampled in Environmental Monitoring Program and Wells Recommended for Sampling as Part of RI Addendum

		Current Bedrock Compliance	RI Addendum Sampling -	Proposed Bioremediation
Well ID	Well Type	Wells*	VOCs	Sampling
B38W02D	Shallow Bedrock			
B38W07B	Shallow Bedrock			
B38W14D	Shallow Bedrock			
B38W15D	Shallow Bedrock			
B38W17B	Shallow Bedrock			
B38W18D	Shallow Bedrock			
B38W19D	Shallow Bedrock			
B38W24D	Shallow Bedrock			
B38W25D	Shallow Bedrock	\checkmark		
BRPW-1D	Deep Bedrock		\checkmark	
BRPZ-4	Shallow Bedrock		\checkmark	\checkmark
BRPZ-3	Shallow Bedrock		\checkmark	
BRPZ-5	Shallow Bedrock		\checkmark	
BRPZ-9	Shallow Bedrock		\checkmark	
MISS01B	Shallow Bedrock			
MISS02B	Shallow Bedrock			
MISS03B	Shallow Bedrock		\checkmark	
MISS04B	Shallow Bedrock			
MISS05B	Shallow Bedrock			
MISS07B	Shallow Bedrock			
MW-1D	Shallow Bedrock			
MW-2D	Shallow Bedrock		\checkmark	
MW-3D	Shallow Bedrock			
MW-4D	Shallow Bedrock			
MW-5D	Shallow Bedrock		\checkmark	
MW-6D	Shallow Bedrock		\checkmark	
MW-7D	Shallow Bedrock		V	
MW-23D	Shallow Bedrock			
MW-24D	Shallow Bedrock			
MW-24DD	Deep Bedrock			
MW-25D	Shallow Bedrock			
MW-26D	Shallow Bedrock			
Proposed MW-27D	Shallow Bedrock			
Proposed MW-28D	Shallow Bedrock			,
Proposed MW-29D	Shallow Bedrock			
Proposed MW-30D	Shallow Bedrock			√ √
Proposed Alt-A	Shallow Bedrock			,
Proposed Alt-B	Shallow Bedrock		V V	

FUSRAP MAYWOOD SUPERFUND SITE, MAYWOOD, NJ

* - Parameter list for compliance wells are to consist of: Gross Alpha, Gross Beta

RA-226, RA-228, isotopic thorium and isotopic uranium, TAL Metals, lithium, boron and TCL VOCs

TABLE 3 FIELD AND LABORATORY BIOREMEDIAL PARAMETERS MAYWOOD FUSRAP SITE

E

PARAMETER	USEPA METHOD	DISCUSSION
	1	FIELD PARAMETERS
Dissolved Oxygen	N/A	Measured using a DO meter. Autocalibration to atmosphere.
Dissolved Oxygen	N/A	Test kit using the modified Winkler Method.
Oxidation Reduction Potential (ORP)	N/A	Measured using a ORP meter (multimeter). Calibrated against standard solution.
рН	N/A	Measured using a pH meter. Calibrated against standard solution.
		LABORATORY PARAMETERS
Nitrate-N	353.2	Alternative electron acceptor
Ammonia-N	350.1 OR 350.3	
Manganese (total)	6010A	Alternative electron acceptor
Manganese (dissolved)	6010A	
Iron (total)	6010A	Alternative electronic acceptor
Iron (dissolved)	6010A	
Sulfate	375.4	Alternative electronic acceptor
Sulfide	376.1	
Total Organic Carbon	415.1	
Phosphorus (total)	365.4	Limiting nutrient
Chemical Oxygen Demand (COD)	410.4	
Biological Oxygen Demand (BOD)	405.1	

APPENDIX B

WELL PERMITS AND MONITORING WELL RECORDS

TABLE 4

Bedrock Monitoring Wells Proposed for Water Level Gauging

FUSRAP Maywood Superfund Site, Maywood, NJ

Well ID	Property	Well Owner
BRMW1	149-151 Maywood Ave.	Stepan
B38W03B	Stepan	USACE
B38W04B	Stepan	USACE
B38W05B	Stepan	USACE
B38W06B	Stepan	USACE
B38W07B	Stepan	USACE
B38W24D	Stepan	USACE
B38W25D	Stepan	USACE
MISS03B	Stepan	USACE
MISS04B	Stepan	USACE
BRMW10	Stepan	Stepan
BRMW15	Stepan	Stepan
BRMW16	Stepan	Stepan
BRMW17	Stepan	Stepan
PT-1DA	Stepan	Stepan
PT-1DB	Stepan	Stepan
B38W02D	NYS & WRR	USACE
MW-20D	NYS & WRR	USACE
MW-3D	NYS & WRR	USACE
B38W18D	MISS	USACE
B38W19D	MISS	USACE
MISS01B	MISS	USACE
MISS02B	MISS	USACE
MISS05B	MISS	USACE
MISS07B	MISS	USACE
BRPW-1D	MISS	USACE
BRPZ-2RE	MISS	USACE
BRPZ-3RE	MISS	USACE
BRPZ-4	MISS	USACE
BRPZ-5RE	MISS	USACE
BRPZ-9	MISS	USACE
MW-23D	MISS	USACE
MW-23DD	MISS	USACE
MW-26DD MW-24D	MISS	USACE
MW-24DD	MISS	USACE
MW-2400	MISS	USACE
MW-26D B38W14D	MISS 00 Park Way	USACE
B38W14D B38W15D	90 Park Way 26 Grove Ave.	USACE
		USACE
B38W17B	Grove Ave. 96 Park Way	USACE
MW-1D MW-19D		USACE
	Lincoln Ave.	USACE
MW-19DD	Lincoln Ave.	USACE
MW-2D	Becker Ave.	USACE
MW-5D	Park Way	USACE
MW-6D	Madison Ave.	USACE
MW-7D	141 W. Central Ave.	USACE
MW-8D	161 W. Central Ave.	USACE

e. 45 DWR-133M TATE OF NEW JERSEY REGARING SHORE ENVIRONMENTAL PROTECTION 2/00 RENTON, NJ JUL 2 3 2002 MONITORING WELL PERMIT Permit 1 Mail To: NJDEP VALID ONLY AFTER APPROVAL BY THE D.E.P. **BUREAU OF WATER ALLOCATIO PO BOX 426** COORD # TRENTON, NJ 08625-0426 Shaw Graid Inc Driller Owner Address Address $\sim \sim \sim$ Diameter Proposed Name of Facility of Well(s) Depth of Well(s) $\# \sim_{M}$ # of Wells Will pumping equipment Applied for (max. 10) Address be utilized? NOF Type of Well If Yes, give pump ولطير تياؤنى (see reverse) capacity cumulative GP? LOCATION OF WELL(S and solution is 1.5 Lot# Municipality County Block # Draw sketch of well(s) nearest roads, buildings, etc. with CICLER 10D Seron Ä marked distances in feet. Each well MUST be labeled State Atlas Map No. with a name and/or number on the sketch. NYSWERMWATO Q ۷ чO 70 2 ł 3 r MW270 500 90 כ Õ 4 5 6 0 0 12 フト 7 8 9 0 52 40 FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS: THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: This Space for Approval Stamp E Spill Site WELL PERMIT APPROVED ISRA Site N.J.D.E.P. Σ CERCLA (Superfund) Site п **RCRA** Site CASE LD. Number п Underground Storage Tank Site JUL 1 9 2002 **Operational Ground Water Permit Site** Pretreatment and Residuals Site П Water and Hazardous Waste Enforcement Case ALLOCATION BUREAU OF WATER ALLOCATIO Water Supply Aquifer Test Observation Well ГÌ Other (explain) 3+60 FOR Issuance of this permit is subject to the conditions attached. (see next page) The well(s) may not be completed with more than 25 feet of total screen or uncased borehole. D.E.P. For monitoring purposes only 1 USE SEE REVERSE SIDE FOR IMPORTANT PROVISIONS PERTAINING TO THIS PERMIT. In compliance with N.J.S.A.58:4A-14, application is made for a permit to drill a well as de cribed above \sim Date Signature of Driller $L(\Omega)$ Registration No. Signature of Property Owner

	1	<u></u>		Looki li kultu biline kanada	<u>, ja ja kun kun kun kun kun kun kun kun kun kun</u>	۵۵٬۵۹ - ۲۰۰۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ - ۲۹۹۵ ۱۹۹۰ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹	
	Jersey Department of I	Environm	iental Prote	ction		• • •	
8/00	Bureau of Wate MONITORING W	er Allocat			F	and the second second	
·····	WONT ORING W		Well Pern	nit No			
	je s		Atlas She	et Coordina	tes <u></u>		
	BEPA C/O SHAW GROU	P INC		-			
OWNER IDENTIFICATION - Owner Address 100 W HINTE City MAYWOOD	R AVE State	NT		· · · · · · · · · · · · · · · · · · ·	Zip Code	07	
WELL LOCATION - If not the same as ow		Ourori		m	10270		
County RERGEN	Wunicipality <u>MAYWX</u>	DWNER: DE BORO	Lo	t No46	Block N	lo. <u>125</u>	
Address 100 W HUNTER AVE						6,00	
TYPE OF WELL (as per Well Permit Cate	gories) <u>MONITORIN</u>	<u>G</u>				· · · · · · · · · · · · · · · · · · ·	
Regulatory Program Requiring Well			Case I.	D.#			
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)			<u></u>	Tele. #		
WELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter		Wgt./Rating	
Total depth drilled <u>58,5</u> ft. Well finished to <u>58,5</u> ft.	from land surface	Top (ft.)	Bottom (ft.)	(inches)		(lbs/sch no.)	
Borehole diameter:	Single/Inner Casing Middle Casing	+2	33.5		Steel	191H	
Top in. Bottom in.	(for triple cased wells only)				,		
	Outer Casing (largest diameter)	0	21	10	Ster	sch 40	
Well was finished: Above grade	Open Hole or Screen				<u> </u>		
If finished above grade, casing height (stick	(No. Used) Blank Casings	<u>, (, (</u>	.58.5		Lock.		
up) above land surface ft. Was steel protective casing installed?	(No. Used)				· · · · · · · · · · · · · · · · · · ·		
Yes No	Tail Piece				· · · ·		
Static water level after drilling <u>15,8</u> ft.	Gravel Pack				۰ ۱ <u>.</u>		
Water level was measured using	Grout	0	33.5	ann	Neat Cement Bentonite	1000 lbs.	
at gpm	G	arouting Method					
Method of development	······································	rilling Me	thod	art	Rotan		
Was permanent pumping equipment installed	? 🗌 Yes 🖾 No 👘 🐔						
Pump capacity gpm		Note e format		ere water w	as encountered in	consolidated	
Pump type:					Elc Sanc		
Drilling Fluid Type o	of Rig LC 46	0-2			Rarana	<u> </u>	
Health and Safety Plan submitted? 🖄 Yes	No				1 000 V 0 5		
Level of Protection used on site (circle one)	None D C B A	00	<u></u>	Sam	Jetone.	1	
I certify that I have constructed the a							
accordance with all well permit requirements and applicable State rules and regulations.					<u></u>		
Drilling Company <u>B & B DRILLING</u>	INC						
Well Driller (Print) Douglas M	1			LL LOCATION ONTAL DATUM)		
Driller's Signature		STATE PLAN	E COORDI	NATE IN US SUR			
Registration No. MI277	Date 9/2102	NOF LATITUD	CTHING: 0 E:	0	· ·	0	
COPIES: White - DEP	Canary - Driller	. L			- Health Dept.	· · · · ·	

DWR-133M	•			OF NEW JERSE			(\$770
2/00		DEPART RECEIVE		VIRONMENTAL ENTON, NJ	L PROTECTION		2665220
			<u>.</u>	ING WELL PER	MIT 74		2665221
Mail To:		JUL 2 3 2002			•,	Permit No.	
NJDEP BUREAU OF WATI	ER ALLOCATI	ON VALII	OONLYAFTE.	R APPROVAL B	Y THE D.E.P.		
PO BOX 426 TRENTON, NJ 086	525-0426				COORD #:	26.03	•5 36
Owner 1592m	SIOT.	Cham Gr	OLL.	Drill	er 15= PA	DB312.0-	T.X.
Address 100 U			¥	Addr	ess	JX8 G	
	who is	150760	27		Neto	TON DA	07857
Name of Facility		<u> </u>	il r.o s	Diameter of Well(s)	6	Proposed Inches Depth of Well(s)	50
Address 1 march 1	5	9	4	# of Wells Applied for (may		Will pumping equip be utilized?	ment YES NO ET
	NOUD N		27	Type of Well (see reverse)	Munitoring	If Yes, give pump capacity	cumulative GPM
, 		<u> </u>		ON OF WELL(S			
		Aunicipality	County Sas an				buildings, etc. with
State Atlas M	ap No	Alc		-110-28D		in feet. Each well and/or number of	MUST be labeled n the sketch.
		1			- 34/55.W		
			2	ent A	• ••• ••• •• ••		
1 2	3			10 3h0 245			
-		1	Cuo	A DARBY			
0 4 5	6	lõl .	- E''			*	
0		0)	- A 	`	, ,		
						ية. بر و ي	
7 8	9				L.S.	,	
		<u> </u>			1 X		
<u> </u>	<u>sa'</u> .	I		· .			N 🕈
FOR MONITORING WELLS, RE THE APPLICANT. PLEASE IND	SCOVERY WELLS, OF DICATE WHY THE WI	R PIEZOMETERS, THE FOLL ELLS ARE BEING INSTALLEI	OWING MUST BE COM D:	PLETED BY		This Space	for Approval Stamp
Spill Site							
CERCLA (Superfund)	Site			CASE [D. Number	WELL P	ERMIT APPROVED
Underground Storage T						-	N.J.D.E.P.
Operational Ground Wa Pretreatment and Reside	luals Site					JU	IL 19 2002
Water and Hazardous W Water Supply Aquifer 1					TO ATION.		
Other (explain)	***		······		· .	BUREAU O	F WATER ALLOCATIC
FOR I Issuance of t	bis permit is subject	to the conditions attached.	(see next page)		vell(s) may not be com	pleted with more than 25 fe	ret of total screen
	ing purposes only			/\or w	ncased borehole.	piereo with thole than 23 h	In or total solectil
SEE REVERSE SIDE FOR IMPO In compliance with N.J.S.A.58:4	RTANT PROVISIONS A-14, application is m	PERTAINING TO THIS PERM ade for a permit to drill a well	ATT. as described above,).			
Date/	7	Signature of Driller	Junity	Myperix 1	<u>11</u>	Registration No	. 111377
1		Signature of Propert	•	act Ding	1	hard it	
		OPIES Water Alloca	tion White Ha	alth Dant Vallou	Andrew Blue D.		

DWR-138 M 8/00	New	Jersey Department of I		ental Prote	ction		·
900 S	· .	Bureau of Wate	ELL R	<u>ECORD</u>			
- · ·		and the second	nan lei ya ya ar	Well Pern	hit No	<u>26</u> • <u>65220</u>)
•			6	Atlas She	at Coordina	tes <u>6</u> :6)3
OWNER IDENTIFIC	ATION - Owner	ISEPA C/O SHAW CROUI	INC				
Address Citv	100 W HUMTH	R AVEState	N.T		· · · · · · · · · · · · · · · · · · ·	Zip Code () 7	$\alpha 07$
	د م م م م م م م م م م م م م	ner please give address. Municipality <u>MAYWA</u>	Ownord		min	1×D	
Address100	W HUNTER AVE				DATE WEL		17102
Regulatory Program	Requiring Well	egories) <u>MONITORIN</u>		Case I.I	D.#		
		OR (if applicable)					
WELL CONSTRU	-		· · · · ·		Diameter	· · · · ·	Wgt./Ratin
Total depth drilled Well finished to		Note: Measure all depths from land surface	Depth to Top (ft.)	Bottom (ft.)	(inches)	Material	(lbs/sch no
Well finished to	<u> </u>	Single/Inner Casing	t2.0	32	6	Sicol	191
Borehole diameter: Top Bottom	<u> 0</u> in. in.	Middle Casing (for triple cased wells only)					
Well was finished:	_	Outer Casing (largest diameter)	0	22	10	Spec	SCALC
	lush mounted	Open Hole or Screen (No. Used)	32	57	6	GRADICE	
If finished above grade up) above land surfac	e ft.	Blank Casings (No. Used)					
Was steel protective ca	asing installed?	Tail Piece					
Static water level after	drilling <u>20,8</u> 2tt.	Gravel Pack					
Water level was measu	1	Grout		32		Neat Cement Bentonite	
Well was developed fo at gpn			routing M	ethod	Pre	Bentonite	
Method of developme	:	Γ		thod	ac	Rataci	
	ing equipment installed	l? □Yes ⊠ No	r			GIC LOG	······································
Pump capacity		<i>,</i> , ,	Note e	ach depth wh		as encountered in	n consolidate
Pump type:	<u></u>		format	lions.			
Drilling Fluid	Туре	of Rig IRTYW	0-	201 11	Arn.	Elc Sand +	-KS H
	an submitted? 🖾 Yes [
	ed on site (circle one)		20	57' 70	Saras	Jer/Gan S	
2		bove referenced well in irements and applicable lations.					
Drilling Company	R & R DRILLING		·				
	Duginsmy		×,	(NAD	83 HORIZ	LL LOCATION	A)
	Durkes Win					INATE IN US SUI	
Registration No. 1		Date 6 DI 102	NOF			_ EASTING: DR LONGITUDE:	

.*

and a second	· · · · · · · · · · · · · · · · · · ·	anna amir a anna ann an ann an ann an ann an ann an a		<u>LI AM</u> AKSILMAN MANULUN	leralaosanduka	UNIQUEINER OFFICIAL CONTRACTOR		
DWR-138 M	New	Jersey Department of I	Environm	ental Prote	ction	· .		
8/00		Bureau of Wate	ar Allocat	ion				
				Well Perr	nit No	<u>- 26</u> - <u>65221</u>		
	х				1.11	ites <u></u> ;(
OWNER IDENTIFICAT	ION - Owner	USEPA C/O SHAW GROU	P INC					
Address City	100 W HUNTI	ER AVE State	NJ.	·······	- -	Zip Code ု 🔿 🗖	1607	
County <u>BERGE</u>	N	ner please give address. Municipality <u>MAYWO</u>	OD BORO	Lo	t No4	5Block I	No. 124	
Address <u>100 W</u>	HUNTER AVE	· · ·				I STARTED 9	110102	
Address DATE WELL STARTED/ O /OZ TYPE OF WELL (as per Well Permit Categories) MONITORING DATE WELL COMPLETED/ O /OZ Regulatory Program Requiring Well Case I.D.#								
CONSULTING FIRM/FI	IELD SUPERVISO	PR (if applicable)				Tele. #	er dagt je sek stat sek APAN	
WELL CONSTRUCT	<u>ION</u>	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wgt./Rating	
Total depth drilled(<u>-5</u> ft.	from land surface	Top (ft.)	Bottom (ft.)		PIC	(lbs/sch no.)	
Borehole diameter:		Single/Inner Casing Middle Casing	+2	45.5	2		Schyo	
Topi C	⊇in. ⊘in.	(for triple cased wells only)	+2	38.	6	Sterl	19E	
Well was finished: Vabo		Outer Casing (largest diameter)	0	20	10	Sugar	Sonto	
flusi	h mounted	Open Hole or Screen (No. Used)	465	655	2	PUC	Solution	
if finished above grade, ca رُي up) above land surface		Blank Casings (No. Used)						
Was steel protective casir	ng installed?	Tail Piece				PICQ		
Static water level after dril	÷	Gravel Pack	43	105	CIOD	Marie	121	
Water level was measured		Grout	0/0	43/34		Neat Cement Bentonite	VG-100lbs.	
Well was developed for at gpm	hou r s	G	routing M	ethod	P-en.			
Method of development _	:	D		thod	a.s	Re-or 1		
Was permanent pumping	equipment installed	l? □Yes ☑ No	GEOLOGIC LOG					
Pump capacity		• *	Note each depth where water was encountered in consolidated formations.					
Pump type:			O DO FIL CLUSSOD SERVE DO FIC					
Drilling Fluid	,		Sand St- war Deves					
Health and Safety Plans		\sim	acrast har percent shall					
Level of Protection used			5 1+ string					
		bove referenced well in rements and applicable	25-100 Chapter - RULIXI SIT					
	ate rules and regu							
Drilling Company			-	AC 1	21111 7 33/15	LL LOCATION		
Well Driller (Print) Douglas Meccon Driller's Signature : Rounda				(NAD	83 HORIZ	ONTAL DATUM	I)	
Driller's Signature	runie.	· olinit	-			INATE IN US SUR		
		Date 7121102				_ EASTING:)R		
109010101110. <u>1</u>	<u></u>		LATITUD	E:0	·'''	DR LONGITUDE:	· ' *	
COPIE	S: É White - DEF	Canary - Driller	Pink - (Owner	Goldenro	d - Health Dept.		

an a	
DWR-133M 2/00 STATE OF N	vew jersey
DEPARTMENT OF ENVIR	ONMENTAL PROTECTION
	N. C. S. C.
Mail To:	WEEL PERMIT "P Permit No. 20001714
BURBAU OF WATER ALLOCATION PO BOX 426 TRENTON, NJ 08625-0426	COORD# 26.23.379
Owner M. China K Lacana N china	Driller DENTINE
Address	Address
· · · · · · · · · · · · · · · · · · ·	Metters AND
Name of Facility	Diameter of Well(s) Inches Denth of Well(s)
Address C. Bor e	# of Wells Will pumping equipment
THE GALLANT AND	Type of Well If Yes, give pump
	(sarguerss) A construction of the second sec
Lot# Block # Municipality County Berge	JEWY BEE(3)
	Draw sketch of well(s) nearest roads, buildings, etc. with
State Atlas Map No	marked distances in feet. Each well MUST be labeled
	with a name and/or number on the sketch.
	••••••••••••••••••••••••••••••••••••••
-1 -1	
- MW 310	er jak i
	×′
	مرید ان
7 8 9 : 35	
ter and the second s	<u>na se </u>
R MONITORING WELLS, RECOVERY WELLS, OR PIEZOMETERS, THE FOLLOWING MUST BE COMPLETED IE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED:	This Space for Approval Stamp
Spill Site	
J ISRA Site J CERCLA (Superfund) Site	
I RCRA Site	CASE I.D. Number
J Underground Storage Tank Site	CASE I.D. Number
Operational Ground Water Permit Site	
 Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case 	JAN 2 8 2003
Water Supply Aquifer Test Observation Well	
] Other (explain)	BUREAU OF WATER ALLOCATIO
OR Issuance of this permit is subject to the conditions attached. (see next page)	The well(s) may not be completed with more than 25 fast of total arran
SE D For monitoring purposes only	The well(s) may not be completed with more than 25 feet of total screen
3 REVERSE SIDE FOR IMPORTANT PROVISIONS PERTAINING TO THIS PERMIT. compliance with N.J.S.A.58:4A-14, application is made for a permit to drill a well as described above.	
	х Э
ite Signature of Driller	
Signature of Property Owner	

		LERIPERSIENEN	(RESIDENTED SUBJECTION OF T	<u></u>	n an	
8/00 New	Jersey Department of I Bureau of Wate MONITORING W	ar Allocal	ion and a second			Section Section
and the second sec	and the second	<	Well Pern	nit No	26 - 66774	1
	v.	New York	Atlas She	t Coordinal	tes <u>26</u>)3 : 379
WOWNER IDENTIFICATION - Owner	HCHOLS, MICHAEL &	LORTAN				
Address 37 GROVE A	ZEState	NT	·····		Zip Code	$\overline{(n)}$
ALE	· · ·					
WELL LOCATION - If not the same as ow County	ner please give address. Municipality <u>MAYWC</u>	Owners				
						$\frac{12}{0}$
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	gories) <u>MONITORIN</u>	¥G		D.#		
CONSULTING FIRM/FIELD SUPERVISO	R (if applicable)	<u></u> .			Tele. #	•
WELL CONSTRUCTION Total depth drilled \Sft.	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Well finished to t.	Single/Inner Casing	\$-3	20	9	Stear	19#
Borehole diameter: LOin. Bottomin.	Middle Casing (for triple cased wells only)					
Well was finished: 🗔 above grade	Outer Casing (largest diameter)	-3	15	10	Steel	Sch 40
If finished above grade, casing height (stick	Open Hole or Screen (No. Used)	20	45	لە	Rock	
was steel protective casing installed?	Blank Casings (No. Used)				· · · · · · · · · · · · · · · · · · ·	
	Tail Piece					
Static water level after drilling <u>1</u> ft.	Gravel Pack					
Water level was measured using trupk	Grout	0	20	ann	Neat Cement Bentonite	000 lbs.
Well was developed for hours	L	routing M		Seessi		
at gpm		Drilling Me			otary	
Was permanent pumping equipment installed	? 🔲 Yes 🕅 No	l		GEOLO(
Pump capacity gpm			GEOLOGIC LOG Note each depth where water was encountered in consolidated formations.			
Pump type:						
Drilling Fluid Type o	of Rig <u>TRTYW</u>	$\frac{0}{5}$		<u>-etr</u>	DOLL ST	
Health and Safety Plan submitted? 🖾 Yes [] No	0-9 ROMAN S 1+ (lay				
Level of Protection used on site (circle one)	None DC B A		17 Per		suric she	ite
l certify that I have constructed the a accordance with all well permit requi State rules and regu	rements and applicable	17-32 Flacture				
Drilling Company B & D DRILLING		_	······································			
Well Driller (Print) Douglas m	•		(NAD	83 HORIZ	LL LOCATION ONTAL DATUM	
	Ryeitit				NATE IN US SUR	VEY FEET
Registration No. MIATT	Date 3/28/03	_	0		_ EASTING: DR LONGITUDE:	0, "
		LATITUD	<u> </u>			· ·]
COPIES: White - DEF	P Canary - Driller	Pink -	Owner	Goldenroo	d - Health Dept.	

-

<u>DV/R-13314</u> 11/01	STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTEC	TION
Mail To:	TRENTON, NJ MAR MONITORING WELL PERMIT 2003	34 Permit No. 200706
NJDEP BUREAU OF WATER ALLOCATION FO BOX 426 TRENTON, NJ 08625-0426	VALID ONLY AFTER APPROVAL BY THE D. COOR	1 n x n - n
Owner Scott Belvin	Driller B Address	-B. Drilling Fill P. B. Bar R.
Address <u>37 Greate a</u> Excherge pa		Netrona NTO 7856
Name of Facility	Diameter	Inches Depth of Well(s)
, ,	of Well(s) # of Wells Applied for (max. 10)	Will pumping equipment be utilized? YES
1 1 Marthana Chiller	Type of Well (see spyerse)	If Yes, give pump capacity such a mubile GPA
	LOCÁTION OF WELL(S)	
Lot # Block # Municipality $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	marked d	ch of well(s) nearest roads,buildings, etc. with listances in feet. Each well MUST be labeled h a name and/or number on the sketch.
State Atlas Map No		
))	
	Flave allen it	
7 8 9 X	PROPOSED WELL LOCATION (NAD 83	HORIZONTAL DATUM)
	NJ STATE PLANE COORDINATE I	NUS SURVEY FEET
- manifesta in and the is a significant in the other	OR OR	SITUDE:
FOR MONITORING WELLS, RECOVERY WELLS, OR PIEZOM THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE		This Space for Approval Stamp
RCRA Site	Spill Site	
Underground Storage Tank Site	ISRA Site	
 Operational Ground Water Permit Site Pretreatment and Residuals Site Water and Hazardous Waste Enforcement Case 	CERCLA (Superfund) Site	MAR 1 8 2003
Water Supply Aquifer Test Observation Well Other (explain)	· · · · · · · · · · · · · · · · · · ·	
DEDITO	to the conditions attached. (see next page)	ses only
D.E.P. USE	permit to drill a well as described above.	
Sign	ature of Property Owner, Kyp DOMAT	Registration No.
COPIES	: Water Allocation - White Health Dept Yellow Owner -	Diue Driller - white

	COPIES:	Water Allocation - White	Health Dept.	-			
 • • •		*******	·····		· ~	 	

DWR-138 M Nev 8/00	v Jersey Department of Bureau of Wate <u>MONITORING W</u>	er Alloca ELL R	lon ECORD			68	
· .			Atlas She	et Coordina	ites		
OWNER IDENTIFICATION - Owner	-BELVIN, SCOTT				<u> </u>	·	
Address58_CROVE CityROCHELLE	AVE				Zin Code		
	1.01					····· ··· ··· ··· ··· ··· ··· ··· ···	
WELL LOCATION - If not the same as o	wner please give address.	Owner	s Well No	MW	320	<u> </u>	
CountyBERGEN	Municipality <u>MAY</u>	ICCD BOF	<u>رو </u>	it No	66 Block N	lo. <u>17.</u>	
Address <u>58_GROVE_AVE</u> TYPE OF WELL (as per Well Permit Cat Regulatory Program Requiring Well	egories) MONITORI	NG			L STARTED <u>5</u> OMPLETED <u>5</u>		
CONSULTING FIRM/FIELD SUPERVIS							
WELL CONSTRUCTION Total depth drilled5 7ft. Well finished to5 7ft.	Note: Measure all depths	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter		Wgt./Rating (Ibs/sch no	
Well finished to 5.7 ft.	Single/Inner Casing	0	32	6	Soleand	19.H	
Borehole diameter: <u> O</u> in. Topin. Bottomio_in.	Middle Casing (for triple cased wells only)						
Well was finished: above grade	Outer Casing (largest diameter)	0	20	10	Steel.	sch 40	
flush mounted	Open Hole or Screen (No. Used)	32	57	6	open hole		
If finished above grade, casing height (stick up) above land surface ft.	Blank Casings (No. Used)	<i>.</i>					
Was-steel protective casing installed? ☐Yes ☐ No	Tail Piece					*	
Static water level after drilling ft. Water level was measured using	Gravel Pack	.م					
Well was developed for hours	Grout	\cap	32	an	Neat Cement Bentonite	<u> </u> k	
at gpm	G	routing M	ethod	Pu	marel		
Method of development	C	rilling Me	thod		r Vote	· _ · · · · · · · · · · · · · · · · · ·	
Was permanent pumping equipment installe	d? ∐Yes XNo 🚬	[
Pump capacity gpm Pump type:		GEOLOGIC LOG Note each depth where water was encountered in consolidated formations.					
Drilling Fluid Type	of Rig <u>intu</u>	<u></u>	5' 10	Mcreti]	Base		
Health and Safety Plan submitted?		.5-	6' SO	mel /st	+		
Level of Protection used on site (circle one)	None D C B A	6-9' S. H/clay 9-17' Brunswick Shall					
l certify that I have constructed the a accordance with all well permit requ State rules and regu	irements and applicable						
Drilling Company		17-9	57' <u>S</u>	A.A.			
Well Driller (Print) Douglis My			(NAD	83 HORIZ	LL LOCATION ONTAL DATUM		
Driller's Signature	huguch		STATE PLAN	E COORD	INATE IN US SUR		
Registration No	Date 615103	NOR	THING:		_ EASTING:)R LONGITUDE:	0	

actorna fe 法国际法院部署 DWR-133M STATE OF NEW JERSEY 2/00 DEPARTMENT OF ENVIRONMENTAL PROTECTION 5... - }_5 TRENTON, NJ MONITORING WELL PERMIT Permit No Mail To: NJDEP VALID ONLY AFTER APPROVAL BY THE D.E.P. BURBAU OF WATER ALLOCATION **PO BOX 426** COORD # TRENTON, NJ 08625-0426 Driller Owner) Address OC Address TCOCO Diameter Proposed Name of Facility []] Depth of Well(s) of Well(s) Inche # of Wolls Will pumping equipment 1.1% Address Applied for (max. 10) vesÜl be utilized? NO Type of Well If Yes, give pu cipacity ciliulative GPM (see reverse) LOCATION OF WEL ang ing pa Lot# Block # viunicipality County Draw sketch of well(s) nearest roads, buildings, etc. with NIa marked distances in feet. Each well MUST be labeled State Atlas Map No. with a name and/or number on the sketch. nw 320 Q toxalozon No. Cuib of Grade ave. 575 8 1 2 3 and 425 to plaset g \sim 4 5 6 . . . 0 0 7 5 7 8 9 Ø MQ:n FOR MONITORING WELLS, RECOVERY WELLS, OR PREZOMETERS, THE FOLLOWING MUST BE COMPLETED BY THE APPLICANT. PLEASE INDICATE WHY THE WELLS ARE BEING INSTALLED: This Space for Approval Stamp Spill Site ISRA Site WELL PERMIT APPROVED Ē CERCLA (Superfund) Site N.J.D.E.P. **RCRA** Site CASE I.D. Number Underground Storage Tank Site JUL 19 2002 **Operational Ground Water Permit Site** Preticatment and Residuals Site П Water and Hazardous Waste Enforcement Case Water Supply Aquifer Test Observation Well П BUREAU OF WATER ALLOCATION Other (explain) FOR El Issuance of this permit is subject to the conditions attached. (see next page) The well(s) may not be completed with more than 25 feet of total screen or uncased borehole. D.E.P. For monitoring purposes only USE П SEE REVERSE SIDE FOR IMPORTANT PROVISIONS PERTAINING TO THIS PERMIT. with N.J.S.A.58:4A-14, application is made for a permit to drill a well as described above In compliance Registration No. 12 Date Signature of Driller Signature of Property Owner

			an an the second se		<u>a y mang kang kang kang kang kang kang kang k</u>	i tradiciana (III fichiciana parta-disena)
DWR-138 M	Jersey Department of I Bureau of Wate MONITORING W	Environn ar Allocai	iental Prote	ction	: 9 ⁶ . S	
	MONITORING W	ELL H	ECORD Well-Per	nit No	26 - 65218	•, *
••••••••••••••••••••••••••••••••••••••					tes <u>6</u> ;0;	
OWNER IDENTIFICATION - Owner	NEDA C./O SHAW CROUT	P INC				3
Address	R AVE					<u>~</u>
City	State	<u>NJ</u>		<u> </u>		
WELL LOCATION - If not the same as ow County	ner please give address. MunicipalityROCHE	Owner LE PAR	s Well No <u>к_т</u> Lo	 t No	<u>340</u> / <u>A</u> Block N	10. <u>N/A</u>
Address <u>GROVE AVENUE</u>					I STARTED	12102
TYPE OF WELL (as per Well Permit Cate Regulatory Program Requiring Well	egories) <u>MONITORIN</u>	3	DAT	E WELL C	OMPLETED	16/02
CONSULTING FIRM/FIELD SUPERVISC		•	•		Tele. #	
WELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (ft.)		Diameter	· #	Wgt./Rating (lbs/sch no.)
Total depth drilled <u>53</u> ft. Well finished to <u>53</u> ft.	Single/Inner Casing	+2	28	(0	Steo	19H
Borehole diameter: Top in. Bottom in.	Middle Casing (for triple cased wells only)		00		<u> </u>	
Bottom in. Well was finished: Mabove grade	Outer Casing (largest diameter)	Ċ	18	10	Stead	sch40
flush mounted	Open Hole or Screen (No. Used)	28	53	6	Benjoc	k
up) above land surface ft.	Blank Casings (No. Used)					
Was steel protective casing installed?	Tail Piece					
Static water level after drilling ft.	Gravel Pack				<u></u>	
Water level was measured using Well was developed for hours	Grout	0	· 28	ann	Neat Cement Bentonite	
at gpm	G	routing M	ethod	Pre	esoure_	
Method of development	D	rilling Me		<u> </u>	5 Rotary	. <u></u>
Was permanent pumping equipment installed	l? □Yes 🕅 No	[GEOLOG		
Pump capacity gpm Pump type:		Note e format			as encountered in	consolidated
Drilling Fluid Type	of Rig_ <u>LRTU</u> W	0-1	<u> </u>	ushen	stone -r	nulch
Health and Safety Plan submitted? 🙇 Yes [No	<u>lo -1</u>	8 F	c sar	N. S. 1+ C.	74
Level of Protection used on site (circle one)	None DC B A	18 -	53 1	Senroc	<u>k- 5:1+5</u>	anostanc
l certify that I have constructed the a accordance with all well permit requi State rules and regu	rements and applicable	` [
Drilling Company B_ DRITLING,	INC					
Well Driller (Print) Dovglas M	yerch n	۸. ۸.	(NAD)	83 HORIZ	LL LOCATION ONTAL DATUM NATE IN US SURV	
Driller's Signature	reuhin fa				EASTING:	·
Registration No	Date 912/102	LATITUD			DR LONGITUDE:	0 1
COPIES: White - DEF	Canary - Driller	Pink - (Owner	Goldenroo	d - Health Dept.	-

APPENDIX C

Boring Logs and Monitoring Well Construction Logs - RI Addendum Wells

APPENDIX C.1

.....

BORING LOGS FOR RI ADDENDUM WELLS

	DISTRICT				HOLE NUMBER		
	New York District				MW-27D		
. COMPANY NAME	SCONTRACTOR			SHEET SHEETS			
tone & Webster	B & B Drilling				1 OF 3		
. PROJECT		4. LOCATION	· · · · ·				
faywood		MISS					
. NAME OF DRILLER		6. MANUFACTU	JRERS DESIGNATI	ON OF DRILL			
loug Myerchin	T-4 Air Rotary F	Rig					
. SIZE AND TYPES OF DRILLING	8. HOLE LOCA			······································			
ND SAMPLING EQUIPMENT 10" Air Hammer	Apprximately 20	0' NE of MW-26D					
6" Air Hammer		9. SURFACE E			······································		
		62,68					
		10. DATE STAF			11. DATE COMPLETED		
		08/06/20			08/09/2002		
2. OVERBURDEN THICKNESS 20'			OUNDWATER ENC	DUNTERED			
		Approx. 28-30' h					
3. DEPTH DRILLED INTO ROCK 35.5'				SED TIME AFTER I			
S. DEL THEMELED INTO ROOK 00.0		18.45 (8-14-02)					
4. TOTAL DEPTH OF HOLE 58.5'			TER LEVEL MEASI	IRMENTS (SPECIE			
TOTAL DEFTH OF HOLE 30.9		DI. OTHER WA	TEN LEVEL MEAG		•7		
8. GEOTECHNICAL SAMPLES DISTURBED	UNDISTURBED			XES			
	UNDIGTURBED	19. TOTAL NUMBER OF CORE BOXES					
NO	voc	NO METALS	OTHER (SPECIF	<u></u>	21. CORE RECOVERY %		
		METALS	UTHER (SPECIF	' <i>1</i>	LI. OUNE RECOVERY %		
Broundwater 2. DISPOSITION OF HOLE BACKFILLED	Yes MONITORING W	/ELL OTHER (SPECIFY) SIGNATURE OF INSPECTO					
2. DISPOSITION OF HOLE BACKFILLED							
I	Stickup						
OCATION SKETCH / COMMENTS				SCALE: 1" = 65'			
		1 JIT Mar	11	y are -	29/2964		
	A REAL PROPERTY AND A REAL	-111 T	10 million 10 million	3 3 3 3 3 3			
		Xes		$\langle \rangle$			
		桥 输	N-3D	L2			
		任王	N-30	L.			
Misson	B	在新	N SD	L.			
Misson		称。這	N 3D		200		
MISSO		他最	N730		200		
Misson		た振	NY AD		200		
Misson	影	の長端			200		
Misson			N 3D		200		
MISSON					200		
Misson	MWY-						
MISSOT		の記言の		$\overline{\mathcal{G}}$			
MISSOT				$\overline{\mathcal{G}}$			
MISSOT	<u>e</u> ska			$\overline{\mathcal{G}}$			
MISSOT	<u>e</u> ska			MNY-2			
MISSOT	<u>e</u> ska			MNY-2			
MISSOT	<u>e</u> ska		N 30	MNY-2			
MISSOT	<u>e</u> ska		MW-34	MNY-2			
MISSOT	<u>e</u> ska			MNY-2			
MISSOT	<u>e</u> ska		MW-34	MNY-2			
ROJECT	<u>e</u> ska		MW-34	MNY-2			

	Maywoo	IG LOG (CONTINUATION SHEET)	INSPECTOR	Sal Kokol	HOLE NUMBER MW-27D		
9201	maywou	54	ANDREGIUK		SHEET SHEETS		
			FIELD	GEOTECH	ANALYTICAL		2 OF 3
LEV.	DEPTH	DESCRIPTION OF MATERIALS	SCREENING RESULTS	SAMPLE OR CORE BOX #	SAMPLE #	BLOW COUNTS	REMARKS
	0	Fill comprised of Gray, Brown, Black Sand, Silt, Gravel Sand is Coarse					
	5'	Brown, tan coarse to medium fine Sand & Silt					
		Occassional Gray/White clumps of Clay					Possibly ash material
	10'						
	15'	Brown/Black silty Sand w/gray clumps					Moisture on rods noted
	10						
	20'	Top of Rock @ 20'					
	25'	Red/brown siltstone w/friable standstone					air hammer rate of 1 ft/2 m
	30'						
	35'						Casing set @ 33.5' Open hole to 58.5'
	40'	Red/Brown medium to fine grained sandstone & siltstone					
	45'						

ITRW							HOLE NUMBER MW-27D	
ROJECT MAYWOOD			INSPECTOR	Sal Kokol	SHEET SHEETS			
<u> </u>			FIELD	GEOTECH	SHEET SHEETS 3 OF 3			
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	SCREENING	SAMPLE OR	ANALYTICAL SAMPLE #	BLOW COUNTS	REMARKS	
			RESULTS	CORE BOX #				
	45'							
						ļ		
	50'			1				
	1							
	55'							
)				
		ЕОВ @ 58.5'						
]		
	60'							
	1							
	65'							
	l			1				
	70'			1				
	l			ļ				
	75'							
	Į		l			ļ,		
	80'							
	ŀ							
			l					
	85'				ļ			
	1							
	90'							
DJECT	MAYWOOD	FUSRAP					HOLE NUMBER MW-27D	

	G	DISTRICT				HOLE NUMBER	
		New York District				MW-28D	
1. COMPANY NAME		2. DRILLING SUE	CONTRACTOR			SHEET SHE	
Stone & Webster		B & B Drilling	· ·····			1 OF	
3. PROJECT			4. LOCATION				
Maywood		<u></u>	MISS				
5. NAME OF DRILLER			6. MANUFACTURERS DESIGNATION OF DRILL				
Doug Myerchin		····-	T-4 Air Rotary Rig				
7. SIZE AND TYPES OF DRILLING			8. HOLE LOCAT	ION			
AND SAMPLING EQUIPMENT	ND SAMPLING EQUIPMENT 10" Air Hammer 6" Air Hammer		Apprximately 160' East of MW-26D 9, SURFACE ELEVATION				
		····	61.9	<u></u>			
			10. DATE STAR	TED		11. DATE COMPLETEE	
			08/07/200	2		08/12/2002	
12. OVERBURDEN THICKNESS	20'		15. DEPTH GRO	UNDWATER ENCO	UNTERED		
			Approx. 47' bgs i	n bedrock			
13. DEPTH DRILLED INTO ROCK	37'		16. DEPTH TO V	VATER AND ELAPS	ED TIME AFTER	DRILLINGCOMPLETED	
			18.45 (8-14-02)				
14. TOTAL DEPTH OF HOLE	57'		17. OTHER WAT	FER LEVEL MEASU	RMENTS (SPECIF	Ϋ́)	
18. GEOTECHNICAL SAMPLES	DISTURBED	UNDISTURBED	19. TOTAL NUM	BER OF CORE BO>	(ES		
No			No		····		
20. SAMPLES FOR CHEMICAL ANA	LYSIS	voc	METALS	OTHER (SPECIF)	0	21. CORE RECOVERY	
Groundwater		Yes	L				
LOCATION SKETCH / COMMENTS		Stickup		<u> </u>	SCALE: 1" = 65'	<u> </u>	
			1		7 WU .	2*07%	
	-	and the second second second		Station St. Sec. 3	A Contract	7968 a / 1	
10	and the second se						
(°			和言語		L 7	****	
			1 mi	VEBD	L	7Æ	
				V 3D	L.		
			MW	V aD			
	lisson)			V 30			
	IISSOT		M	VI SUD			
			たいで見た	VISU VISU		200	
	IISEO1		たいで	VISD VISD	X	200	
			を見てい	V 3D			
				V 3D 0 1 1 1 1 2 1 2 1 2 1 2	No.		
				V 3D 			
		3 68 14		V-30 	MAN AND AND AND AND AND AND AND AND AND A		
				V 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		3 <u> </u>		V 30 1W-270			
		3 <u> </u>		Ź	MW-2		
		3 <u> </u>		V 3D AVV-27D	MW-2		
		3 <u> </u>		Ź	MW-2		
		3 <u> </u>		MW-340	MW-2		
		3 <u> </u>		Ź	MW-2		

.

T Maywo	NG LOG (CONTINUATION SHEET)	INSPECTOR	Sal Kokol			HOLE NUMBER MW-28D
a waywa	500	INSPECIOR	Sal Kokol			SHEET SHEETS
		FIELD	GEOTECH	ANALYTICAL	1	2 OF 2
. DEPTH	DESCRIPTION OF MATERIALS	SCREENING	SAMPLE OR	SAMPLE #	BLOW COUNTS	REMARKS
		RESULTS	CORE BOX #	Crum LL I		REMARKS
0	Ground Surface	Reducto	COME BOX#		<u> </u>	
ľ	Fill: Crushed rock, mulch, sand,					
	silt.					
	500.	Ì			1	
5'	Overburden					
5						
	Tan/brown cmf SAND, trace					
	silt, trace gravel.					
1						
10'	Black/Brown SAND, w/clay clumps				1	
		1				
15'	Red-brown dense sand & silt, tr.			1		
	gravel					
1		ļ		ļ	1	
20'	Top of rock @ 20' bgs					
						Surfactant odor detec
						22-32 feet bgs
	Red/brown medium to fine					
25'	grained SS/occasional silt stone					
30'	fragments.					
1.00	n againe na					
						Casing set @ 32' bgs
	4					Open hole to 57'
35'						
1						
40'	Red/Brown medium to fine grained					
1	sandstone & siltstone	1	l III]		1
		1		l		
				ľ		
45'						
70						
						First water @ 47'
]				1 11 31 WOLET (U) 47
				1		
50'						
00						
[
55'						
]		
	E.O.B @ 57'					
	1			I .		
		I I				

HTRW DRILLING LOG	DISTRICT			HOLE NUMBER		
	New York District			MW-31D		
1. COMPANY NAME	2. DRILLING SUE			SHEET SHEETS		
Shaw E&I	B & B Drilling			1 OF 2		
3. PROJECT		4. LOCATION				
Maywood						
5. NAME OF DRILLER		37 Grove Avenue, Rochelle Park 6. MANUFACTURERS DESIGNATION OF DRILL				
Doug Myerchin		T-4 Air Rotary R				
SIZE AND TYPES OF DRILLING		8. HOLE LOCAT				
AND SAMPLING EQUIPMENT 10" Air Hamme			75' southwest of B38W17B			
6" Air Hammer	·	9. SURFACE EL	EVATION			
		49.08				
		10. DATE STAR		11. DATE COMPLETED		
		02/12/200		02/14/2003		
2. OVERBURDEN THICKNESS 10'		15. DEPTH GRO	OUNDWATER ENCOUNTERED			
······		8' bgs (2-14-03)	<u> </u>	<u></u>		
3. DEPTH DRILLED INTO ROCK 35'		16. DEPTH TO	WATER AND ELAPSED TIME AF	TER DRILLINGCOMPLETED		
		6.70 (2/21/03)				
14. TOTAL DEPTH OF HOLE 45'		17. OTHER WA	TER LEVEL MEASURMENTS (SI	PECIFY)		
18. GEOTECHNICAL SAMPLES DISTURBED	UNDISTURBED	19. TOTAL NUM	IBER OF CORE BOXES			
20. SAMPLES FOR CHEMICAL ANALYSIS	voc	METALS	OTHER (SPECIFY)	21. CORE RECOVERY %		
Groundwater	Yes	the line of				
siounuwates	163					
2 DISPOSITION OF HOLE BACKELLED	MONITORING W	Elt	OTHER (SPECIEY)	SIGNATURE OF INSPECTOR		
<u> </u>	MONITORING W Flushmount	ELL	OTHER (SPECIFY) SCALE: 1"	SIGNATURE OF INSPECTOR		
22. DISPOSITION OF HOLE BACKFILLED	1		SCALE: 1"			
B38W15D	1		SCALE: 1"	= 80'		
B38W15D	Flushmount		MISSO5B BRPS 4-32D O	= 80'		

ITRW	DRILLIN	IG LOG (CONTINUATION SHEET)					HOLE NUMBER MW-31D
ROJECT	Maywoo	od	INSPECTOR	Sal Kokol			
			FIELD	0507501	ANALYTICAL	<u> </u>	SHEET SHEETS
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	SCREENING RESULTS	GEOTECH SAMPLE OR CORE BOX #	SAMPLE #	BLOW COUNTS	2 OF 2 REMARKS
	0	Concrete and subbase veneer Brown/Reddish Brown, coarse to medium Sand, little silt, little gravel w/rock frag.					
	5'						
	10'	medium to coarse Sand, gravel with tr. Silt and clay Top of rock @ 12' bgs Dark Brown/Red medium to fine grained sandstone					Frankura azadusina urakas @ 47140
	20'						Fracture producing water @ 17'-18' 6-in. Casing set @ 20' bgs Open hole from 20'-45' bgs
	30'						Fracture producing water @ 32'-35' Well producing significant water from 35'-45'
	40						
		E.O.B @ 45'					
	50						
OJECT	MAYWOOD	FUSRAP					HOLE NUMBER MW-31D

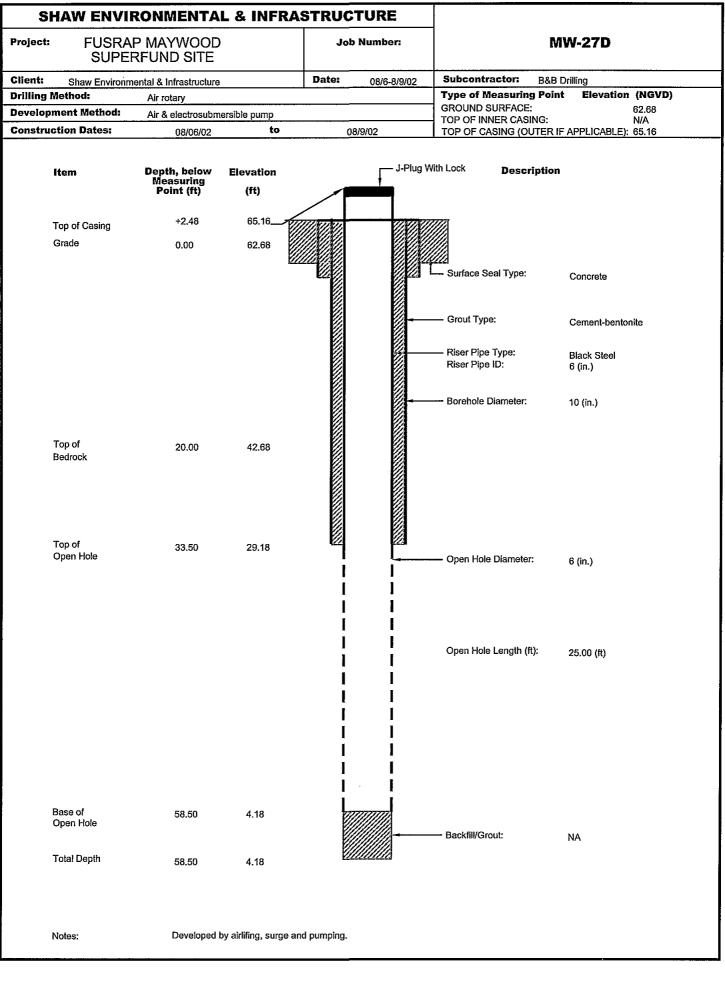
			HOLE NUMBER				
	New York Distri	ct		MW-32D			
I. COMPANY NAME	2. DRILLING SI	JECONTRACTOR	,,,,,,_,_,_,_,_,_,_,_,	SHEET SHEETS			
Shaw E&I	B & B Drilling			1 OF 2			
3. PROJECT		4. LOCATION					
Maywood		Rochelle Park					
5. NAME OF DRILLER			URERS DESIGNATION OF DRIL	······································			
Doug Myerchin							
. SIZE AND TYPES OF DRILLING			T-4 Air Rotary Rig 8. HOLE LOCATION				
	Hammer		50 ' northwest of B38W17B				
	lammer	9. SURFACE E					
		49.18	LEVATION				
<u> </u>							
		10. DATE STA	RIED	11. DATE COMPLETED			
		05/02/2003		05/05/2003			
2. OVERBURDEN THICKNESS 18'			ROUNDWATER ENCOUNTERED	J			
	·	8' bgs					
3. DEPTH DRILLED INTO ROCK 39'		WATER AND ELAPSED TIME A	AF I ER DRILLINGCOMPLETED				
	<u> </u>	6.10 (5/5/03)					
4. TOTAL DEPTH OF HOLE 57'		17. OTHER W	ATER LEVEL MEASURMENTS (SPECIFY)			
		40 70711					
18. GEOTECHNICAL SAMPLES DISTUR	RBED UNDISTURBED		MBER OF CORE BOXES				
		No					
20. SAMPLES FOR CHEMICAL ANALYSIS	VOC	METALS	OTHER (SPECIFY)	21. CORE RECOVERY %			
Groundwater	Yes						
2. DISPOSITION OF HOLE BACKF	ILLED MONITORING	VELL	OTHER (SPECIFY)	SIGNATURE OF INSPECTOR			
	Flushmount		SCALE: 1				
	SD C			" = 80" B			
OCATION SKETCH / COMMENTS	SD C	#	SCALE: 1	" = 80" B			
	SD O	#	MISS05B	" = 80" B			

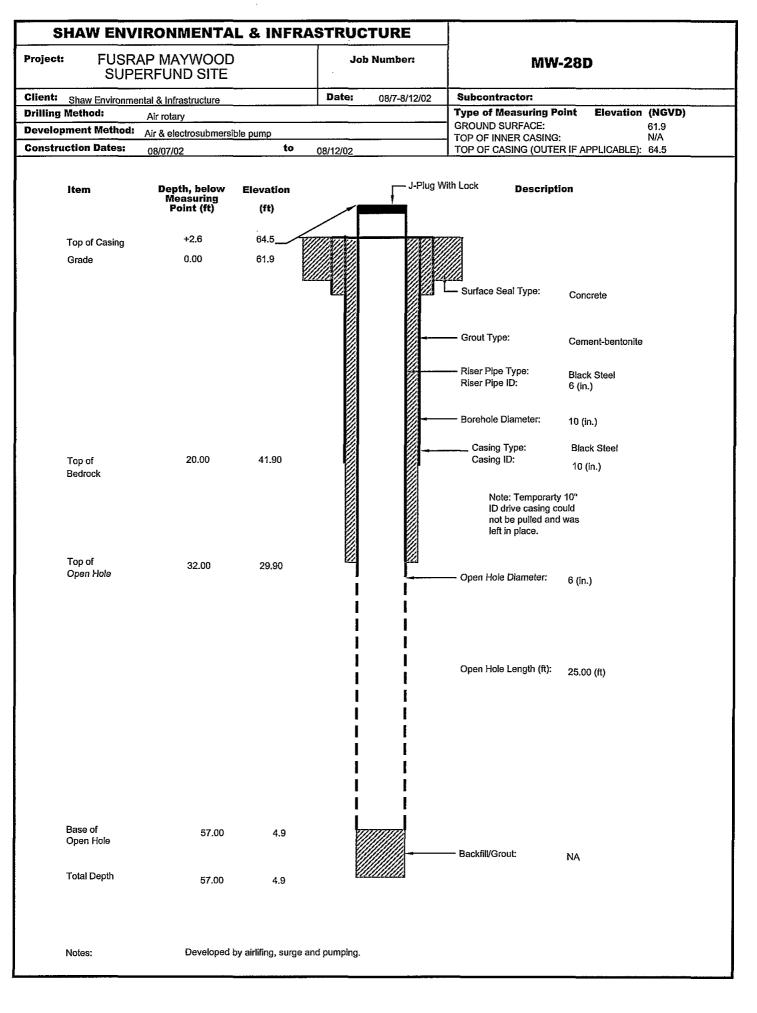
HTRW	DRILLIN	IG LOG (CONTINUATION SHEET)					HOLE NUMBER MW-32D
	Maywoo		INSPECTOR	Rob DeMott & Kevin	Cote		
			FIELD	GEOTECH	ANALYTICAL		SHEET SHEETS 2 OF 2
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	SCREENING RESULTS	SAMPLE OR CORE BOX #	SAMPLE #	BLOW COUNTS	REMARKS
	0	Concrete and sub-base sand to 18" Dry, Red-brown fine to medium sand and silt					
		Wet, medium to coarse red/brown sand w/some silt					
	20	Top of Rock @ 18' Red-brown siltstone and fine-grained sandstone					water encountered @ 20'
	30						Fracture @ 25' 6" casing set @ 32' bgs Open hole to 57'
							From 35'-45' advanced approx. 1'/min.
	40						
	50						Fracture @ 47' 50' -55' advanced approx. 1'/2 min.
	60	EOB @ 57'					
PROJECT	MAYWOOD	FUSRAP					HOLE NUMBER MW-32D

	DISTRICT			HOLE NUMBER			
	New York District	t			MW-33D		
. COMPANY NAME	2. DRILLING SUI	BCONTRACTOR			SHEET SHEET	3	
Stone & Webster	B & B Drilling				1 OF	3	
. PROJECT		4. LOCATION					
/laywood		MISS					
. NAME OF DRILLER		6. MANUFACTU	RERS DESIGNATI	ON OF DRILL			
Doug Myerchin		T-4 Air Rotary R	ig				
. SIZE AND TYPES OF DRILLING		8. HOLE LOCAT	ION				
ND SAMPLING EQUIPMENT 10" Air Har	nmer	NE Corner of Te	mp. Building				
6" Air Ham	mer	9. SURFACE EL	EVATION		<u> </u>		
·······		59.44					
	······	10. DATE STAR	TED		11. DATE COMPLETED		
<u> </u>		09/10/200	2		09/12/2002		
2. OVERBURDEN THICKNESS 20'		UNDWATER ENC	OUNTERED				
······································	Apprximately 16						
3. DEPTH DRILLED INTO ROCK 48'			SED TIME AFTER I	DRILLINGCOMPLETED			
· · · · · · · · · · · · · · · · · · ·	12.70 (9/13/02)						
4. TOTAL DEPTH OF HOLE 68'		TER LEVEL MEAS	IRMENTS (SPECIF	Υ)			
			·				
18. GEOTECHNICAL SAMPLES DISTURBE	19. TOTAL NUM	BER OF CORE BO	XES				
No	D UNDISTURBED	None					
20. SAMPLES FOR CHEMICAL ANALYSIS	VOC	METALS	OTHER (SPECI	Y)	21. CORE RECOVERY %		
Groundwater	Yes						
2. DISPOSITION OF HOLE BACKFILL	ED MONITORING W	ELL OTHER (SPECIFY) SIGNATURE OF INSPECTOR					
	Stickup		<u> </u>				
OCATION SKETCH / COMMENTS				SCALE: 1" = 65'			
					1 1 1	:	
		1/1-5					
				7.9			
		1		27			
		EMV					
		(MV					
Miss	18	A MA			200		
Miss	18				200		
					2005		
Missi					200		
Missio			130 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200		
Mise			130 () () () () () () () () () () () () ()		20D		
MISSO			130 (0) (W-270		20D		
MISSO			130 10 10 10 10 10				
Misso	1B 7B MW-26D		130 NW-270				
Misso	MW-26D		130 W-270				
Misso							
MISSO	MW-26D		130 NW-270 NW-340				
Missio	MW-26D						
MISSO	MW-26D		/Q				
	MW-26D						
PROJECT	MW-26D		/Q		20D		

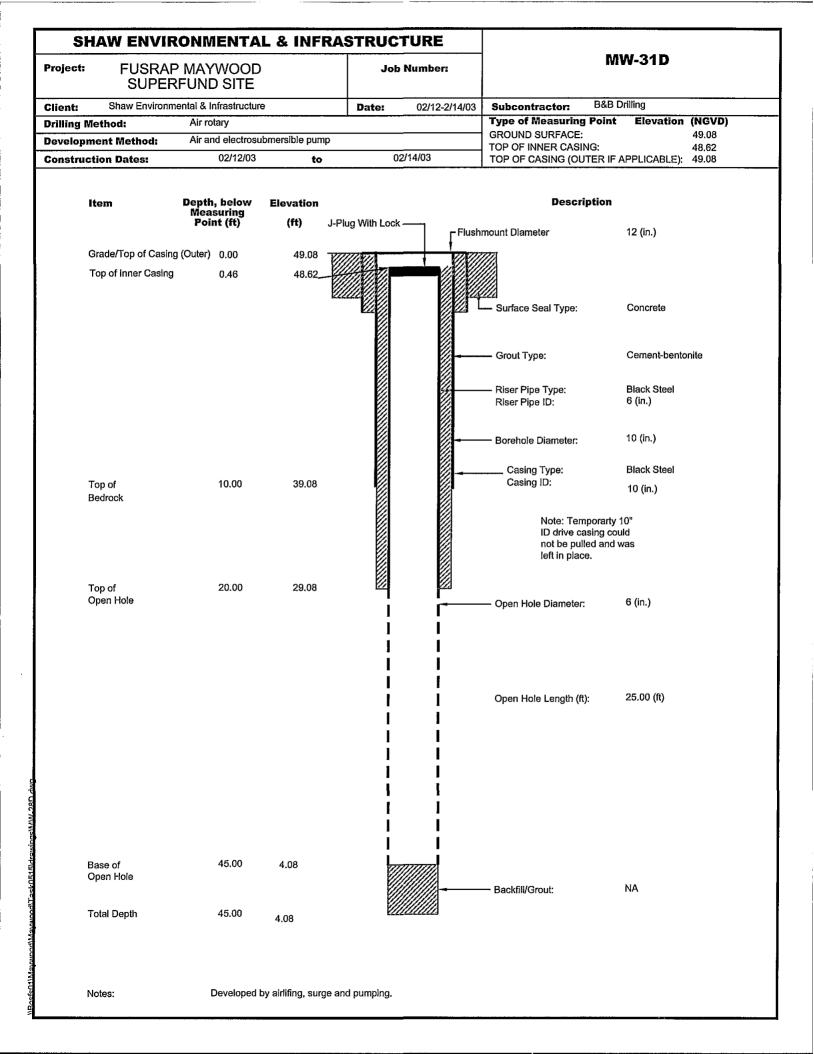
	Maywo	IG LOG (CONTINUATION SHEET)	MODEOTOD	Cal Kakal			HOLE NUMBER MW-33D
UECT	waywo	uu .	INSPECTOR	Sal Kokol			SHEET SHEETS
	1	l	FIELD	GEOTECH	ANALYTICAL	<u>۱</u>	2 OF 3
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	SCREENING	SAMPLE OR	SAMPLE #	BLOW COUNTS	REMARKS
			RESULTS	CORE BOX #			
	0	Ground Surface					
		Fill: Gravel, crushed rock.					
	5'						
	5						
	ţ						
		Color of sed. Black from 8'-21'					
	10'	Brown cmf SAND,silt, wood					
		fragments from 10'-20'					Wood may be
							related to roots or
							old rail road ties.
	15'						
							Moist at 16'
	20'	Fractured Bedrock at 20'		l	ļ		Top of Rock
	25'	Competent bedrock at 25'					Upper bedrock
		Redish brown medium to fine					section appears
		grained SS					fractured.
	201						
	30'	Soft/fractured medium to fine grained					
		sandstone, some siltstone (31'-38')					
ł							
	ľ		{		l	}	
	35'						
							Set 6" ID casing in competent
	40'	Soft medium to fine grained Sandstone					rock @ 38'
		Solution to the graned calibratione		-			
		L			L	l	
DJECT							HOLE NUMBER
	MAYWOOD	FUSRAP					MW-33D

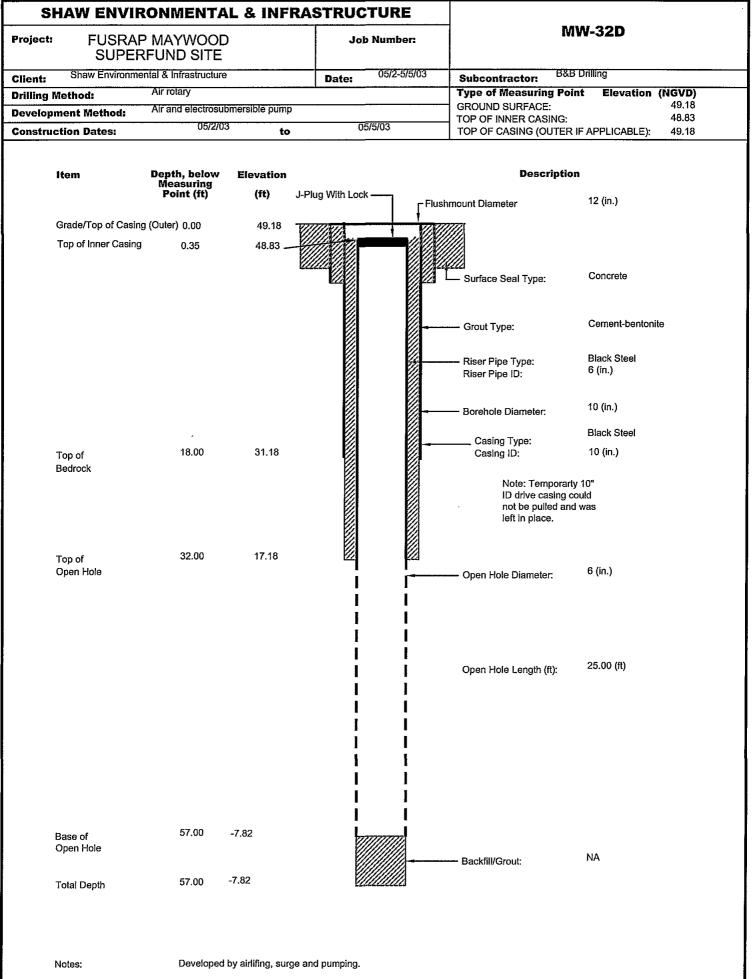
HTRW	DRILLIN	IG LOG (CONTINUATION SHEET)					HOLE NUMBER MW-33D
	Maywoo		INSPECTOR	Sal Kokol			
		1	FIELD	GEOTECH	ANALYTICAL		SHEET SHEETS 3 OF 3
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	SCREENING	SAMPLE OR CORE BOX #	SAMPLE #	BLOW COUNTS	REMARKS
	45'	Soft medium to fine grained Sandstone					
	50'	Soft fine Sandstone & Siltstone					Fractured/soft fine SS/silt stone to 68'
	55'						Installed 2" PVC screen/ filter pack from 43 to 68'
	60'	Soft fine Sandstone & Siltstone					
	65'	Soft fine Sandstone & Siltstone					
		E.O.B. @ 68'					
	70'						
		ĸ					
ROJECT	MAYWOOD	FUSRAP					HOLE NUMBER MW-33D

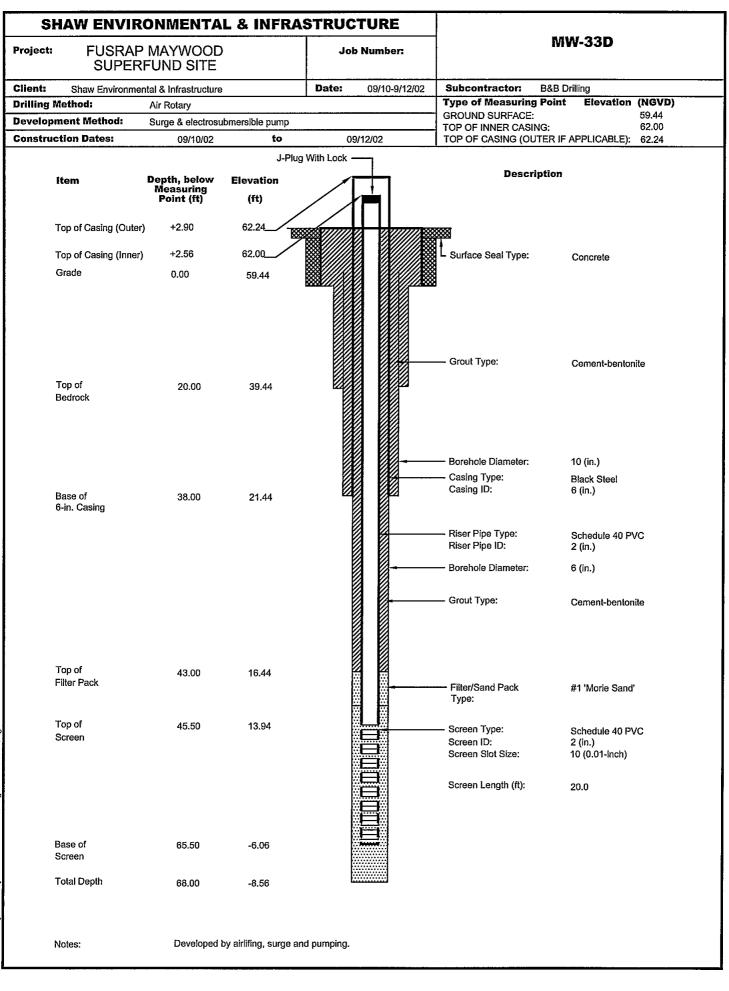

HTRW DRILLING LOG	DISTRICT				HOLE NUMBER	
	New York				MW-34D	
1. COMPANY NAME	2. DRILLING SUB	CONTRACTOR			SHEET SI	HEETS
Stone & Webster	B & B Drilling				1 OF	2
3. PROJECT		4. LOCATION				
Maywood		MISS				
5. NAME OF DRILLER		6. MANUFACTU	RERS DESIGNATIO	N OF DRILL		
Doug Myerchin		T-4 Air Rotary Ri	g		······	
7. SIZE AND TYPES OF DRILLING		8. HOLE LOCATI	ION			
AND SAMPLING EQUIPMENT 10" Air Hammer		Apprximately 60'	East of MW-26D			
6" Air Hammer		9, SURFACE ELI	EVATION			
		58.3	5			
		10. DATE START	TED		11. DATE COMPLET	ED
		09/12/2002 09/16/2002				
12. OVERBURDEN THICKNESS 18'		15. DEPTH GROUNDWATER ENCOUNTERED				
		Apprximately 14'				
13. DEPTH DRILLED INTO ROCK 35'		16. DEPTH TO WATER AND ELAPSED TIME AFTER DRILLINGCOMPLETED				D
		10.04 (9/17/02)				
14. TOTAL DEPTH OF HOLE 53'		17. OTHER WATER LEVEL MEASURMENTS (SPECIFY)				
18. GEOTECHNICAL SAMPLES DISTURBED	UNDISTURBED	19. TOTAL NUM	BER OF CORE BO	ES		
20. SAMPLES FOR CHEMICAL ANALYSIS	voc	METALS	OTHER (SPECIF)	<u>γ</u>	21. CORE RECOVER	RY %
GROUNDWATER	Yes			,		
22. DISPOSITION OF HOLE BACKFILLED	MONITORING WI	L ELL	OTHER (SPECIFY	<u>^</u>	SIGNATURE OF INS	PECTOR
	Stickup					
LOCATION SKETCH / COMMENTS	. <u>.</u>			SCALE: 1' = 65'	· · · ·	
		//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. 117	W. m. 3		
				/ ~%	874 2	
	2. see //	Main	an S	Seiter I a	/ 3	
		L WINA	AN			
/ Ancenio						
	34 II			IANS	inn [*]	
	ST N	and an and a second	AND THE REAL PROPERTY.			
	9 AL	χ_{L}				
	7 1.46	/ /	ພ∕ີ	1.485		
	<776) \ `\ni	N-270	AL Y		
	75 1 D		7 19 M	XXX I	36.0	
	™N_33	D / 42	may hand	1 > 1	× T	
MISSOTB	SS 191	15-4	1 AN	Kinner		
	N-26D	6 [/ s	<u> </u>	1,9 <i>%-4</i> 0L	N \	
TIME SAL		1736	100000	$\mathbb{V}^{\mathbb{V}}$		
22 - Miller		ブ [28]		Mar Ann	AV	
	PZ-9		N-346	STATES/	17X 🗆	
	. NY .	s p <u>ennara</u>				
• • • •	s · Pos			787	<u>~</u>	
	3. 11	B38W	25D~			
PROJECT	1 [<u> </u>	. <u>.</u>	L	HOLE NUMBER	i
MAYWOOD FUSRAP						N-34D
					M	N-34D


HTRW		G LOG (CONTINUATION SHEET)	[HOLE NUMBER	MW-34D
	Maywoo		INSPECTOR	Sal Kokol			NOLL NOMBER	
							SHEET	SHEETS
			FIELD	GEOTECH	ANALYTICAL		2 OF	
ELEV.	DEPTH	DESCRIPTION OF MATERIALS	SCREENING	SAMPLE OR		BLOW COUNTS		MARKS
			RESULTS	CORE BOX #				
		Ground Surface Fill: Crushed rock, mulch, sand, silt.						
		Reddish brown cmf SAND, little silt, trace gravel, trace clay.						
	10'							
	15'							
		Gravel/weathered rock interface - angular c to med gravel (sandstone fragments) mixed w/sand & some silt Competent bedrock at 19' Red/Dk. Brn m-f grained Sandstone, possibly mixed w/silty Sandstone at different horizons					Top of Roc	k @ 18'
		m-f Sandstone with finer sandy & silty horizons - finer w/depth					Six-inch ca	sing to 28'
	35'						Open rock	hole to 53'
	45'							
	55'	Silt and shale chips at 51'-52' E.O.B @53'						
		MAYWOOD FUSRAP					HOLE NUMBER	

APPENDIX C.2


.....


MONITORING WELL CONSTRUCTION FORMS FOR RI ADDENDUM WELLS



\\Bosfs01\\Maywood\\Maywood\Task0515\drawings\\MW-28D.dwg

\\Bosfs01\\Maywood\\Maywood\Task0515\drawings\BRPW-33D.dwg

APPENDIX D

Well Development Forms

Appendix D Summary of Water Purged During Well Development and Specific Capacity Testing

	Volume Evacuated (gallon)	Note	Pump Rate (gpm)	Activity	Development Volume Required	Date of Measurement
OOD SUPERFUND SITE,	65		0.25 - 0.5	Well Development	190	8/12/2002
MW-27D	65		0.25 - 0.5	Well Development		8/13/2003
MW-27D	40		0.25 - 0.5	Well Development		8/14/2002
MW-27D	20		0.25 - 0.5	Well Development		8/15/2002
MW-27D	5.3		0.04 - 0.055	Specific Capacity Test		8/15/2002
Total Volume Purged	195.3					
MW-28D	8		0.25 - 0.5	Well Development	190	8/12/2002
MW-28D	132		0.25 - 0.5	Well Development	170	8/13/2002
MW-28D	50		0.25 - 0.5	Well Development		8/13/2002
MW-28D MW-28D	20		0.15-0.2	Specific Capacity Test		8/14/2002
Total Volume Purged	210					
MW-31D	125	NFC	12 - 15	Well Development	170	2/14/2003
MW-31D	350		5	Well Development/Specific Capacity		2/21/2003
Total Volume Purged	475					
MW-32D	240		>20	Well Development	230	5/5/2003
MW-32D	400		2.5 - 4	Specific Capacity Test		5/6/2003
Total Volume Purged	640					
MW-33D	65		1.25	Well Development	200(1)/22(2)	9/13/2002
MW-33D MW-33D	115		1.25	Well Development	200(1)/22(2)	9/15/2002
MW-33D MW-33D	99		0.8 - 1	Specific Capacity Test		9/16/2002
Total Volume Purged	279		0.8 - 1	Specific Capacity Test		9/10/2002
	150	NEG			100	0/1/0/000
MW-34D	150	NFC	NR	Well Development	190	9/16/2002
MW-34D	55		0.25 - 0.75	Well Development		9/17/2002
MW-34D	60.6		0.375 - 0.5	Specific Capacity Test		9/17/2003
Total Volume Purged	265.6					

Legend -

(1) - MW-33D was initially drilled as a 6-inch open well and completed as 2-inch PVC Screened well.

NR - Not recorded.

NFC - No Field Form Completed for development activity

	TALET MARKET COLOR	nt Procedures	; 			Monitorir	ng Well Install	ation and	W ENV - SOP
·			~	ATT	ACHME	NT G			
STONE	DEVELOP E & WEBS	MENT LOG TER ENGIN) IEERING C	ORP.			WELL	NO. MI	W-27D
PROJEC	т. Л	IAYWO	QOD		SITE:		Page	<u> </u>	of
Project N	10:				Client:				
Contract	or:			······································		· · ·	Ground	d Elevatio	
Start Dat	te/Time:	112/02	Сол	pletion Date/	Time:	<u></u>		The subscription of the local division of the local division of the local division of the local division of the	6"6
Developn	nent Method	/Equipment:	Pum	ping - U	shale.	OUM O			
Logged b	y: S.1	L. c	Wate	r Level (ft bg	ISI: 15.8	5	Protect	ion Level	·····
Pre-develo	pment DTV	V (PVC) (ft):		.3.5	p	TB (PVC) (ft):		IDIS LEVE	l:
Post-dave	lopment DT	W (PVC) (ft):	<u>^</u>	1/A					
Standing V	Veli Volume	(gal) = D^2 (ft)/4 x π x (DT	B-DTW)(ft) x	c 7.48 gal/ft	3 ·}			
		× (DTB-DTW)				\$ 6" 0	<i>1 ⇒63</i>	25	al
						<u> </u>	-	ີ ປີ	
2.5-inch v	vell = 0.25	5 x (DTB-DT)	N)(ft)) ==						
a									
linimum F	Purge Volum	e (gal) (3 wel	l volumes) 🛩	·		<u>9.75</u>			
evelópme	nt Purge/Di	scharge Rate	(gpm):	.5-	.25	DM_	·····		
laximum l	Drawdown (During Purging	3 (ft):	27.0	1 3	1		<u></u>	
PI Quan	tity Purged:		65 4	allan 9					
I Quan sposition	tity Purged: of Purge Wi	ater:	65 g	allon 9		· · · · · · · · · · · · · · · · · · ·			
sposition	of Purge W	ater:	v	allon 9					· · · · · · · · · · · · · · · · · · ·
sposition ours of De	of Purge Wi evelopment:	ater:3.	v	allan 9					· · · · · · · · · · · · · · · · · · ·
sposition ours of De ours of De	of Purge Wi evelopment: econ:	ater:3.	v	allan 9		······································			· · · · · · · · · · · · · · · · · · ·
sposition ours of De	of Purge Wi evelopment: econ:	ater:3.	v	allan 9					
sposition ours of De ours of De ours of Sta	of Purge Wi evelopment: econ:	ater:3.	v	allan 9		· · · · · · · · · · · · · · · · · · ·			
sposition ours of De ours of De	of Purge Wi evelopment: econ: andby: Volume	ater:3.	5 hr s	Temp.	рН	Conductivity	Turbidity		
sposition ours of De ours of De ours of Sta	of Purge Wi evelopment: econ: andby:	DTW (ft)	5 hr s	*	рН	Conductivity (mS/cm)	Turbidity	DO	Remarks
sposition burs of De burs of De burs of Sta Time	of Purge Wi evelopment: con: andby: Volume Purged	DTW (FVC)	5 hr s	Temp.	ρH		Turbidity	DO	Remarks
sposition ours of De ours of De ours of Sta Time	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (PVC) (8.35	5 hr s	Тетр. (°С) —		(mS/cm)		-	Remarks
sposition ours of De ours of De ours of Sta Time	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (PVC) 18.35 31.10	5 hr s	Temp. (°C) 	6.96	(mS/cm) 5.05		-	
sposition burs of De burs of De burs of Sta Time 2:30 3:00 3:20	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (FVC) 18.35 31.10 36.10	5 hr s	Temp. (°C) 15.9 16.1	6.96 7.06	(mS/cm) 5.05 5.01		-48 •60	
sposition burs of De burs of De burs of Sta Time 2:30 3:20 3:20 3:20	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (PVC) 18.35 31.10 36.10 38.90	5 hr s Clarity/ Color	Temp. (°C) 	4.96 7.06 7.18	(mS/cm) 5.05 5.01 4.17		.48 •60 1.08	
sposition ours of De ours of De ours of Sta Time 2:30 3:20 3:20 3:25	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (FVC) 18.35 31.10 36.10 38.90 42.35	5 hr s Clarity/ Color	Temp. (°C) 15.9 16.1 16.8 17.1	6.96 7.06 7.18 7.19	(mS/cm) 5.05 5.01 4.17 4.83	48.2 36 24 10	-48 •60 1.08 •75	
sposition purs of Depurs of Depurs of Depurs of State Time 2:30 3:20 3:20 3:25 :55	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (PVC) 18.35 31.10 36.10 38.90 42.35 44.65	5 hr s Clarity/ Color	Temp. (°C) 15.9 16.1 16.8 17.1 17.4	6.96 7.06 7.18 7.19	(mS/cm) 5.05 5.01 4.17 4.83	48.2 36 24 10	-48 •60 1.08 •75 •56	
sposition purs of Depurs of Depurs of Depurs of State Time 2:30 3:20 3:20 3:55 :30	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (FVC) 18.35 31.10 36.10 38.90 42.35 44.65 45.24	5 hr s Clarity/ Color	Temp. (°C) 15.9 16.1 16.8 12.1 17.4 17.9 17.9	6.96 7.06 7.18 7.19	(mS/cm) 5.05 5.01 4.17 4.83	48.2 36 24 10	-48 -60 1-08 -75 -56 -49	
sposition purs of Depurs of Depurs of Depurs of State Time 2:30 3:20 3:20 3:25 :55	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (PVC) 18.35 31.10 36.10 38.90 42.35 44.65	5 hr s Clarity/ Color	Temp. (°C) 15.9 16.1 16.8 17.1 17.4	6.96 7.06 7.18 7.19	(mS/cm) 5.05 5.01 4.17	48.2 36 24 10	-48 •60 1.08 •75 •56	
sposition purs of Depurs of Depurs of Depurs of State Time 2:30 3:20 3:20 3:55 :30	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (FVC) 18.35 31.10 36.10 38.90 42.35 44.65 45.24	5 hr s Clarity/ Color	Temp. (°C) 15.9 16.1 16.8 12.1 17.4 17.9 17.9	6.96 7.06 7.18 7.19	(mS/cm) 5.05 5.01 4.17 4.83	48.2 36 24 10	-48 -60 1-08 -75 -56 -49	
sposition purs of Depurs of Depurs of Depurs of State Time 2:30 3:20 3:20 3:55 :30	of Purge Wi evelopment: con: andby: Volume Purged	DTW (ft) (FVC) 18.35 31.10 36.10 38.90 42.35 44.65 45.24	5 hr s Clarity/ Color	Temp. (°C) 15.9 16.1 16.8 12.1 17.4 17.9 17.9	6.96 7.06 7.18 7.19	(mS/cm) 5.05 5.01 4.17 4.83	48.2 36 24 10	-48 -60 1-08 -75 -56 -49	
sposition ours of De ours of De ours of Sta Time 2: 30 3: 20 3: 20	of Purge Wi evelopment: con: andby: Volume Purged (gal)	DTW (ft) (FVC) 18.35 31.10 36.10 38.90 42.35 44.65 45.24 45.24 45.36	Clarity/ Color Clar	Temp. (°C) 15.9 16.1 16.8 12.1 17.4 17.9 17.9	6.96 7.06 7.18 7.19	(mS/cm) 5.05 5.01 4.17 4.83	48.2 36 24 10	-48 -60 1-08 -75 -56 -49	
sposition burs of De burs of De burs of Sta Time 2: 30 3: 20 3: 20	of Purge Wi evelopment: andby: Volume Purged (gal)	DTW (ft) (FVC) 18.35 31.10 36.10 38.90 42.35 44.65 45.24	Clarity/ Color Clarity/ Color	Temp. (°C) 15.9 16.1 16.8 12.1 17.4 17.9 17.9		ImS/cm) 5.05 5.01 4.17 4.83 4.83 4.85 4.85 4.85 4.85	48.2 36 24 10 10 10 10 10	-48 -60 -08 -75 -56 -49 -33	-Sfart-

1

ſ

L		, Materials Int Procedures				Monitori	ng Well Inst	S Illation an	AW ENV . SOP
				ATT	ACHM	ent g		·	and the second sec
		MENT LOG					WE	L NO.	
	A WEB	TER ENGIN		ORP.				M	W-27D
•••	<u></u>	MAYW	000		SITE:		Page		of
<u>, </u>	No:			·····	Client:				
	stor:						Grau	nd Elevati	on:
		1 <u>3 02;</u> 7:3.	نم ــــــــــــــــــــــــــــــــــــ		the second s	3/02:14:35	Well	Diameter:	6'
Develop		d/Equipment:	Pump	ing w	(whale	pump			
Logged	A design of the second s	S.K.	Wate	r Level (ft by			Prote	ction Leve	el;
		V (PVC) (ft):			C	DTB (PVC) (ft):			
		W (PVC) (ft):							
		$f(gal) = D^2(ft)$		B-DTW)(ft) 3	x 7.48 gal/ft	t ³			
2-Inch w	/ell = 0.164	x (DT8-DTW)	(ft)) 🛥						
. E. :	well = 0.25	5 x (DTB-DTV					_		
a a anch	WGH - U.Z.	J K (D) D-D V	VI(TT) =						
			v)(ft)) =			<u> </u>			
linimum	Purge Volun	ie (gal) (3 well	volumes) =	<u></u>	190 gall	ons			
tinimum	Purge Volun	ie (gal) (3 well	volumes) =	 Vaquin	190 gall	ons s 0.25		60	10
linimum	Purge Volun	ie (gal) (3 well	volumes) =	 Vanyin 25.3'	90 gall g rate	ons 9 0.25	gpm -	ر ه	lagmp.
linimum evelopm aximum	Purge Volum nant Purge/D Drawdown	ie (gal) (3 well ischarge Rate During Purging	(gpm);	Vanijin 25.31	g rate	9 0.25			
linimum evelopm aximum 1 Quai	Purge Volum nant Purge/D Drawdown	ne (gal) (3 well ischarge Rate During Purging	(gpm);	Vanijin 25.31	g rate	ons s 0.25 oy;130			
linimum evelopm aximum -1 Quar spositior	Purge Volum nant Purge/D Drawdown ntity Purged: n of Purge W	ne (gal) (3 well ischarge Rate During Purging	yolumes) = (gpm): (ft): pprox. 6	Vanijin 25.3' 5gallo:	g rate	⊈ 0.25 ¶; 130			
linimum evelopm aximum -1 Quar sposition purs of D	Purge Volum nant Purge/D Drawdown ntity Purged: n of Purge W	ne (gal) (3 well ischarge Rate During Purging An ater:	yolumes) = (gpm): (ft): pprox. 6	Vanijin 25.3' 5gallo:	g rate	⊈ 0.25 ¶; 130			
linimum evelopm aximum I Quar spositiar burs of D	Purge Volum nant Purge/D Drawdown ntity Purged: n of Purge W Development Decon:	ie (gal) (3 well ischarge Rate During Purging Artister:	yolumes) = (gpm): (ft): φροοχ. ζ Δ. Υ Β Α	Vanijin 25.3' 5gallo:	g rate	9 0.25			
linimum evelopm aximum -1 Quar sposition burs of D	Purge Volum nant Purge/D Drawdown ntity Purged: n of Purge W Development Decon:	ne (gal) (3 well ischarge Rate During Purging An ater: 7	yolumes) = (gpm): (ft): φροοχ. ζ Δ. Υ Β Α	Vanijin 25.3' 5gallo:	g rate	⊈ 0.25 ¶; 130			
inimum evelopm aximum I Quar sposition purs of D	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: Volume	e (gal) (3 well ischarge Rate During Purging Ater: 7 N/N N/N	(gpm): (gpm): (ft):(ft)	Vacyin 25.31 5gallor edicated	g rate	s 0.25 y; 130 asable.	gallon pump	s tati	al
inimum evelopm aximum I Quar sposition urs of D urs of D urs of S	Purge Volum nant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby:	ischarge Rate During Purging An ater: N/	(gpm): (gpm): (ft):(ft):(Vacyin 25.3' 5gallor dicated	g rake	s 0.25 oy; 130 asable	gallon pump	s tati	al
inimum evelopm aximum al Quar spositiar urs of D urs of S Time 3 5	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	During Purging	(gpm): (gpm): (ft):(ft)	Vacujun 25.3' 5gallor dicated	g rake	s 0.25 y; 130 arable. Canductivity (mS/cm)	gallon pump	s tati	Remarks
inimum evelopm aximum spositior urs of D urs of S Time 3 5 3 9	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	e (gal) (3 well ischarge Rate During Purging Arter: 	volumes) = (gpm): (ft): pprox. f A A Clarity/ Color	Vacyin 25.3' 5gallor edicated Temp. (°C) (9.1	g rake	s 0.25 y; 130 acable. Conductivity (mS/cm) 4.88	gallon pump	s tati	Remarks Somele Spromed in ta contained
inimum evelopm aximum el Quar eposition urs of D urs of S Time 3 5 3 0 3 0	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	During Purging ater: DTW (ft) (PVC) 2.3-60 33-80 44-40	volumes) = (gpm): (ft): pprox. f A A Clarity/ Color	Vacujun 25.3' 5gallor dicated	g rake ns todo disp 6.57 7.02	s 0.25 y; 130 neable. Conductivity ImS/cm) 4.88 4.89	Pump Turbidity 8 -10	s tati	Remarks Sample Sprayed inter contained
inimum evelopm -I Quar eposition urs of D urs of S J Time 3 5 3 0 3 0	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	DTW (ft) (PVC) 23-60 33-80 44-40 47-75	volumes) = (gpm): (ft): pprox. f A A Clarity/ Color	Vacyin 25.31 5gallor edicated (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	g rake	s 0.25 y; 130 arable. Canductivity (mS/cm) 4.88 4.88 4.89 4.89 4.89	Turbidity -10 -10	s tat	Remarks Sample Sprayed inter contained
inimum evélopm aximum el Quar spositiar urs of D urs of S Urs of S Time 3 5 3 0 3 0 3 0 3 0	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	During Purging ater: DTW (ft) (PVC) 2.3-60 33-80 44-40 47-75 48-30	volumes) = (gpm): (ft): pprox. f A A Clarity/ Color	Vacyin 25.31 5gallor dicated dicated (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	g rake as tode disp 6.57 7.02 6.89	s 0.25 y; 130 neable. Conductivity ImS/cm) 4.88 4.89	Pump Turbidity -10 -10	s tat D.O. 2.44 1.02 0.27 6.53 0.52	Remarks Sample Spromed into contained derated it
inimum evelopm aximum al Quar spositiar urs of D urs of S Time 3 5	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	e (gal) (3 well ischarge Rate During Purging ater: 	volumes) = (gpm): (ft): pprox. f A A Clarity/ Color	Vacyin 25.31 5 gallor edicated (*C) (*C) (*C) (*C) (*C) (*C) (*C) (*C)	g rake As tod disp 6.57 7.02 6.89 7.03	s 0.25 y ; 13.0 ara b le. Conductivity ImS/cm) 4.88 4.88 4.84 4.83 4.84 4.93 4.85	gallon pump Turbidit, -10 -10 -10 -10	z tat D.O. 2.44 1.02 0.27 6.53 0.52 0.38	Remarks Somele Spromed in ta contained
inimum evelopm aximum al Quar spositiar urs of D urs of S Urs of S Time 3 5 3 0 3 0 3 0 3 0	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	DTW (ft) (PVC) 23-60 33-80 44-40 45-50 48-90	volumes) = (gpm): (ft): pprox. f A A Clarity/ Color	Vacyin 25.31 5gallor dicated dicated (°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	g rake as tode disp 6.57 7.02 6.89 7.03 7.03 7.03	<u>4</u> 0.25 4 3 4 3 6 3 4 5 6 3 5 6 3 5 6 3 5 5 4 8 5 4 8 8 4 8 8 5 5 5 5 5 5 5 5 5 5	Pump Turbidity -10 -10	s tat D.O. 2.44 1.02 0.27 6.53 0.52	Al Remarks Somele Spromed into contained acrohed it - Stopped
inimum evelopm aximum aximum ars of D urs of S urs of S Time 3 5 3 0 3 0 3 0 4 5	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	e (gal) (3 well ischarge Rate During Purging ater: 	volumes) = (gpm): (ft): pprox. f A A Clarity/ Color	Vacyin 25.31 5 gallor edicated (*C) (*C) (*C) (*C) (*C) (*C) (*C) (*C)	g rate as tod disp 6-57 7.02 6.89 7.03 7.03 7.03 7.02	s 0.25 y ; 13.0 ara b le. Conductivity ImS/cm) 4.88 4.88 4.84 4.93 4.89 5.89 4.89 5.99 5.99 5.	gallon pump Turbidit, -10 -10 -10 -10	z tat D.O. 2.44 1.02 0.27 6.53 0.52 0.38	Remarks Somele Sproyed inte contained a crated it - Stopped II:45-12:45
inimum evelopm aximum el Quar spositiar urs of D urs of S Urs of S Time 3 5 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0	Purge Volum eant Purge/D Drawdown ntity Purged: n of Purge W Development Decon: tandby: -Volume Purged	DTW (ft) (PVC) 23-60 33-80 44-40 45-50 48-30 48-96	volumes) = (gpm): (ft): pprox. f A A Clarity/ Color	Vacyin 25.31 5 gallor edicated (*C) (*C) (*C) (*C) (*C) (*C) (*C) (*C)	g rate as tod disp 6-57 7.02 6.89 7.03 7.03 7.03 7.02	s 0.25 y ; 13.0 ara b le. Conductivity ImS/cm) 4.88 4.88 4.84 4.93 4.89 5.89 4.89 5.99 5.99 5.	gallon pump Turbidit, -10 -10 -10 -10	z tat D.O. 2.44 1.02 0.27 6.53 0.52 0.38	Al Remarks Somele Spromed into contained acrohed it - Stopped

IVI III	agement Proc	als :edures				Monitoring Well		•	· · · · · · · · · · · · · · · · · · ·
			Å	ATTACE	IMENT	G		_ <u></u>	
			~				WELL NO.	.	· · ·
VELL DEV	/ELOPMEN WEBSTER	T LOG ENGINEER	ING CORP.	•			Mw . 2		
	and the second data was not second as a second data was a second data was a second data was a second data was a	-		SIT	E:		Page	0	·
ROJECT:	<u> </u>	AYWOO.	<u>v</u>	Clie	enti		·····		
Yoject No:							Ground Ele		
Contractor:	0(11)	102.270	Completio	n Date/Time	:08/14/	s2 ;	Well Diam	eter: 6	
	ime: 8(14			mpin					
the second se	t Method/Eq						Protection	Level:	
Logged by:	S. K	/C) (ft):	35.5	0	DTB	(PVC) (ft):			
re-developi	iment DTW (F	>VC) (ft):							
ost-develop	ill Volume (ga	$D^{2}(H)/4$	х л х (ОТВ-О	TW){ft) x 7.4	48 gal/ft ³				
Standing We	$\Rightarrow 0.164 \times [0]$) ==						
2-inch well	# U.104 X [t								
2.5-inch we	:il ≖ 0.255 x	(DT8-DTW)(ft)) =						
			olumes) =	190n	90 L	approx. 1	30 remai	aved o	dready
				- 95	1)1)1 (A)1	1.54			
Developmen	t Purge/Disci	narge nate ly	<u>منابع المراجع المراجع</u>	7.10					
				4				•	······································
1 Ouant	in, Purned								
			88				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Disposition	of Purge Wat	er:							
Disposition Hours of De	of Purge Wat	er:	2						
Disposition Hours of De Hours of De	of Purge Wate evelopment:	er:	2 N/A						
Disposition Hours of De Hours of De	of Purge Wat	er:	2 N/A						
Disposition Hours of De Hours of De Hours of St	of Purge Wat evelopment: econ: andby:	er:	2 N/A			Conductivity			Remarks
Disposition Hours of De Hours of De	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St Time O 735	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St Time 0735 0930	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St Time 0735 0930	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St Time O 735	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity	$ \mathbf{D}_{\mathcal{O}_{i}} $	
Disposition Hours of De Hours of De Hours of St Time O 7 3 5 O 9 30	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity & - 10 for rec	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St Time 0735 0930	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St Time O 7 3 5 O 9 30	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity & - 10 for rec	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St Time O 7 3 5 O 9 30	of Purge Wat evelopment: andby:	er:	2_ N/A Clarity/	Temp.	рН	Conductivity	Turbidity & - 10 for rec	$ \mathbf{D}_{\mathcal{O}_{i}} $	Remarks
Disposition Hours of De Hours of De Hours of St Time O 7 3 5 O 9 30	of Purge Wat velopment: andby: Volume Purged (gal)	er:	2 N/A Clarity/ Color Clear Olear Not pu	Temp.	рн 7.08 7.32 out -	Conductivity (mS,cm) 4,96 4,84 Stopped	Turbidity & - 10 For ve.c	D.D. .28 .28 .28 . 28	Remarks

• •

ï

-

1975

「日本のある」

FILE No. 854 09/23 '03 10:12 ID:STONE&WEBSTER MAYWOOD 2012266660

.

PAGE 2

	Hazardoua A Managaman					Monitorin	g Well Install	Sa ation and	WENV Top
			1.	ATT	ACHME	NT G			and a second second Second second second Second second
		MENT LOG FER ENGIN	EERING C				WELL	NO. MI	w-27D
PROJEC	T :	MAYWOO	1Þ		SITE:		Page		0f
Project N					Client:	,		**************************************	
Contract	or:				<u> </u>	······	Groun	d Elevatio	<u>ີ</u>
Start Dat	e/Time: 811	102 080	e Com	pletion Date/	Time: 8/15/	22	Well D	liameter;	
Developn	nent Mathod	/Equipment:	*	<u>eina</u>					
Logged b		K. :	_ Wate	r Level (ft bg	s):	+	Protec	tion Level	
		(PVC) (ft):		351	D	TB (PVC) (ft):	58	····	
Minimum F Develöpme aximum l	Purge Volume Int Purge/Dis Drawdown D	icharge Rate uring Purging	volumes) = (gpm):	0.08 91	2006 34 3	310_ml/m	- I <u>lons alr</u> ir. <u>-</u> re	<u>eady</u>	removed) to 270 nl/ at 10:40
Minimum P Developme aximum I I Quan Disposition Hours of De Hours of De	Purge Volume ent Purge/Dis Drawdown P tity Purged: of Purge Wa evelopment: econ:	e (gal) (3 well scharge Rate uring Purging ter:	valumes) - (gpm): (ft):	<u>0.08 gi</u>	2006 201 3	310_ml/m	llons alr in. <u>r</u> e	eady ducet	to 270 01/
Minimum P Developme Aximum I I Quan Disposition Hours of De Hours of De	Purge Volume ent Purge/Dis Drawdown P tity Purged: of Purge Wa evelopment: econ:	e (gal) (3 well scharge Rate uring Purging ter:	valumes) - (gpm): (ft):	<u>0.08 gi</u>	2006 201 3	310_ml/m	llons air ir. — re	eady ducet	to 270 01/
Minimum P Developme aximum I I Quan Disposition Iours of De Iours of De Iours of St. Time	Purge Volume ent Purge/Dis Drawdown P tity Purged: of Purge Wa evelopment: econ:	(gal) (3 well charge Rate uring Purging ter: (ft) (PVC)	valumes) - (gpm): (ft):	<u>0.08 gi</u>	2006 201 3	310_ml/m	ip, <u>- </u>	D.C.	to 270 01/
Minimum P Developme Aximum I I Quan Disposition Hours of De Hours of De Hours of St. Time	Purge Volume int Purge/Dis Drawdown D tity Purged: of Purge Wa evelopment: econ: andby: Volume Purged	e (gal) (3 well scharge Rate uring Purging ter:	Valumes) - (gpm): (ft):	0.08 gi		Conductivity	Turbidity	D.G.	+0 270 n1/ 4 10:40
Minimum P Developme aximum I I Quan Disposition Hours of De Hours of De Hours of St. Time	Purge Volume int Purge/Dis Drawdown D tity Purged: of Purge Wa evelopment: econ: andby: Volume Purged	(gal) (3 well charge Rate uring Purging ter: (ft) (PVC)	Clarity/ Color	0.08 gi	ρΗ	Conductivity (mS/cm)	ір. — с е	D.G.	+0 270 n1/ 4 10:40
Minimum P Developme aximum I I Quan Disposition Hours of De Hours of De Hours of St. Time 200 196	Purge Volume int Purge/Dis Drawdown D tity Purged: of Purge Wa evelopment: econ: andby: Volume Purged	DTW (ft) (PVC) 20-90 23.35	Clarity/ Clarity/ Color Clear Clear Clear	0.08 gi Temp. (*C) 16.4 16.8	он 6.85	Conductivity (mS/cm) 5-03 5.01	іг. — с е Тurbidity — (О — ІО	D.G. 0.67 0.58	+0 270 n1/ 4 10:40
Minimum P Developme aximum I I Quan Disposition fours of De lours of De laurs of St. Time 800 194 900	Purge Volume int Purge/Dis Drawdown D tity Purged: of Purge Wa evelopment: econ: andby: Volume Purged	DTW (ft) (PVC) 20.90 24.35 20.90 24.50	Valumes) - (gpm): (ft):	Temp. (*C) 16.4 16.8 20.0	рн 6.85 6.97 7.00	Conductivity (mS/cm)	ір. — с е	D.G.	+0 270 ml/ 4 10:40
Minimum P Developme Eximum I El Quan Disposition Hours of De Hours of De Hours of St. Time 800 100 100 100 100 100 100 100 100 100	Purge Volume int Purge/Dis Drawdown D tity Purged: of Purge Wa evelopment: econ: andby: Volume Purged	E (gal) (3 well scharge Rate uring Purging ter: DTW (ft) (PVC) 2.0.35 20.90 23.35 24.50 25.60	Volumes) - (gpm): (ft): Clarity/ Clarity/ Calor Clear Clear Clear Clear Clear Clear	Temp. (*C) 16.4 16.8 20.0 21.5	рн 6.85 6.97 7.00 7.00	Conductivity (mS/cm) 5-03 5.01	іг. — с е Тurbidity — (О — ІО	D.G. D.G. 0.67 0.58 0.58	+0 270 ml/ 4 10:40
Minimum P Developme aximum I I Quan Disposition fours of De lours of De laurs of St. Time 800 194 900	Purge Volume int Purge/Dis Drawdown D tity Purged: of Purge Wa evelopment: econ: andby: Volume Purged	DTW (ft) (PVC) 20.90 24.35 20.90 24.50	Volumes) - (gpm): (ft):	Temp. (*C) 16.4 16.8 20.0	рн 6.85 6.97 7.00	Conductivity (mS/cm) 5-03 5.01 5-05	in, <u>-</u> <u>r</u> <u>e</u> Turbidity (0 10 10	D.G. 0.67 0.58	+0 270 ml/ 4 10:40

8

.

.'

	Hazardous M Management					Monitoring	y Well Install	S& ation and	W ENV - SOP Development
				ATT	ACHME	NT G		•	
	DEVELOPN		EERING CO	DRP.		_	WELL	NO. N	1W-28D
PROJEC	r: M	LAYW	OOD	**********	SITE:	•••••••••••••••••••••••••••••••••••••••	Page	1	
Project N					Client:		<u>~</u>		
Contract	or:				<u> </u>		Ground	d Elevatio	······
Start Dat	e/Time: 81	12/02	Comp	letion Date/	Time:			iameter:	
	ent Method		the second s			2 pump			ю
Logged b	y: 5	.K.,	Water	Level (ft bo	ISI: 30.8	2	Brother	tion Level	
Pre-develo	pment DTW	(PVC) (ft):	30	82		TB (PVC) (ft):	58	aon Level	
	opment DTV		_						
(2·inch we	ll ≠ 0.164 x vell = 0.255	(078-07W)			<u> </u>	{ •f @.v	U. this	shoul	levation developments
lours of De	icon:	2		utes (*				
Time			1	1					
	Volume Purged (gal)	DTW (ft) (PVC)	Clarity/ Color	Temp. (*C)	рH	Conductivity (mS/cm)	Turbidity	D.G.	Remarks
5:07		30.92	Clear	18.2	7.13	5.31	14.0	1.63	Start pump
5:30		31.80	Clear	18.4	7.17	5.28	10	1.62	
						•	æ		
1									1
es; = be t	igs = below VC = below	y ground surf		= well dian	neter bottom of w	D (2-inch	weli) = 0. h well) = 0.	167 fee#	·

:

1

......

:

.

--

··· · · · · · · ·

Hazardo Managai	is Materiala nent Procedure:) 			Monitori	ng Well Install	Si Ation and	Oevelopment
			ATT	ACHM	ENT G			
	DPMENT LOG BSTER ENGI					WELL	NQ. N	(w-28D
PROJECT:	MAYU	JOOD		SITE:		Page		of
Project No:			· •••• •	Client:		····		
Contractor:		·····				Groun	d Elevatio	סח:
Start Date/Time:	8/12/02:7	:35 Compl	ietion Date.	/Time: 8/1	3/02: 15	30 Well D	iameter:	6"
Development Met	nod/Equipment:	Pump	<u> . 6</u>	whale f	unep .			
10.41	.K. /	Water	Level (ft b	gs):		Protect	tion Leve	l:
Pre-development D Post-development i					DTB (PVC) (ft):	······		
Minimum Purge Vol Develöpment Purge Maximum Drawdow		ll volumes) – (gpm):(g (ft):	─┞┈╷}─── ╷					
Minimum Purge Vol Development Purge Maximum Drawdow I Quantity Purge Disposition of Purge lours of Developme	ume (gal) (3 we Discharge Rate n During Purgin ed: Water: nt:	(gpm):((gpm):((ft):(130 - 13 8 hcs (5 gall	ang top	lay; 1	40 galle	ans t	
Minimum Purge Vol Development Purge Maximum Drawdow I Quantity Purge Disposition of Purge	ume (gal) (3 we Discharge Rate n During Purgin ed: Water: ht:	(gpm):((gpm):((ft):(130 - 13 8 hcs (5 gall	ang top	lay; 1	40 galle	ans t	
Minimum Purge Vol Development Purge Maximum Drawdow I Quantity Purge Disposition of Purge lours of Developme lours of Decon: ours of Standby	ume (gal) (3 we Discharge Rate n During Purgin ed: Water: nt:	volumes) - (gpm):(g (ft): 30 - 3 30 - 3 30 - 3 4 - 5 4 -	5 gall Dispa	ang top	lay; 1	40 galle	ans t	
Minimum Purge Vol Development Purge Maximum Drawdow I Quantity Purge Disposition of Purge lours of Developme hours of Decon:	e DTW	volumes) - (gpm):(g (ft): 30 - 13 30 - 13 30 - 13 30 - 13	5 gall	ang top	lay; 1	40 galle d. pun	ans t	

	Hazardous N Managemen					Monitoring	Well Installa	S& sticn and	W ENV - SOP Development
				АТТА	CHME	NT G		• :	
	DEVELOPA	MENT LOG FER ENGIN	EERING CO				WELL	•	
PROJEC	~ T:	Mayu	vood		SITE:	<u> </u>	Page_	(of
Project N	No:				Client:				
Contract	or:			<u> </u>			Ground	l Elevatio	n:
Start Dat	te/Time: 🕂	liy loe	730 Comp	letion Date/I	Time: 04 (11	162,	Well Di	ameter:	611
		/Equipment:		mping		<u> </u>	<u></u>	<u></u>	
Logged b	· · · · · · · · · · · · · · · · · · ·	.K	· · · ·	Level (ft bg:	s):			ion Lavel:	
		(gal) = D²(ft) < (DTB-DTW){		3-DTW)(ft) x	7.48 gal/ft ³				
12 Suinch	arell - 0.256	5 x (DTB-DTW	/)(#)) =	***************************************		······	-		
Minimum f	Purge Volume	: (gal) (3 well	volumes) =	~)	90	6140	already	y pu	rged
Minimum f Develógme Maximum Y Quan Disposition	Purge Volume ent Purge/Dis Drawdown D atity Purged: of Purge Wa	e (gal) (3 well scharge Rate) During Purging Iter:	volumes) ∞ (gpm): (ft):3	~ .5gg 53.40	7 <i>1</i> 12 - Y&A	(~140 intel@			ng ed
Minimum f Developme Maximum I Quan Disposition Hours of Da Hours of Da	Purge Volume ent Purge/Dis Drawdown D atity Purged: of Purge Wa evelopment: econ:	e (gal) (3 well scharge Rate) During Purging Iter: 	volumes) ∞ (gpm): (ft):3	~ .599 23.490	7 <i>Μ. →</i> γ∉γ	indal@			ng ed
Minimum f Developme Maximum I Quan Disposition Hours of Da Hours of Da	Purge Volume ent Purge/Dis Drawdown D atity Purged: of Purge Wa evelopment: econ:	e (gal) (3 well scharge Rate) Juring Purging Iter:	volumes) ∞ (gpm): (ft):3	~ .599 23.490	7 <i>Μ. →</i> γ∉γ	imlal@			4.3 rc
Minimum f Developme Maximum I Quan Disposition Hours of Da Hours of Da	Purge Volume ent Purge/Dis Drawdown D atity Purged: of Purge Wa evelopment: econ:	e (gal) (3 well scharge Rate) During Purging Iter: 	volumes) ∞ (gpm): (ft):3	~ .5gg	- γ∉¢	imla (Q		· · · · · · · · · · · · · · · · · · ·	
Minimum f Developme Maximum I Quan Disposition Hours of De Hours of De Hours of St	Purge Volume ent Purge/Dis Drawdown D htty Purged: of Purge Wa evelopment: econ:	e (gal) (3 well scharge Rate) buring Purging nter: N /	volumes) == (gpm): (ft):	~ .599 23.490	7 <i>Μ. →</i> γ∉γ	imlal@			
Minimum A Developme Maximum I Quan Disposition Hours of Da Hours of Da Hours of St Time	Purge Volume Purge Volume Prawdown D Patity Purged: of Purge Wa evelopment: econ: candby: Volume Purged	e (gal) (3 well scharge Rate)uring Purging hter: 	volumes) = (gpm): (ft):(ft):	~ .599	- γ∉¢	imla (@		D.O .	
Minimum f Developme Maximum I Quan Disposition Hours of Da Hours of St Hours of St Time 730 8:30 9:30 9:30 9:30	Purge Volume Purge Volume Prawdown D Patity Purged: of Purge Wa evelopment: econ: candby: Volume Purged	e (gal) (3 well scharge Rate) buring Purging iter: 	volumes) = (gpm): (ft): (ft): /A Clarity/ Color Clear Clear Clear Clear		рн 7.06 7.02 7.02	Canductivity ImS.cm) 4.88 4.84 4.84	Turbidity - 10 - 10	D.O. . 46 . 28 - 27	Remarks
Minimum A Developme Maximum I Quan Disposition Hours of De Hours of De Hours of St Hours o	Purge Volume Purge Volume Prawdown D Patity Purged: of Purge Wa evelopment: econ: candby: Volume Purged	e (gal) (3 well scharge Rate)uring Purging hter: 	volumes) = (gpm): (ft): /A Clarity/ Color Clear Clear Clear Clear Clear		рн 7.06 7.02 7.02 7.02	imlal@ Canductivity ImS.cm) 4.88 4.84 4.84 4.84	Turbidity - 10 - 10 - 10	D.O. . 46 . 28 - 27	Ramarks > 4th Drum > Stop.
Minimum f Developme Maximum I Quan Disposition Hours of Da Hours of St Hours of St Time	Purge Volume Purge Volume Prawdown D Patity Purged: of Purge Wa evelopment: econ: candby: Volume Purged	e (gal) (3 well scharge Rate) buring Purging iter: 	volumes) = (gpm): (ft): (ft): /A Clarity/ Color Clear Clear Clear Clear		рн 7.06 7.02 7.02 7.02 7.03 7.03 7.03 7.04	imla (Q Canductivity ImS.cm) 4.88 4.84 4.84 4.84 4.84 4.84	Turbidity -10 -10 -10 -10 -3	D.O. · 46 · 28 · 27 · 28 · 27 · 28 · 40 · 36	Ramarks > 4th Drum > Stop.

,

8

...

i

·· ; · ·

•

۰.

• • •

FILE No. 560 07/15 '03 15:44 ID:STONE&WEBSTER MAYWOOD

ł

i

2012266660

1

:

		FUSRAP N	MAYWOO	D SUPER	KUND ST	192 Victor TE ENVIR	ng - Natenity	NI DEME	ENT A TOTONE	
	_	-₩₩	LL DE	G RECOR	PTIMLD W	TER QUAL	ITY SAMPI	E AND AN	ALYSIS	L.
	58									•
			D.			Well I.	D _ MU	0-511	/	-
			N	ORFAS	- 	SAMPI				······
	FIELD INS	TRUMENTS	Kele Duy				REF. POINT			<u>2</u> \$
		650		à Sou	10		DEPTH (Ft. 1		- f -	
,							CASING/OP			
	SAMPLINC	AFTUOD	Bailer	den se			TO TOP OF		(TOC)	o ff-
						WLL V	DLUME (Gal NTAKE (FL 1)^ ` _	514-1	
			1-201	Gallon	¢	Point I	arve (ee i	(DC)	-0, ,⊻	<u>sgs</u>
	Sample Time	Water Lével	Discharge (milliliter(Volume	1	Specific		BRY,		1
	(From/To)	(Ft TOR)	_(minute)	Purgod - (mi) -	Temp °C	Cond, (m8/om)	рн	- (my)	(mg/L)	Turbidity (NTU)
	0930	670	D.							
stort->	1055	8.61	5		15.8	2,461	7.44	2 quit	37	180
	1103	8.70	5	40	16.06	0.02	7.51	-25-1	2.11	88,4
	1110	8.70	5	75	15.77	1.321	7.46	-58"	2.10'	32.8
ļ	1120	8.65	5	125	15.67	2.464	WZ.	-suppe	6.0	13.7
	1130	8.65	5	175	15.75	1.471	7.50	-26.0	3.32	WR*
	1140	8.66	5	225	15.85	2.469	7.55	-31.0	2.04	WR*
	1158	8.65	5	290	16.05	2.470	7.55	-31.5	2.43'	N2*
	12:05	8.65	5	350	16.05	2.468	7.55	-34.7	2.42 '	2.5
	·									
		· · ·								
							NR= 1	Ju neo	Alino	
							met	A Al	londie	mine
1							هدو	la	D	
							() = D	0 read	mas a	e
ļ							bio	with hud		10
ļ							hie		we itale	
L							Pari	industra	-dail	
L							ALC: NO POLICY		D	
L								_		
	APPEARA	NCRICOLOT	<u>clea</u>	2			OR_ <u>\$11</u>	1.4		·····
	SAMPLED	BY (PRINTS	Robe	+ Dall	Litt		UR <u>219</u>	-		
	SIGNATUR		1 al tur	lest			NATURE			··
	WELL CAP	REPLACE	D AND LOCI	KED BY			ETIME			·······

Hazardous Materials Management Procedures

240

Notes: = be bgs = below ground surface

PVC = below top of PVC

Đ

= well diameter

DTB = depth to bottom of well 8

End

• •				ATTAC	CHMEN	ГG		
	EVELOPM			~~			WELL NO	~
		0.757	ERING COF			····		4W-32D
PROJECT	<u> </u>	xood (F	<u>M55)</u>		SITE:		Page	of
Project No		0		(Client: US	ACE		10 10
Contracto	<u></u>			• .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			levation: 44,18
	e/Time: 55		3 Cample	tion Date/Tir		30130	Well Diar	neter: 6" Open Hole
Developm	ent Method/	Equipment:	Submersi	ble Pin	<u>np</u>			
	: Keun			evel (ft bgs)			Protectio	n Level: D
	pment DTW		-		DTE	3 (PVC) (ft): <u></u>		
	opment DTW							
1_	1.44		$4 \times \pi \times 10$ TB- f()) = 75		7.48 gal/ft ³			
(2.5-inch v	vell = 0.255	× (DTB-DTW	")(ft)) = N	A	·			·
Minimum F	Purge Volume	(gal) (3 well	volumes) = _	225	gallons			
Developme	ent Purge/Dis	charge Rate (gpm):	mally	25-40	ppm, exce	pt zin	tervals el 12tan
Maximum	Drawdown D	uring Purging	(ft): 2.60	<u>ه</u>		0, 1	1	over-shartt duralt ion
ণ Quan	tity Purged: _	240	gallins	<u>></u>				
Disposition	of Purge Wa	ter: <u>Cont</u>	ainenzi	ecl	•			
Hours of D	evelopment:	1 hove						
Hours of D	econ: <u>NA</u>	·						
Hours of St	tandby: <u>N</u>	Α						
Time	Volume Purged (gal)	DTW (ft) (PVC)	Clarity/ Color	Temp. (°C)	рН	Conductivity (mS/cm)	Turbidity	Remarks
1253		6.10	1		-			START Development
1303	20	6.21			_ 0			zgpm
1310	65	8.76	Cloudy Reel	1693	7.94	2.70	127	3 gpm
1320	85	7.40	Cloudy	15:41	7.62	2.70	430	3 gpm 3 gpm
1330			1 1	15.53	7.49	2.70 2.70	230 27.0	3 of pm 4 of pm 2. st gpm
1335	176	7.48	Clear	15:58	7.48	2.70	22.0	2.5 gpm
1340	180	7.48	Clear		7.48	2.70	17.2	2.5 gpm
1350	210	7.48	clear	15,45	1.10	,		- 0,

Hazedoin Merchan Anendomial Pressures Attracting Web Initial State Contractor: Contractor: Start Date/Time: $q/13/02$ $14'_{15'*0}$ Completion Date/Time: $q/16/02$ $q_{15'-11':30}$ Well Diameter: $2''$ Development Method/Equipment: Whale Pum 'P Optimize Contractor: Ground Elevation: Weil Diameter: $2''$ Development DTW (PVC) (fit: Usal Pum 'P Development DTW (PVC) (fit: $12.7'$ Protection Level: D Protection Level: D D D D D Standing Well Volume Igal) = D'fit/4 x xx (DTB-DTW)(ft) x 7.48 gal/ft² I2.6 g.r Page I3.0 gallary P_a Initimum Purge Volume Igal) (3 well volumes) = Dise for usell Construction Level: D I3.0 gallary P_a Initimum Urge Volume Igal) (3 well volumes) = Dise for usell Construction Level D I3.0 gallary P_a
ATTACHMENT G ***********************************
STONE & WEBSTER ENGINEERING CORP. MW-33.D Mail NO. PROJECT: $\underline{MAYWOOD}$ SITE: Page 1 of 12 Project No: Clent: Clent: Ground Elevation: Start Date/Time: $\underline{MAJO2}$ $\underline{141000}$ Clent: Ground Elevation: Start Date/Time: $\underline{MAJO2}$ $\underline{141000}$ Clent: Ground Elevation: Development Method/Equipment: \underline{Whale} \underline{PuwP} Well Diameter: 2" Development Method/Equipment: \underline{Whale} \underline{PuwP} Well Diameter: 2" Prodection: \underline{V} \underline{V} Water Level (ft bgs): 12.7' Protection Level: D Prodection: \underline{V} \underline{V} \underline{V} \underline{V} Post-development DTW (PVC) (ft): 12.7 DTB (PVC) (ft): <u>68</u> " D Standing Well Volume (gal) = D ² (ft)/4 × x × (DTB-DTW)(ft) × 7.48 gal/ft ² 2-inch well = 0.164 × (DTB-DTW)(ft) = Immum Purge Volume (gal) (3 well volumes) = Due to usell Constra- v 180 gallon F_ Gallon F_ Isosition of Purge Volume (gal) (3 well volumes) = Due to usell Constra- v 180 gallon F_ - - Isosition of Purge Water: D C U M - - - Hours of Development:<
STONE & WEBSTER ENGINEERING CORP. MW-33.D MEL HO PROJECT: HAYWOOD SITE: Page 1 of 12 Project No: Client: Client: Ground Elevátion: Start Date/Time: 9/3/02 14:00 or 12 Ground Elevátion: Start Date/Time: 9/3/02 14:00 or 12 Ground Elevátion: Start Date/Time: 9/3/02 14:00 or 12 Ground Elevátion: Development Method/Equipment: Whale Puw P Well Diameter: 2" Logged by: S.K. Water Level (ft bgs): 12.7' Protection Level: D Pro-development DTW (PVC) (ft): 12.7 DTB (PVC) (ft): 68' Standing Well Volume (gal) = D ² (ft)/4 × x × (DTB-DTW)(ft) × 7.48 gal/ft ² 2 68' (2-inch well = 0.164 × (DTB-DTW)(ft)) =
PROJECT: MAY WO OD SITE: Page1
Project No: Cllent: Contractor: Ground Elevation: Start Date/Time: $9/13/02$ 14_{1000}^{+} Development Method/Equipment: Whalle Pum P Logged by: S.K. Pre-development DTW (PVC) (ft): I2.7 Protection Level: D Post-development DTW (PVC) (ft): I2.7 DTB (PVC) (ft): G8' Standing Well Volume (gal) = D ² (ft)/4 x x x (DTB-DTW)(ft) x 7.48 gal/ft ² (2-inch well = 0.164 x (DTB-DTW)(ft)) = (2.5-inch well = 0.255 x (DTB-DTW)(ft)) = I I Minimum Purge Volume (gal) (3 well volumes) = Due to usell Constractor VI 80 gallon s
Ground Elevision: Ground Elevision: Ground Elevision: Water Level (ft bgs): Development Method/Equipment: Wale Pum P Logged by: S.K. Pre-development DTW (PVC) (ft): Post-development DTW (PVC) (ft): DTB (PVC) (ft): Post-development DTW (PVC) (ft): Standing Well Volume (gal) = D ² (ft)/4 x x x (DTB-DTW)(ft) x 7.48 gal/ft ² Standing Well Volume (gal) = D ² (ft)/4 x x x (DTB-DTW)(ft) x 7.48 gal/ft ² (2-5-inch well = 0.164 x (DTB-DTW)(ft)) = Minimum Purge Volume (gal) (3 well volumes) = Due fo well Constr. Development Purge/Discharge Rate (gpm): I a 2.5 gp x Maximum Drawdown During Purging (ft): - Dru M Hours of Development: Dru M
Star Uster / Ime: $\frac{9}{13/02}$ $\frac{14}{150}$ Completion Date/Time: $\frac{9}{1602}$ $\frac{9}{215-1100}$ Well Diameter: $\frac{2^{11}}{2100}$ Development Method/Equipment: Whale Puw p Water Level (ft bgs): 12.07^{10} Protection Level: D Pre-development DTW (PVC) (ft): 12.07^{10} DTB (PVC) (ft): 20.7^{10} DTB (PVC) (ft): 20.7^{10} Post-development DTW (PVC) (ft): 12.07^{10} DTB (PVC) (ft): 20.7^{10} DTB (PVC) (ft): 20.7^{10} Standing Well Volume (gal) = $D^2(ft)/4 \times x \times (DTB-DTW)(ft) \times 7.48 \text{ gal/ft}^3$ (2-inch well = $0.164 \times (DTB-DTW)(ft)$) = I2.5-inch well = $0.255 \times (DTB-DTW)(ft)$ = Minimum Purge Volume (gal) (3 well volumes) = $Due fo well Constr. \sqrt{180} galler E_{200}$ Development Purge/Discharge Rate (gpm): 1.25 gps/ Maximum D/awdown During Purging (ft): 1 1 Quantity Purged: Drum Disposition of Purge Water: $D \cap UM$ Hours of Development: $3 - 3.25$
Logged by: S.L. Water Lavel (ft bgs): 127' Protection Level: D Pre-development DTW (PVC) (ft): (27) DTB (PVC) (ft): 68' Post-development DTW (PVC) (ft): (27) DTB (PVC) (ft): 68' Standing Well Volume (gal) $D^2(ft)/4 \times \pi \times (DTB-DTW)(ft) \times 7.48 \text{ gal/ft}^3$ (2.inch well = 0.164 × (DTB-DTW)(ft)) = (2.5-inch well = 0.255 × (DTB-DTW)(ft)) =
Pre-development DTW (PVC) (ft): IQ7 DTB (PVC) (ft): Q Post-development DTW (PVC) (ft): IQ7 DTB (PVC) (ft): G8' Standing Well Volume (gal) = D ² (ft)/4 x x x (DTB-DTW)(ft) x 7.48 gal/ft ³ G8' G8' Standing Well Volume (gal) = D ² (ft)/4 x x x (DTB-DTW)(ft) x 7.48 gal/ft ³ G8' G8' (2-inch well = 0.164 x (DTB-DTW)(ft)) = Image: Constant of the second
Post-development DTW (PVC) (ft):
Standing Well Volume (gal) = $D^2(ft)/4 \times x \times (DTB-DTW)(ft) \times 7.48 \text{ gal/ft}^3$ (2-inch well = $0.164 \times (DTB-DTW)(ft)$) = (2.5-inch well = $0.255 \times (DTB-DTW)(ft)$) = Minimum Purge Volume (gal) (3 well volumes) = Due to well Constr - $N 80$ gallons. Development Purge/Discharge Rate (gpm):
$\frac{(2 - \ln ch \text{ well} = 0.164 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} = 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} = 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch \text{ well} + 0.255 \times (\text{DTB-DTW})(ft)) =}{(2.5 - \ln ch w$
$\frac{[2.5\text{-inch well} = 0.255 \times (DT8\text{-}DTW)(ft)] = Minimum Purge Volume (gal) (3 well volumes) = Due fo well Constra v 180 gallensDevelopment Purge/Discharge Rate (gpm): 1.2.5 gpmMaximum Drawdown During Purging (ft): 1.0.2.5 gpmMaximum Drawdown During Purging (ft): 1.0.2.5 gpmOisposition of Purge Water: DrumHours of Development: 3-3.25$
Maximum Drawdown During Purging (ft):
Maximum Drawdown During Purging (ft):
Maximum Drawdown During Purging (ft):
I Quantity Purged: Disposition of Purge Water: Drum Hours of Development: 3 - 3.25
Disposition of Purge Water: Drum Hours of Development: 3-3.25
Hours of Development: 3-3.25
Hours of Decon;
Hours of Standby:
Time Volume DTW Clarity/ Temp. pH Conductivity Turbidity in a Bemarks
v (gal) (PVC) (°C) (mS/cm) DO Remarks
A: 15 12.7 Clear 15-9 6.33 593 -10 1.69 2125apm
4:35 21.2 Cear 15.9 6-31 6.95 -10 1.88 2125 april
9:55 22.05 Clear 15-2 6.39 6.93 -10 .54 @ 1.25 jpm
Stopelo - reed more drums - 153 551 6.82 - 10 .76 @ 1.25 gpm
5 13.02 Lear 5.3
3.30 22.05 Clear 15.3 6-45 6-77 -10 .45 @ 1.25 gpm
azza al line i za grad
1:00 2235 Chear 15.4 6.40 670 -10 -39 @ 1.25 gpm
otes: " be bgs = below ground surface ' 0 = well diameter D (2-inch well) = 0.157.4
PVC = below top of PVC DTB = depth to bottom of well D (2-inch well) = 0.167 feet
8
a star a star A star a star

i juliur .	Hauasala		••• •			* * * * * *				
in the second	Hezerdoua Menageme	Motorials m Procedure	8			Monitor	ing Well inst			
;;; ;	4624 48.0003	1999 - 41 FAX- 1	· · ·	ATT	ACHM	5 44 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
STON	DEVELOP E & WEDS	MENT LOC) Neering (l	710-33D	1.	L.NO.	<u>.</u>	- 7
PROJEĆ	•	AYWOO	The second s			<u>110-227</u>	Page	0	<u></u>	
Project N			20		Client:		Fage			
Contract	or:			• • •	1 640/16.					深圳和多
Start Dat	:e/Time: 91	13/02	Com	pletion Date/	Time A les	1.0.080		nd Elevatio		
		d/Equipment:			11110. 9/16	102 12:	60 Well	Diameter:	2."	
Logged b				er Level (ft by						• .
Pre-develo	pment DTV	V IPVC) (ft):		.7/	(S):	TB (PVC) (ft):		tion Leve	l:	
Post-deve	lopment DT	W (PVC) (ft):				in in indi fidi	-68'			· · ·
Standing V	Vell Volume	$(gal) = D^2(ft)$	t)/4 x π x (D1	(B-DTW)(ft) >	(7.48 gal/ft	3				
		× (DTB-DTW)			e e e e e e e e e e e e e e e e e e e					
2.5-inch v	veli = 0.25	5 x (DTB-DT)	W){ft}) =							
						····				
linimum P	urge Volum	≉ (gal) (3 wei	ll volumes) 🛥	·_~/	80 gall	ans needs	ed.			
evelópme	nt Purge/Di:	scharge Rate	{gpm}:	1.25	ARM					
aximum C)rawdown C	Jurino Puroine	J (ft):		01	······································	······	•••		
						······································				
I Quant	ity Purged:									
4 Quant	ity Purged:									
4 Quant	ity Purged:									
I Quant sposition burs of De burs of De	ity Purged: of Purge Wa velopment: can:	ater:								
I Quant sposition burs of De burs of De	ity Purged:	ater:				-				
I Quant sposition burs of De burs of De	ity Purged: of Purge Wa velopment: can:	ater:				4				· · · · · · · · · · · · · · · · · · ·
I Quant sposition purs of De purs of De urs of Sta	ity Purged: of Purge Wa velopment: con: undby: Volume	ater:	tal of	3.2	5 hrs	······································				
I Quant sposition purs of De purs of De urs of Sta	ity Purged: of Purge Wa velopment: can: undby: Volume Purged	ater:				Conductivity [mS/cm]		D 0	Remarks	
·I Quant sposition ours of De ours of Sta Time .S. T.)	ity Purged: of Purge Wa velopment: con: undby: Volume	DTW (h) (PVC)	tal of Clarity/ Color	3.2 Temp. (*C)	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity	1		Rate
I Quant sposition urs of De urs of Sta Time .S.T.	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71	Clarity/ Color Clear	3.2 Temp. (°C) 15-4	<u>5 hrs</u>	Conductivity [mS/cm]		1	Remarks Flow	m)
I Quant sposition iurs of De urs of De urs of Sta Time .S.T.) 15 30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71 22.77	Clarity/ Color Clear Clear	3.2 Temp. (°C) 15-4 153	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity	D0	Remarks Flow (9P	m)
I Quant sposition iurs of De urs of De urs of Sta Time .S.T.) 15 30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71	Clarity/ Color Clear	3.2 Temp. (°C) 15-4	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity	▶0 •37 •37	Remarks Flow (9P	m)
I Quant sposition iurs of De urs of De urs of Sta Time .S.T.) 15 30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71 22.77	Clarity/ Color Clear Clear	3.2 Temp. (°C) 15-4 153	5 hrs	Conductivity [mS/cm]	Turbidity - 10 - 10	D0 · 37	Remarks Flow (9P 1.25	m)
I Quant sposition urs of De urs of Sta Time .S.T.) 15 30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71 22.77	Clarity/ Color Clear Clear	3.2 Temp. (°C) 15-4 153	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity - 10 - 10	▶0 •37 •37	Remarks Flow (9P 1.25	m)
I Quant sposition iurs of De urs of De urs of Sta Time .S.T.) 15 30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71 22.77	Clarity/ Color Clear Clear	3.2 Temp. (°C) 15-4 153	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity - 10 - 10	▶0 •37 •37	Remarks Flow (9P 1.25	m)
I Quant sposition iurs of De urs of De urs of Sta Time .S.T.) 15 30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71 22.77	Clarity/ Color Clear Clear	3.2 Temp. (°C) 15-4 153	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity - 10 - 10	▶0 •37 •37	Remarks Flow (9P 1.25	m)
I Quant sposition iurs of De urs of De urs of Sta Time .S.T.) 15 30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71 22.77	Clarity/ Color Clear Clear	3.2 Temp. (°C) 15-4 153	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity - 10 - 10	▶0 •37 •37	Remarks Flow (9P 1.25	m)
I Quant sposition purs of De urs of Sta Time .S.T.) 15 30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71 22.77	Clarity/ Color Clear Clear	3.2 Temp. (°C) 15-4 153	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity - 10 - 10 - 10	▶0 •37 •37	Remarks Flow (9P 1.25	m)
I Quant sposition purs of De purs of Sta Time .S.T.) :15 :30	ity Purged: of Purge Wa velopment: can: indby: Volume Purged (gal)	DTW (it) (PVC) 22.71 22.77	Clarity/ Color Clear Clear	3.2 Temp. (°C) 15-4 153	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity - 10 - 10 - 10	▶0 •37 •37	Remarks Flow (9P 1.25	(Rate m)
I Quant sposition burs of De burs of De burs of Sta Time .S.T.) I 5 30 . de	ity Purged: of Purge Wa velopment: can: ndby: Volume Purged (gal)	DTW (tt) (PVC) 22.71 22.71 22.77 22.85	Clarity/ Color Clear Clear Clear	3.2 Temp. (°C) 15-4 153	<u>5 hrs</u>	Conductivity [mS/cm]	Turbidity - 10 - 10 - 10	▶0 •37 •37	Remarks Flow (9P 1.25	(Rate m)
I Quant sposition burs of De burs of De burs of Sta Time .S.T.) :1 5 :30 .de	ity Purged: of Purge Wa velopment: can: Volume Purged (gal)	DTW (ft) (PVC) 22.71 22.71 22.77 22.85	Clarity/ Color Clear Clear Clear	3.2 Temp. (°C) 15-4 15-3 15-6	рн 6.45 6.45 6.45	Conductivity (mS/cm) 6-70 6-70 6-69	Turbidity - 10 - 10 - 10	DO • 37 • 37 • 43	Remarks Flow (9P 1.25 1.25 1.25	(Rate m)
I Quant sposition burs of De burs of De burs of Sta Time .S.T.) :1 5 :30 . de	ity Purged: of Purge Wa velopment: can: Volume Purged (gal)	DTW (tt) (PVC) 22.71 22.71 22.77 22.85	tal of Clarity/ Color Clear Clear Clear	3.2 Temp. (°C) 15-4 153	рн 6.45 6.45 6.45 8-48	Conductivity (mS/cm) 6-70 6-70 6-69 0-6-69	Turbidity - 10 - 10 - 10	DO · 37 · 37 · 43	Remarks Flow (9P 1.25 1.25 1.25	(Rate m)
I Quant sposition purs of De purs of Sta Time .S.T.) I 5 30 .de	ity Purged: of Purge Wa velopment: can: Volume Purged (gal) (gal) (gal) (gal) (gal) 	DTW (ft) (PVC) 22.71 22.71 22.77 22.85	tal of Clarity/ Color Clear Clear Clear	3.2 Temp. (°C) 15-4 15-3 15-6	рн 6.45 6.45 6.45 6.45 8.48	Conductivity (mS/cm) 6-70 6-70 6-69 0-6-69	Turbidity 10 	DO · 37 · 37 · 43	Remarks Flow (9P 1.25	(Rate m)
I Quant sposition burs of De burs of De burs of Sta Time .S.T.) 15 30 .de	ity Purged: of Purge Wa velopment: can: Volume Purged (gal)	DTW (ft) (PVC) 22.71 22.71 22.77 22.85	tal of Clarity/ Color Clear Clear Clear	3.2 Temp. (°C) 15-4 15.6 15.6 15.6	рн 6.45 6.45 6.45 6.45 8.48	Conductivity (mS/cm) 6-70 6-70 6-69 0-6-69	Turbidity 10 	DO · 37 · 37 · 43	Remarks Flow (9P 1.25 1.25 1.25	(Rate m)
I Quant sposition burs of De burs of De burs of Sta Time .S.T.) .15 .30	ity Purged: of Purge Wa velopment: can: Volume Purged (gal) (gal) (gal) (gal) (gal) (gal) (gal) 	DTW (ft) (PVC) 22.71 22.71 22.77 22.85 22.95 22.71	tal of Clarity/ Color Clear Clear Clear	3.2 Temp. (*C) 15-4 15-3 15-6 15-6	5 hrs	Conductivity (mS/cm) 6-70 6-70 6-69 6-69 D (2-inch ell D (2.5-inc	Turbidity 	DO · 37 · 37 · 43	Remarks Flow (9P 1.25 1.25 1.25	(Rate m)
<pre>'! Quant sposition burs of De burs of De burs of Sta Time .S.T.) ?! 5 ! 30 . da ;: ** be bg py</pre>	ity Purged: of Purge Wa velopment: can: Volume Purged (gal) (gal) (gal) (gal) (gal) 	DTW (ft) (PVC) 22.71 22.71 22.77 22.85 22.95 22.71	tal of Clarity/ Color Clear Clear Clear	3.2 Temp. (*C) 15-4 15-3 15.6 15.6	5 hrs	Conductivity (mS/cm) 6 - 7 0 6 - 7 0 6 - 6 9 6 - 6 9 D (2-inch ell D (2.5-inc	Turbidity 10 	DO · 37 · 37 · 43	Remarks Flow (9P 1.25 1.25 1.25	(Rate m)

, y	•			ATT	רא היצעה איז		ing Well Inst		N L'EVELOPITIEIN
EI	L DEVELO	PMENT LOC	2	AL I	CHM	ent G			· · · · · · · · · · · · · · · · · · ·
STO	NE & WEB	STER ENGI	NEERING (CORP.			WE	1 NQ/	NW-3N.7
PRO.	IECT: N	1AYWOO) D		SITE:		Page	1	
Projec	t No:				Client:				
	actor:						Grou	nd Elevati	
Start	Date/Time: 9/	17/02 0815	Corr	pletion Date	Time: 9/19	1.02	······	Diameter:	
Devel		d/Equipment:							<u>b</u>
	d by: S.	A 101/01 11	Wate	er Level (ft b	gs): 10+00	4	Protec	tion Leve	1. D+
	copinent D11	w (PVC) (ft):		<u>.04</u>		DTB (PVC) (tt):		from	
tandin	o Well Volum	W (PVC) (ft):						•	
-inch		$(gal) = D^{2}(ft)$ × (DTB-DTW)	1/4 x π x {D]	[B-DTW)(#)	x 7.48 gal/f	r <u>~</u> E	5 gallon	9	
		x (D+B-DTW)	(ft)) ≈				5	-	
.5-inc	h well = 0.25	5 x (DTB-DTV	V)(ft)) =		·····				
						/			
nimun	n Purge Volum	ne (gal) (3 well	l volumes) =		_2.00	(Filred	du punge	ed Cor	1500).
velopi	ment Purge/Di	ischarge Rate	(gpm):	1.250	pm (Started 6	0.500	M	pread a M
ximur		0 3 3			to	get value	MP JOH	in a fl	ener file
∙l Qu	antity Purged:				- to	1 175 000	1. 1	and in	slowed
∘l Qu positic	on of Purge W		<u> </u>		ti	2 + 75 gpt	n by H	he tim	e developa
∘l Qu positic	on of Purge W	ater:	<u> </u>		ti	2 + 75 gpt	n by H	he tim	e develop.
ال Qu positio urs of	on of Purge W	ater:	<u> </u>		ti	2 + 75 gpt	n by H	he tim	e develop.
ין Qu positio urs of urs of i	on of Purge Wi Development:	ater:1.5	<u> </u>		ti	2 + 75 gpt	n by H	he tim	e develop.
ار Qu positio urs of urs of i	on of Purge W: Development: Decon:	ater:1.5	<u> </u>		ti	2 + 75 gpt	n by H	he tim	e develop.
I Qui position rs of rs of i rs of :	on of Purge Wi Development: Decon: Standby: Volume	ater:	Clarity/	3.5hrs Temp.	ti	2 . 75 дря lay)	n by H	he fim	e develop.
I Qui positions of ars of a rs of a ime	on of Purge Wi Development: Decon: Standby: Volume Purged (gal)	ater:	(+:	3.5hrs	<u>yesterc</u>	2 + 75 gpt	n by H	he tim	Remarks
I Qui position rs of rs of s rs of s ime	on of Purge Wi Development: Decon: Standby: Volume Purged (gal)	ater:	Clarity/	3.5 hr.5 Temp. (°C)	<u>цеяterc</u> pн	Conductivity	Turbidity	he fim	e develop.
1 Qui position rs of rs of i rs of i ime 15	on of Purge Wi Development: Decon: Standby: Volume Purged (gal)	ater: <u>1.0</u> <u>1.0</u> DTW (ft) (PVC) 10.34	Clarity/	3.5 hr.5 Temp. (°C) 15.7	<u>цезterc</u> рн 5.65	Conductivity (mS/cm) 359	Turbidity	he fim	e develop.
I Qui position rs of rs of s ime 75. 33	on of Purge Wi Development: Decon: Standby: Volume Purged (gal) H:3 ½apm. H	ater: <u>1.5</u> <u>1.0</u> DTW (ft) (PVC) 10.34 12.45	Clarity/	3.5hrs Temp. (°C) 15.7 (5.3)	<u>цезтегс</u> рн 5.65 5.89	Conductivity (Conductivity (mS/cm) 359 3.50	Turbidity	DO	e develop.
I Qui position rs of rs of s rs of s ime 75. 33	on of Purge Wi Development: Decon: Standby: Volume Purged (gal) H:3 ½apm. H	ater: <u>1.5</u> <u>1.0</u> DTW (ft) (PVC) 10.34 12.45	Clarity/	3.5 hrs Temp. (°C) 15.7 '5.3 .5 C	рн 5.65 5.89 6.02	Conductivity (mS/cm) 3.50 3.50 3.50	Turbidity	DO	e develop.
I Qui position irs of irs of i ime 1/57	on of Purge Wi Development: Decon: Standby: Volume Purged (gal) H:3 ½apm. H	ater: <u>1.5</u> <u>1.0</u> DTW (ft) (PVC) 10.34 12.45 12.93 13.43	Clarity/	3.5 hrs Temp. (°C) 15.7 '5.3 .5 C	рн 5.65 5.89 6.02 6-09	Conductivity (mS/cm) 359 3.50 3.50 3.47	Turbidity	DO 1.76 . 92	e develop.
1 Qui positions of the solution of the solutio	on of Purge Wi Development: Decon: Standby: Volume Purged (gal)	ater: <u>1.5</u> <u>1.0</u> DTW (ft) (PVC) 10.04 12.45 12.90 13.40 13.40 17.30	Clarity/	Temp. (°C) 15.7 5.3 5.3 5.3 5.3	рн 5.65 5.89 6.02 6.32	Conductivity Ins/cm) 359 3.50 3.50 3.50 3.47 3.45	Turbidity	DO 1.76 · 92 · 64	e develop.
+ Qui position rs of rs of : ime 15: 30 45 5	on of Purge Wi Development: Decon: Standby: Standby: Volume Purged (gal) H.J./Lapm. H. K. ` K. ` Soym ,	ater: <u>1.5</u> <u>1.0</u> DTW Itti (PVC) 10.34 12.45 12.45 12.43 13.43 13.43 17.30 21.20	Clarity/	Temp. (°C) 15.7 5.3 5.3 5.3 5.3	рн 5.65 5.89 6.02 6-09	Conductivity ImS/cm) 359 3.50 3.50 3.50 3.47 3.45	Turbidity - 1? - 1? - 1? - 1? - 1?	DO 1.76 . 92 . 64 . 53	e develop.
1 Qui positions of the solution of the solutio	on of Purge Wi Development: Decon: Standby: Standby: Volume Purged (gal) H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H	ater: <u>1.5</u> <u>1.0</u> DTW Itti (PVC) 10.34 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.0 21.20 21.20	Clarity/ Color	3.5 hrs Temp. (°C) 15.7 5.3 5.3 5.5 5.5 15.2 16.2	рн 5.65 5.89 6.02 6.32 6-61	Conductivity Ins/cm) 359 3.50 3.50 3.50 3.50 3.47 3.45 3.45 3.48	Turbidity	DO 1.76 · 92 · 64 · 53 · 53 · 52	Remarks
1 Qui positions of the solution of the solutio	on of Purge Wi Development: Decon: Standby: Standby: Volume Purged (gal) H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H	ater: <u>1.5</u> <u>1.0</u> DTW Itti (PVC) 10.34 12.45 12.45 12.43 13.43 13.43 17.30 21.20	Clarity/ Color	Temp. (°C) 15.7 5.3 5.3 5.3 5.3	рн 5.65 5.89 6.02 6.32	Conductivity Ins/cm) 359 3.50 3.50 3.50 3.50 3.47 3.45 3.45 3.48	Turbidity - 1? - 1? - 1? - 1? - 1? - 1?	DO 1.76 · 92 · 64 · 53 · 53 · 52	Remarks
1 Que positions of rs of 1 ime 15 33 35 35 35 35 35	on of Purge Wi Development: Decon: Standby: Standby: Volume Purged (gal) H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H H.J./Lapm. H	ater: <u>1.5</u> <u>1.0</u> DTW Itti (PVC) 10.34 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.0 21.20 21.20	Clarity/ Color	3.5 hrs Temp. (°C) 15.7 5.3 5.3 5.5 5.5 15.2 16.2	рн 5.65 5.89 6.02 6.32 6-61	Conductivity Ins/cm) 359 3.50 3.50 3.50 3.50 3.47 3.45 3.45 3.48	Turbidity	DO 1.76 · 92 · 64 · 53 · 53 · 52	e develop.
-1 Que positions of rs of 1 rs of 1 rs of 1 rs of 1 75 75 75 75 75 75 75 75 75	bon of Purge Wi Development: Decon:	ater: <u>1.5</u> <u>1.0</u> DTW (ft) (PVC) 10.34 12.45 12.45 13.45 17.30 21.20 turoi 250 23.65	Clarity/ Color	Temp. (°C) 15.7 5.3 5.5 5.5 15.2 16.2 16.2	рн 5.65 5.89 6.02 6.02 6.32 6-61 6.62	2 + 75 gpt lay) Conductivity ImS/cm) 3 59 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50	Turbidity - 1: - 1: - 1: - 1: - 1: - 1: - 1: - 1:	DO 1.76 · 92 · 64 · 53 · 53 · 52	Remarks
-1 Que positions of rs of 1 rs of 1 rs of 1 rs of 1 75 75 75 75 75 75 75 75 75	on of Purge Wi Development: Decon: Standby: Volume Purged (gal) H. J. /2 apm. H. X. X. X. X. X. X. X. X. X. X. X. X. X.	ater: <u>1.5</u> <u>1.0</u> DTW (ft) (PVC) 10.34 12.45 12.45 13.45 17.30 21.20 turoi 250 23.65	Clarity/ Color	Temp. (°C) 15.7 5.3 5.5 16.2 16.4	рн 5.65 5.89 6.02 6.02 6.32 6.61 6.62	2 + 75 gpt lay) Conductivity ImS/cm) 3 59 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50	Turbidity - 1: -	DO 1.76 · 92 · 64 · 53 · 53 · 52 · 55 · 55 · 57	Remarks
+1 Qui position urs of i urs of i urs of i ime 15 30 15 30 15 30 15 30 15	bon of Purge Wi Development: Decon:	ater: <u>1.5</u> <u>1.0</u> DTW (ft) (PVC) 10.34 12.45 12.45 13.45 17.30 21.20 turoi 250 23.65	Clarity/ Color	Temp. (°C) 15.7 5.3 5.5 16.2 16.4	рн 5.65 5.89 6.02 6.09 6.32 6.61 6.62 6.62	2 + 75 gpt lay) Conductivity ImS/cm) 3 59 3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50	Turbidity - 1? - 1? - 1? - 1? - 1? - 1? - 1? - 1?	DO 1.76 · 92 · 64 · 53 · 53 · 52 · 55 · 55 · 57	Remarks

APPENDIX E

SPECIFIC CAPACITY DATA

Appendix E
Transmissivity and Hydraulic Conductivity Results from Specific Capacity Tests
MW-27D

		Elapsed Time		Incremental	Cumulative	Discharge		Transmissivity	Log Transmissivity	Specific Capacity
Date	Time	(min)	W.L (Ft. BTOR)	Drawdown (ft)	Drawdown (ft)	(mL/min)	Discharge (ft^3/day)	(ft^2/day)	(ft^2/day)	(gpm/ft)
08/13/2002	0735	0	23.6	-	-	945	48.195			
08/13/2002	0830	55	33.8	10.2	10.2	945	48.195	95.10	1.98	0.02
08/13/2002	0930	115	44.4	10.6	20.8	945	48.195	59.00	1.77	0.01
08/13/2002	1030	175	47.75	3.35	24.15	945	48.195	53.38	1.73	0.01
08/13/2002	1130	235	48.3	0.55	24.7	945	48.195	52.58	1.72	0.01
08/13/2002	1245	310	45.5	-2.8	21.9	945	48.195	57.00	1.76	0.01
08/13/2002	1340	365	48.8	3.3	25.2	945	48.195	51.88	1.72	0.01
08/13/2002	1435	420	48.9	0.1	25.3	945	48.195	51.74	1.71	0.01
										Average Q/s
							Average "T"	60.62	59.02	0.01
							Thickness (ft)	25	25	
							Hydraulic Conductivity			
							(ft/day)	2.42	2.36	
							Hydraulic Conductivity			
							(cm/sec)	8.55E-04	8.33E-04	

T=33.6(Q/s)^0.67 : Method Razack and Huntley (1991) as cited in Fetter (Applied Hydrogeology, 1994, Section 7.6, page 256-257, eq., 7-90b)

ft. BTOR = Feet Below Top of Riser

ft = Feet

T = Transmissivity

mL/min = Milliliters per Minute

Appendix E
Transmissivity and Hydraulic Conductivity determined from Specific Capacity Data - MW-27D

		Elapsed Time		Incremental	Cumulative	Discharge		Transmissivity	Log Transmissivity	Specific Capacity
Date	Time	(min)	W.L (Ft. BTOR)	Drawdown (ft)	Drawdown (ft)	(mL/min)	Discharge (ft^3/day)	(ft^2/day)	(ft^2/day)	(gpm/ft)
08/12/2002	1430	0	18.35	-	-	945	48.195			
08/12/2002	1500	30	31.1	12.75	12.75	945	48.195	81.90	1.91	0.02
08/12/2002	1520	50	36.1	5	17.75	945	48.195	65.61	1.82	0.01
08/12/2002	1555	85	38.9	2.8	20.55	945	48.195	59.48	1.77	0.01
08/12/2002	1625	115	42.35	3.45	24	945	48.195	53.61	1.73	0.01
08/12/2002	1655	145	44.65	2.3	26.3	945	48.195	50.42	1.70	0.01
08/12/2002	1730	180	45.24	0.59	26.89	945	48.195	49.67	1.70	0.01
08/12/2002	1743	193	45.36	0.12	27.01	945	48.195	49.53	1.69	0.01
										Average Q/s
							Average "T"	59.97	58.99	0.01
							Thickness (ft)	25	25	
							Hydraulic Conductivity			
							(ft/day)	2.40	2.36	
							Hydraulic Conductivity			
							(cm/sec)	8.46E-04	8.32E-04	

T=33.6(Q/s)^0.67 : Method Razack and Huntley (1991) as cited in Fetter (Applied Hydrogeology, 1994, Section 7.6, page 256-257, eq., 7-90b)

ft. BTOR = Feet Below Top of Riser

ft = Feet

T = Transmissivity

mL/min = Milliliters per Minute gpm/ft = Gallons per Mintue per foot

Appendix E Transmissivity and Hydraulic Conductivity determined from Specific Capacity Data - MW-28D

		Elapsed Time		Incremental	Cumulative	Discharge		Transmissivity	Log Transmissivity	Specific Capacity
Date	Time	(min)	W.L (Ft. BTOR)	Drawdown (ft)	Drawdown (ft)	(mL/min)	Discharge (ft^3/day)	(ft^2/day)	(ft^2/day)	(gpm/ft)
08/12/2002	1330	0	25.6	-	-	800	40.8			
08/12/2002	1345	15	25.98	0.38	0.38	600	30.6	635.80	2.80	0.42
08/12/2002	1400	30	26.6	0.62	1	700	35.7	368.66	2.57	0.19
08/12/2002	1415	45	26.8	0.2	1.2	660	33.66	313.66	2.50	0.15
08/12/2002	1430	60	26.9	0.1	1.3	650	33.15	294.25	2.47	0.13
08/12/2002	1445	75	27.1	0.2	1.5	580	29.58	247.70	2.39	0.10
08/12/2002	1500	90	27.1	0	1.5	580	29.58	247.70	2.39	0.10
08/12/2002	1515	105	27.1	0	1.5	580	29.58	247.70	2.39	0.10
08/12/2002	1530	120	27.12	0.02	1.52	580	29.58	245.51	2.39	0.10
										Average Q/s
							Average "T"	325.12	307.87	0.16
							Thickness (ft)	25	25	
							Hydraulic Conductivity			
							(ft/day)	13.00	12.31	
							Hydraulic Conductivity			
							(cm/sec)	4.59E-03	4.34E-03	

T=33.6(Q/s)^0.67 : Method Razack and Huntley (1991) as cited in Fetter (Applied Hydrogeology, 1994, Section 7.6, page 256-257, eq., 7-90b)

ft. BTOR = Feet Below Top of Riser

ft = Feet

T = Transmissivity

mL/min = Milliliters per Minute

Appendix E
Transmissivity and Hydraulic Conductivity determined from Specific Capacity Data - MW-31D

		Elapsed Time	Elapsed Time		Incremental	Cumulative	Discharge		Transmissivity	Log Transmissivity	Specific Capacity
Date	Time	(min)	(min)	W.L (Ft. BTOR)	Drawdown (ft)	Drawdown (ft)	(mL/min)	Discharge (ft^3/day)	(ft^2/day)	(ft^2/day)	(gpm/ft)
02/21/2003	9:30	0	0	6.7	-	-	18900	963.9			
02/21/2003	10:55	0	85	8.61	1.91	1.91	18900	963.9	2174.44	3.34	2.62
02/21/2003	11:03	8	93	8.7	0.09	2	18900	963.9	2108.39	3.32	2.50
02/21/2003	11:10	15	100	8.7	0	2	18900	963.9	2108.39	3.32	2.50
02/21/2003	11:20	25	110	8.65	-0.05	1.95	18900	963.9	2144.46	3.33	2.56
02/21/2003	11:30	35	120	8.65	0	1.95	18900	963.9	2144.46	3.33	2.56
02/21/2003	11:40	45	130	8.66	0.01	1.96	18900	963.9	2137.12	3.33	2.55
02/21/2003	11:52	57	142	8.65	-0.01	1.95	18900	963.9	2144.46	3.33	2.56
02/21/2003	12:05	70	155	8.65	0	1.95	18900	963.9	2144.46	3.33	2.56
											Average Q/s
								Average "T"	2133.10	2133.05	2.55
								Thickness (ft)	25	25	
								Hydraulic Conductivity			
								(ft/day)	85.32	85.32	
								Hydraulic Conductivity			
								(cm/sec)	3.01E-02	3.01E-02	

T=33.6(Q/s)^0.67: Method Razack and Huntley (1991) as cited in Fetter (Applied Hydrogeology, 1994, Section 7.6, page 256-257, eq., 7-90b)

ft. BTOR = Feet Below Top of Riser

ft = Feet

T = Transmissivity

mL/min = Milliliters per Minute

Appendix E
Transmissivity and Hydraulic Conductivity determined from Specific Capacity Data - MW-32D

		Elapsed Time		Incremental	Cumulative	Discharge		Transmissivity	Log Transmissivity	Specific Capacity
Date	Time	(min)	W.L (Ft. BTOR)	Drawdown (ft)	Drawdown (ft)	(mL/min)	Discharge (ft^3/day)	(ft^2/day)	(ft^2/day)	(gpm/ft)
05/06/2003	9:50	0	4.62	-	-	15120	771.12	-	-	
05/06/2003	10:00	10	7.27	2.65	2.65	15120	771.12	1503.61	3.18	1.51
05/06/2003	10:10	20	8	0.73	3.38	15120	771.12	1277.43	3.11	1.18
05/06/2003	10:15	25	7.97	-0.03	3.35	15120	771.12	1285.08	3.11	1.19
05/06/2003	10:20	30	7.95	-0.02	3.33	15120	771.12	1290.25	3.11	1.20
05/06/2003	10:30	40	7.96	0.01	3.34	15120	771.12	1287.66	3.11	1.20
05/06/2003	10:40	50	7.97	0.01	3.35	15120	771.12	1285.08	3.11	1.19
05/06/2003	10:50	60	7.81	-0.16	3.19	15120	771.12	1327.92	3.12	1.25
05/06/2003	11:00	70	7.92	0.11	3.3	15120	771.12	1298.10	3.11	1.21
05/06/2003	11:10	80	7.93	0.01	3.31	15120	771.12	1295.47	3.11	1.21
05/06/2003	11:20	90	7.9	-0.03	3.28	15120	771.12	1303.39	3.12	1.22
05/06/2003	11:30	100	7.9	0	3.28	15120	771.12	1303.39	3.12	1.22
										Average Q/s
							Average "T"	1314.31	1312.99	1.24
							Thickness (ft)	29	29	
							Hydraulic Conductivity			
							(ft/day)	45.32	45.28	
							Hydraulic Conductivity			
							(cm/sec)	1.60E-02	1.60E-02	

T=33.6(Q/s)^0.67: Method Razack and Huntley (1991) as cited in Fetter (Applied Hydrogeology, 1994, Section 7.6, page 256-257, eq., 7-90b)

ft. BTOR = Feet Below Top of Riser

ft = Feet

T = Transmissivity mL/min = Milliliters per Minute

Appendix E
Transmissivity and Hydraulic Conductivity determined from Specific Capacity Data - MW-33D

		Elapsed Time		Incremental	Cumulative	Discharge		Transmissivity	Log Transmissivity	Specific Capacity
Date	Time	(min)	W.L (Ft. BTOR)	Drawdown (ft)	Drawdown (ft)	(mL/min)	Discharge (ft^3/day)	(ft^2/day)	(ft^2/day)	(gpm/ft)
09/16/2002	1415	0	16.1	-	-	4000	204	-	-	
09/16/2002	1430	15	19.95	3.85	3.85	3000	153	396.12	2.60	0.21
09/16/2002	1445	30	20.85	0.9	4.75	3000	153	344.11	2.54	0.17
09/16/2002	1500	45	21.11	0.26	5.01	3000	153	332.04	2.52	0.16
09/16/2002	1515	60	21.15	0.04	5.05	3000	153	330.28	2.52	0.16
09/16/2002	1530	75	21.17	0.02	5.07	3000	153	329.40	2.52	0.16
09/16/2002	1545	90	21.18	0.01	5.08	3000	153	328.97	2.52	0.16
09/16/2002	1600	105	21.18	0	5.08	3000	153	328.97	2.52	0.16
09/16/2002	1615	120	21.18	0	5.08	3000	153	328.97	2.52	0.16
										Average Q/s
							Average "T"	339.86	339.21	0.16
							Thickness (ft)	22	22	
							Hydraulic Conductivity			
							(ft/day)	15.45	15.42	
							Hydraulic Conductivity			
							(cm/sec)	5.45E-03	5.44E-03	

T=33.6(Q/s)^0.67 : Method Razack and Huntley (1991) as cited in Fetter (Applied Hydrogeology, 1994, Section 7.6, page 256-257, eq., 7-90b)

ft. BTOR = Feet Below Top of Riser

ft = Feet

T = Transmissivity

mL/min = Milliliters per Minute

Appendix E
Transmissivity and Hydraulic Conductivity determined from Specific Capacity Data - MW-34D

		Elapsed Time		Incremental	Cumulative	Discharge		Transmissivity	Log Transmissivity	Specific Capacity
Date	Time	(min)	W.L (ft. BTOR)	Drawdown (ft)	Drawdown (ft)	(mL/min)	Discharge (ft^3/day)	(ft^2/day)	(ft^2/day)	(gpm/ft)
09/17/2002	1015	0	13.6	-	-	2000	102	-	-	
09/17/2002	1030	15	15.6	2	2	2000	102	468.18	2.67	0.26
09/17/2002	1045	30	16.85	1.25	3.25	2000	102	338.17	2.53	0.16
09/17/2002	1100	45	17.75	0.9	4.15	2000	102	287.08	2.46	0.13
09/17/2002	1115	60	17.93	0.18	4.33	1500	76.5	230.12	2.36	0.09
09/17/2002	1130	75	17.85	-0.08	4.25	1500	76.5	233.01	2.37	0.09
09/17/2002	1145	90	17.8	-0.05	4.2	1600	81.6	245.24	2.39	0.10
09/17/2002	1200	105	17.75	-0.05	4.15	1600	81.6	247.22	2.39	0.10
09/17/2002	1215	115	17.75	0	4.15	1600	81.6	247.22	2.39	0.10
09/17/2002	1230	130	17.75	0	4.15	1600	81.6	247.22	2.39	0.10
										Average Q/s
							Average "T"	282.61	275.12	0.13
							Thickness (ft)	25	25	
							Hydraulic Conductivity			
							(ft/day)	11.30	11.00	
							Hydraulic Conductivity			
							(cm/sec)	3.99E-03	3.88E-03	

T=33.6(Q/s)^0.67 : Method Razack and Huntley (1991) as cited in Fetter (Applied Hydrogeology, 1994, Section 7.6, page 256- 257, eq., 7-90b)

ft. BTOR = Feet Below Top of Riser ft = Feet T = Transmissivity mL/min = Milliliters per Minute gpm/ft = Gallons per Minute per foot

APPENDIX F

Monitoring Well Abandonment Forms

No.8416 P.2

DWR-020	
7/02	

New Jersey Department of Environmental Protection Water Supply Element - Bureau of Water Allocation

WELL ABANDONMENT REPORT

MAIL TO: Bureau of Water Allocation PO Box 426 Trenton, NJ 08625-0426	WELL PERMIT # 26/1379-1 of well sealed DATE WELL SEALED 8/8/02
	mical Plant
ADDRESS 100 W. Hunder O	we maywoo NT
WELL LOCATION 1000H u Street & No., Towns	nder avenue, Maywood, beggen County
B38060 Well No.	10 124 Lot No Block No.
USE OF WELL PRIOR TO ABANDONMENT:_	•
REASON FOR ABANDONMENT: NOLO	nger Required
WAS A NEW WELL DRILLED?	, U
TOTAL DEPTH OF WELL 37.5' DIAMETER 2" CASING LENGTH 15.9' SCREEN LENGTH 5' NUMBER OF CASINGS 2" MATERIAL USED TO DECOMMISSION WELL: 97 Gallons of Water 15.9' MATERIAL USED TO DECOMMISSION WELL: 97 Gallons of Water 15.0' Lbs. of Cement 15.0' Lbs. of Sand/Gravel (nonc if well is contaminated) FORMATION: Consolidated To permit adequate grouting, the casing should reproved. Pressure grouting is the only accepted	Cross-section of scaled well
WAS CASING LEFT IN PLACE?	NO CASING MATERIAL: <u>S.S.</u>
WERE OTHER OBSTRUCTIONS LEFT IN WE	LL? DYES IN WHAT WERE THE OBSTRUCTIONS:
IF "YES", AUTHORIZATION GRANTED BY	
Was an alternative decommissioning method used	(NJDEP Official) (Date) and/or approval to decommission granted by a DEP official? TYES
IF "YES", authorization granted by	
I certify that this well was sealed in accordance	ce with N.J.A.C. 7:9D-3 et seq.
Performing Work (Print or Type)	_ P.O. Box & Netrong NJ 07857 0/8/02
Name of NJ Licensed Well Driller	Address Maifing Date Maifing Date Mia 77 ignature of N Licensed Weil Driller Performing Work Registration #
COPIES: White - Water Allocation	Yellow - Owner Pink - Health Dept. Goldenrod - Driller

No.2265 P. 3/3

1

Sep. 5. 2002 9:08AM HRS DRILLI	Sep. 5	. 2002	9:08AM	HRS	6 DRILLING
--------------------------------	--------	--------	--------	-----	------------

DWR-020 1/02 New Jersey Department of Environmental Protection Water Supply Element - Bureau of Water Allocation

WELL ABANDONMENT REPORT

	WELL PIERMIT #26-59/80				
MAIL TO: Bureau of Water Allocation	WELL PIEHMIT # <u>CU U U CU</u> of well sealed				
PO Box 426	DATE WELL SEALED 8/102				
Trenton, NJ 08625-0426	DATE WELL SEALED				
PROPERTY OWNER Connie Tarter - Omni a	sets				
ADDRESS 26 Journal Square 16th Floor	Josey City NJ 073010				
WELL LOCATION May was Cham. cal Superfund S Street & No., Township, County	te, Route 17, Rachelle Park, Bergen				
Well No.	No. Block No.				
USE OF WELL PRIOR TO ABANDONMENT:					
REASON FOR ABANDONMENT: No Longer leg	0/180				
WAS A NEW WELL DRILLED? DYES NO	PERMIT # OF NEVI WELL				
Cross-section	Draw a sketch showing distance and relations of well site to				
TOTAL DEPTH OF WELL <u>8.5</u> of sealed well DIAMETER <u>2"</u>	nearest roads, buildings, etc.				
CASING LENGTH 3.5	NYS.WRE				
SCREEN LENGTH <u>5'</u> NUMBER OF CASINGS	50'				
	X				
MATERIAL USED TO DECOMMISSION WELL:					
9 L Galions of Water 197 Lbs. of Cement Lbs. of Bentonite Lbs. of Sand/Gravel (none if well is contaminated) Lbs.					
FORMATION: Consolidated					
Unconsolidated	≜ N				
To permit adequate grouting, the casing should remain in place, but ungrouted liner pipes or any other obstructions must be removed. Pressure grouting is the only accepted method.					
	MATERIAL: PVC				
WERE OTHER OBSTRUCTIONS LEFT IN WELL? TYES NO	WHAT WERE THE OBSTRUCTIONS:				
IF "YES", AUTHORIZATION GRANTED BY	ON (Date)				
Was an alternative decommissioning method used? YES					
IF "YES", authorization granted by(NJDEP Official	O N (Date)				
I certify that this well was sealed in accordance with N.J.A.	C. 7:9D-3 et seq.				
Gorbon Mewett POR	Dox 8 Netrong NJ all 7 9 4 02				
Performing Work (Print or Type)	Address Mailing Date Tona 1857				
Name of NJ Licensed Well Driller Signature of NJ Performing Wor	Licensed Well Driller Registration #				
COPIES: White - Water Allocation Yellow - Own					

DWR-020 S:08AM H R S DRILLING New Jersey Department of Er	No.2265 P. 2/3 Ivironmental Protection
1/02 Water Supply Element - Bure	au of Water Allocation
WELL ABANDONN	IENT REPORT
MAIL TO: Bureau of Water Allocation	WELL PERMIT # 26-59181
PO Box 426 Trenton, NJ 08625-0426	DATE WELL SEALED 5/1702
PROPERTY OWNER <u>Connie</u> Tauber- Om	
ADDRESS 216 Journal Square, 16th F	
WELL LOCATION May woo Chemical Systems Street & No., Township, County	Site Route 17, Rochelle Park, Berg
mwid	19.02
Well No. Lot	No. Block No.
USE OF WELL PRIOR TO ABANDONMENT:	
REASON FOR ABANDONMENT: No Longe Re	quireo
WAS A NEW WELL DRILLED? DYES MO	PERMIT # OF NEW WELL
TOTAL DEPTH OF WELL <u>46</u> DIAMETER <u>46</u> CASING LENGTH <u>21</u> SCREEN LENGTH <u>21</u> NUMBER OF CASINGS	Draw a sketch showing distance and relations of well site to nearest roads, buildings, etc. NYSSWRL
MATERIAL USED TO DECOMMISSION WELL:	50'
SY Gallons of Water BY Gallons of Water Lbs. of Cement Lbs. of Bentonite Lbs. of Sand/Gravel (none if well is contaminated)	$30'$ $602' \rightarrow 7$ $-$
FORMATION: Consolidated	↑N
To permit adequate grouting, the casing should remain in place, to be removed. Pressure grouting is the only accepted method.	
	MATERIAL: Steel
WERE OTHER OBSTRUCTIONS LEFT IN WELL? TYES THE	WHAT WERE THE OBSTRUCTIONS:
	Official) ON
Was an alternative decommissioning method used?	
IF "YES", authorization granted by(NJDEP Official)	ON(Date)
I certify that this well was sealed in accordance with N.J.A.	C. 7:9D-3 et seq.
	x 8 Netting NJOTES 9402
Performing Work (Print or Type) Name of NJ Licensed Well Driller	Address Mailing Date
Signature of NJ Performing Work	Licensed Well Driller Registration #
COPIES: White - Water Allocation Yellow - Own	

APPENDIX G

BOREHOLE GEOPHYSICAL REPORT

Draft Borehole Geophysics Logging Report MW-27D, -28D, -31D, -32D, & -34D Maywood Chemical Superfund Site Maywood, New Jersey

> Prepared for SHAW ENVIRONMENTAL July 2003

GEOPHYSICAL APPLICATIONS

GEOPHYSICAL APPLICATIONS

INCORPORATED

July 31, 2003

Mr. Michael Kulbersh SHAW ENVIRONMENTAL 100 Technology Center Drive Stoughton, MA 02072

Subject: Draft Borehole Geophysics Logging Report MW-27D, MW-28D, MW-31D, MW-32D, & MW-34D Maywood Chemical Superfund Site Maywood, New Jersey

Dear Mr. Kulbersh:

Geophysical Applications has performed borehole geophysical logging at the above-noted five wells, to help Shaw Environmental characterize hydraulically-active bedrock fractures encountered by those boreholes.

The logging suite included conventional measurements (caliper, fluid temperature [FTemp], fluid resistivity [FRes], single-point resistance [SPR], spontaneous potential [SP], and natural gamma), acoustic televiewer [ATV], and heat-pulse flowmeter logging.

METHODS OF INVESTIGATION

Survey Control

All borehole logs were referenced to depths below ground surface. The geophysical logging winch contains an optical depth encoder that maintains depth measurements accurate within approximately \pm 0.2 feet throughout each borehole.

Borehole Geophysical Logging

A Mount Sopris model 4MXB digital logging winch was used with Mount Sopris heat-pulse flowmeter, polygamma, and caliper probes to obtain the conventional geophysical log data.

The caliper probe includes a fluid resistivity/fluid temperature subassembly at the probe's bottom. Caliper, fluid temperature, fluid resistivity, SP, SPR, and natural gamma data were recorded at 0.1-foot depth increments, as determined by the logging winch's digital depth encoder. The fluid logs were recorded using a relatively slow speed of 3 to 4 feet per minute, to allow the thermistor to measure subtle temperature variations. The remaining conventional logs were recorded at higher logging speeds (typically 5 to 10 feet per minute).

Acoustic televiewer (ATV) data were recorded using Geophysical Applications' Advanced Logic Technologies (ALT) model ABI40 acoustic televiewer probe, with the Mount Sopris logging winch. This televiewer can adapt to a wide range of borehole diameters (up to 16-inch diameter), and is not hindered by suspended sediments in the water column. ATV data were recorded at 0.01-foot intervals, at a speed of approximately 1.3 feet per minute.

July 31, 2003 Page 2

The ABI40 probe contains a high-frequency sonic transducer, aimed upwards at a rotating mirror. This mirror is tilted approximately 45 degrees from the probe's vertical axis, to aim the sonic pulses at the borehole wall. The transducer divides each sweep around a borehole's circumference into 288 arc segments, and records two-way sonic travel time and reflected signal amplitude from the borehole wall for each arc segment.

Flowmeter data were recorded at specific depths, located approximately 5 feet apart, above and below possible bedrock fractures indicated by field plots of the caliper and fluid temperature/resistivity logs. Flow test depths were adjusted to avoid placing the probe at caliper enlargements that might cause water to flow around the diverter petals instead of through the probe's measurement chamber.

Flow data were recorded in ambient conditions on the downward run, to detect groundwater flow between fracture zones with differing hydraulic head. Flowmeter data were subsequently repeated under low-flow (approximately 0.15 to 0.5 gallons per minute, or gpm) pumping conditions, to help determine which fracture zones were providing significant recharge into the wells. Pumped fluids were temporarily stored on-site in 15-gallon carboys provided by Shaw Environmental, and subsequently transferred to 55-gallon steel drums.

All geophysical logs were recorded on a laptop computer's hard drive, and transferred to CD-ROM as a backup precaution.

Post-survey plot scales were adjusted to display as much detail as possible. All conventional logs from the same borehole were merged onto one log plot, to aid data correlation. Acoustic televiewer logs are presented on a separate page, for clarity. All geophysical log plots presented in this report were prepared using ALT's WellCAD software package, with a special image-processing module for the acoustic televiewer data.

Equipment Decontamination Procedures

Decontamination procedures consisted of an Alconox scrub and tap water rinse of logging cables and probes between logging runs.

SURVEY LIMITATIONS

Measured log depths are estimated to be accurate within \pm 0.2 feet, allowing for some cable stretch and minor slippage of the winches' depth-measurement wheels.

The caliper-probe's arms can measure borehole diameters up to approximately 16 inches. Caliper logs can detect fractures that cross a borehole at moderate angles, typically less than approximately 70 degrees. Caliper logs may not detect near-vertical fractures.

The heat-pulse flowmeter is designed for relatively low-flow environments, typically less than 1.0 gpm. Higher flow rates may produce erroneous flow-rate data values.

Hydraulically-active fracture zones were inferred by correlating numerous geophysical logs. These interpretations are a subjective judgment based upon available data.

The ATV probe's specifications state that measured dip azimuths and dip angles are accurate within <u>+</u>5 degrees. However, down-dip compass azimuths for fractures with dip angles less than 10 degrees may have a greater possible margin of error.

Televiewer probes rely on a three-component magnetometer to orient the recorded images with respect to magnetic north. These images become distorted when the magnetometers approach the bottom of steel casing, typically beginning approximately 1 to 2.5 feet below the steel. This distortion was minimized by importing an unoriented section of the televiewer images (immediately below the steel casing), and rotating it to match a visible feature below the depth where magnetic interference began.

RESULTS

All geophysical logs described in this report are presented in Appendix A.

Interpreted fracture orientations based on the acoustic televiewer (ATV) data are provided in Appendix B. These summaries are Excel spreadsheets, presenting measured fracture depths ("depth" column), down-dip fracture azimuths ("azimuth" column), and fracture dip angles ("tilt" column) measured with the WellCAD software. The "category" column indicates whether the observed feature was judged to be open (category 105, or red), hydraulically conductive (category 107, or blue) or less-open (category 100, or black).

Strat logs (SP, SPR, and natural gamma) and fluid conductivity (FCond) data are presented in the two left-hand columns of each conventional log plot.

Caliper logs are presented in the middle of each conventional-log plot. Inflections to the right indicate borehole enlargements, for example where the drill bit passed through a fracture zone.

Fluid temperature (FTemp) and fluid resistivity (FRes) logs are presented in the next plot column. Localized inflections or changes in slope of either fluid log typically represent water entering or exiting the borehole.

Heat-pulse flowmeter data are presented on the caliper panel (ambient measurements) and on the FTemp/FRes panel (flow measurements while pumping). Shaded boxes to the left of centerline on either panel represent downwards water flow, with the box length indicating the flow magnitude in gpm. Shaded boxes to the right of a panel's centerline represent upwards water flow. Filled circles represent flow measurements that were less than the probe's minimum calibration limit of 0.02 gpm (nearly zero flow). Flowmeter test depths were selected using field plots of the caliper, fluid temperature, and fluid resistivity logs, and were positioned so as to avoid (to the extent possible) caliper enlargements that might adversely affect the flowmeter data.

Acoustic televiewer logs were evaluated using WellCAD's image-processing module, to measure planar-feature dip angles and down-dip azimuths. All inferred down-dip azimuths are referenced to magnetic north. Tadpole plots indicate measured fracture orientations, where the filled circles indicate dip angles (plotted on a graph that ranges between 0 and 90 degrees from left to right). Each tadpole tail points in the measured down-dip azimuth (i.e., perpendicular to the fracture strike direction), assuming that north is straight up on the printed page.

Red tadpoles and sine curves represent fractures judged to be "open", because they were evident on both the ATV traveltime and amplitude plots. Blue tadpoles and sine curves represent fractures judged to be hydraulically conductive, based on correlations with FTemp/FRes or heat-pulse flowmeter data. Black tadpoles and sine curves represent features judged to be "less-open", because they were primarily visible only on the ATV amplitude plots. The tadpoles are presented on both the ATV and conventional log plots, for the reader's convenience.

÷.

Stereoplots indicate the poles to inferred fracture planes. Each stereoplot is an equal-angle, southern hemisphere projection of: a) both the open and less-open (red and black) features, and b) interpreted hydraulically conductive (blue) features. Stereoplots often show distinct clusters of open and/or less-open poles, indicating numerous planar features with similar orientations. Each stereoplot is presented with magnetic north straight up on the printed page. The pole to a horizontal feature plots near a stereoplot's center. Poles for steeply dipping features plot near the diagram's outer edge, on the side of the diagram opposite the downdip compass azimuth.

Rose diagrams summarize the dominant down-dip fracture azimuths (a red rose plot for open fractures, black for less-open, and light grey for all interpreted features within a borehole). The rose diagrams are also presented with magnetic north straight up on the printed page.

The ATV plots include two colored panels, in addition to the rose and tadpole plots. The "traveltime" column presents two-way travel-time data between the probe and the borehole wall, and the "amplitude" column presents ATV reflection-amplitude variations at the borehole wall. Travel-time anomalies generally represent open fractures; amplitude variations can depict both open and less-open features. Note that these columns are oriented with respect to magnetic north, with numbers and vertical lines denoting the north (0), east (90), south (180), and west (270) positions. Each of these colored panels is a cylindrical projection, sliced along the north side, and flattened for presentation on a printed page. Each column therefore progresses from north at the left edge, through east, south, west, and back to north at the right edge.

Interpretations regarding hydraulically active zones are provided in the comments column of each conventional-log plot. All depth ranges described below, and shown on the logs in Appendix A and spreadsheets in Appendix B, are referenced (in units of feet) to the ground surface adjacent to each well.

Selected observations based on the recorded geophysical logs are listed below for each well (most interpretations described below are also shown on the conventional log plots).

<u>MW-27D</u>

This borehole's caliper log shows two enlargements, immediately below the casing bottom and near 50.5 feet deep. FRes and FTemp inflections near 37 to 37.5 feet deep are judged to represent a hydraulically active zone.

Ambient flowmeter tests did not disclose measurable flow. Pumping flow test data indicate that inflow originated greater than 52 feet deep (possibly from the west-dipping feature represented by a blue tadpole near 56 feet). A minor increase in upward flow while pumping apparently occurred between 34.5 and 39 feet deep (probably at the southwest dipping feature represented by a blue tadpole near 37 feet deep).

Most ATV-inferred features dip down towards the west, southeast, or east. The two interpreted hydraulically conductive features dip down gently towards the west and southwest.

<u>MW-28D</u>

Most caliper enlargements throughout this borehole are relatively small, with the largest located approximately 36.5 feet deep.

July 31, 2003 Page 5

Subtle FTemp and FRes inflections near 37 to 37.5 feet deep are interpreted to represent a hydraulically active zone. A distinct FRes inflection near 56.5 feet deep may represent another hydraulically active zone (not corroborated by the flowmeter test results).

High gamma counts may represent radionuclides in soil, approximately 1 to 3 feet below ground surface at this borehole.

Ambient flowmeter tests showed water entering MW-28D between 49 and 56 feet deep, flowing upward, and exiting between the casing bottom and 34 feet deep. Pumping flow tests showed similar results, except with slightly higher flow rates and with some of the upward water flow exiting via the pump.

ATV-inferred planar features dip in a variety of azimuths, primarily ranging between west to northnorthwest. The stereoplot shows most interpreted feature poles on the diagram's southeast quadrant, with dip angles less than 20 degrees from horizontal.

Discrete, hydraulically conductive planar features could not be confidently identified at this borehole, because of the large number of possible choices between 50 and 56 feet deep. The ambient and pumping inflow might have originated from a roughly horizontal granular bed visible on the ATV plot, centered near 53 feet deep.

<u>MW-31D</u>

A distinct caliper enlargement was observed near 29 feet deep, with smaller enlargements common at shallower depths. Relatively smooth borehole walls are evident greater than 30 feet deep.

Several step-wise FRes inflections suggest hydraulically active zones near 30, 34.5, and 39 feet deep. The FRes increase near 43 feet deep represents the upper surface of soft sediments that fill the lower portion of this borehole.

Ambient flowmeter measurements showed weak upward flow originating between 37 and 41 feet deep (probably near the 39-foot subtle FRes inflection), and exiting between 24.5 and 32 feet deep (probably at the 29-foot caliper enlargement and 30-foot FRes inflection).

Pumping flowmeter tests showed weak inflow beginning greater than 41 feet deep. The greatest increase in flow while pumping occurred between 24.5 and 32 feet (probably also at the 29-foot caliper enlargement). Additional inflow while pumping occurred between the casing bottom and 24.5 feet deep (probably immediately below the casing bottom, at a modest caliper enlargement).

Less-open features (black rose plot) dip down primarily towards the west-southwest and southeast. Open features (red rose plot) dip down primarily towards the northwest. Two of the three blue tadpoles representing interpreted hydraulically conductive features indicate the upper and lower surfaces of a nearly horizontal coarse-grained layer centered near 29.5 feet deep.

The ATV probe descended through soft sediments between 43 and 46.5 feet deep (represented by dark grey and dark red colored portions of the ATV image columns), but could not detect the borehole wall through those materials.

<u>MW-32D</u>

This caliper log detected a distinct enlargement near 45 feet deep, with minor diameter variations at shallower depths. A small enlargement is visible near 53 feet deep, but the borehole wall is mostly quite smooth below 46 feet deep. A slightly smaller drill bit appears to have been used below 53 feet deep.

A change in slope of the FRes plot near 41 feet deep probably represents a hydraulically active zone.

Ambient flowmeter tests showed weak upward flow (at the probe's lower measurement limit) at all but one test depth. If these observations are accurate (and not just thermal buoyancy of the warm water pulse), the ambient inflow occurs greater than 54 feet deep.

Weak upward flow was also observed originating greater than 54 feet deep during the pumping flowmeter tests. Most inflow while pumping occurred between 40.5 and 47 feet deep. The visibly open features dipping down steeply towards the southeast were interpreted to be the most likely source of this inflow.

Less open features dip down primarily towards the northwest, whereas interpreted open or hydraulically conductive features dip down towards the southeast.

<u>MW-34D</u>

This borehole showed only minor diameter, FTemp, and FRes variations throughout the uncased section.

Ambient flowmeter tests showed water entering greater than 49 feet deep, flowing upward, and exiting between 40 and 46.5 feet deep.

Pumping flow tests showed weak upward flow originating between 46.5 and 49 feet deep. Additional inflow occurred between the casing bottom and 35 feet deep; this interval provided most of the water that entered while pumping.

Less-open planar features dip down primarily towards the northwest and east-northeast. Open features dip down in widely varying directions that fall into two general groups: a) from southwest to northwest, and b) from northeast to southeast. The stereoplot shows a small group of feature poles clustered immediately southeast of the diagram's center (representing features that dip gently down towards the northwest).

* * * * *

July 31, 2003 Page 7

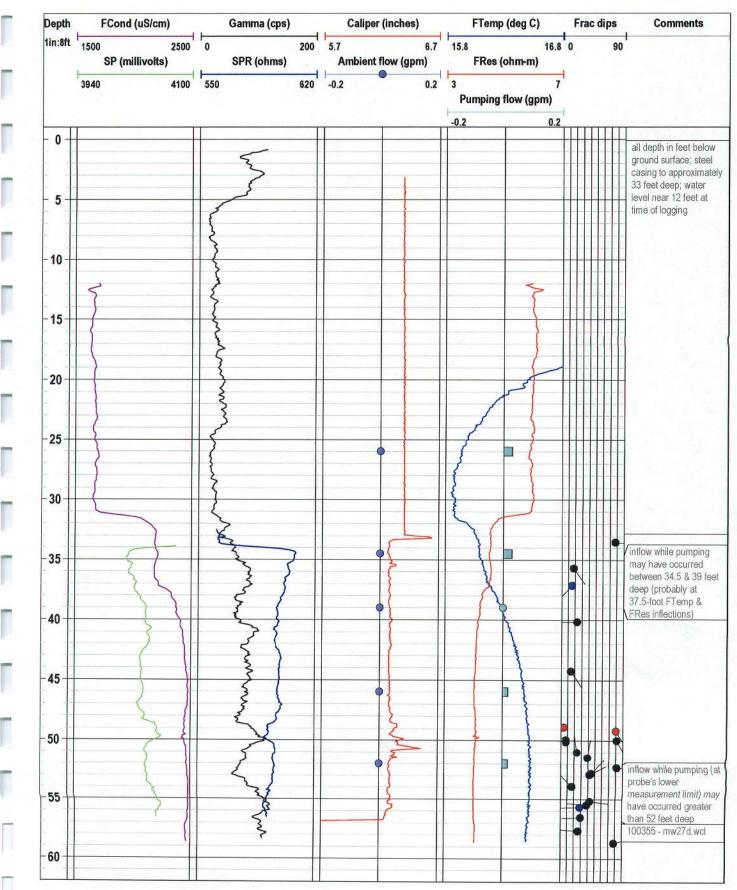
We appreciate this opportunity to provide geophysical services, and we welcome questions concerning this report. Please call the undersigned at 508/543-1388 if we may provide additional information that would benefit Shaw Environmental's project.

Sincerely,

GEOPHYSICAL APPLICATIONS, INC.

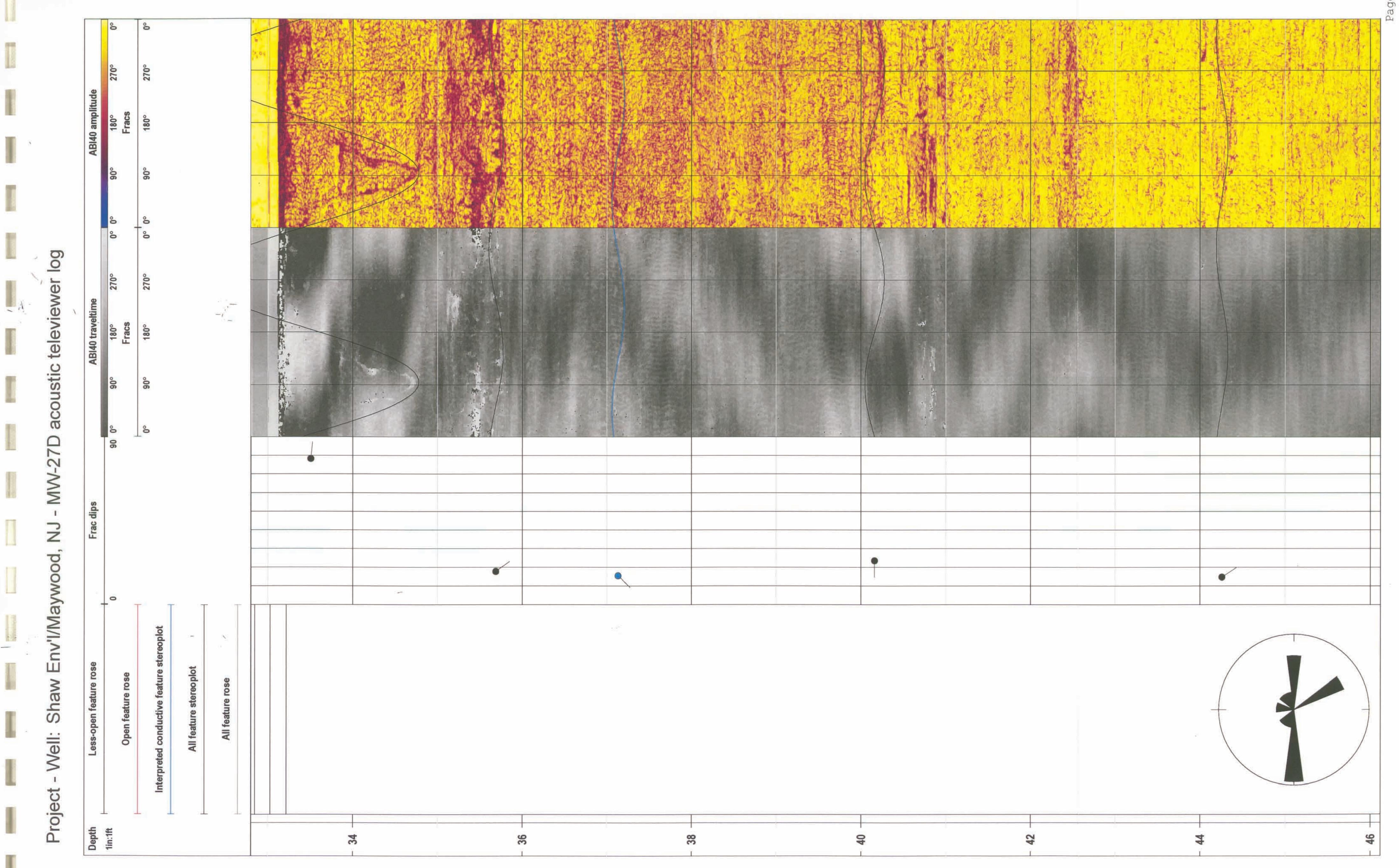
И 2()

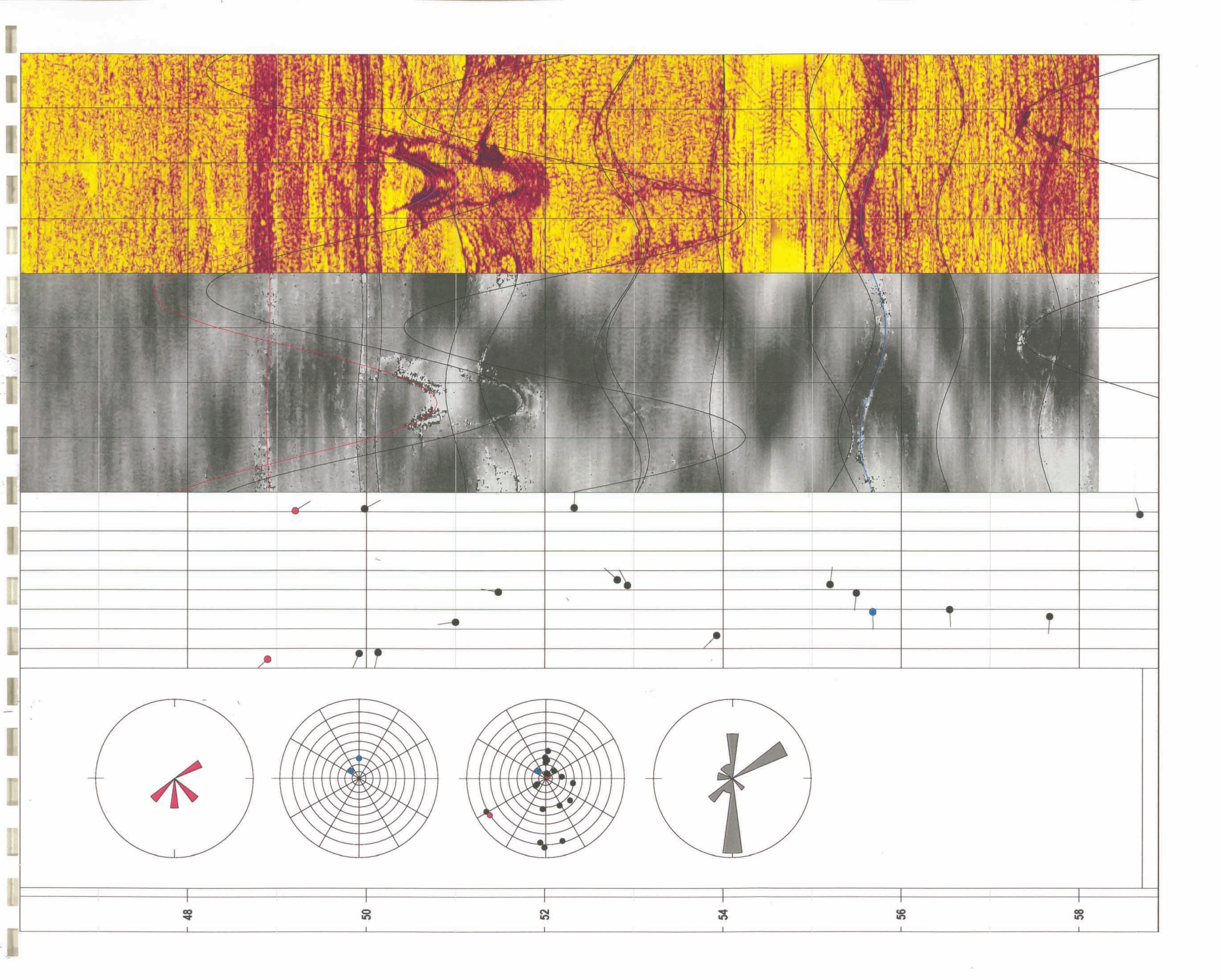
Mark E. Blackey Principal and Geophysicist

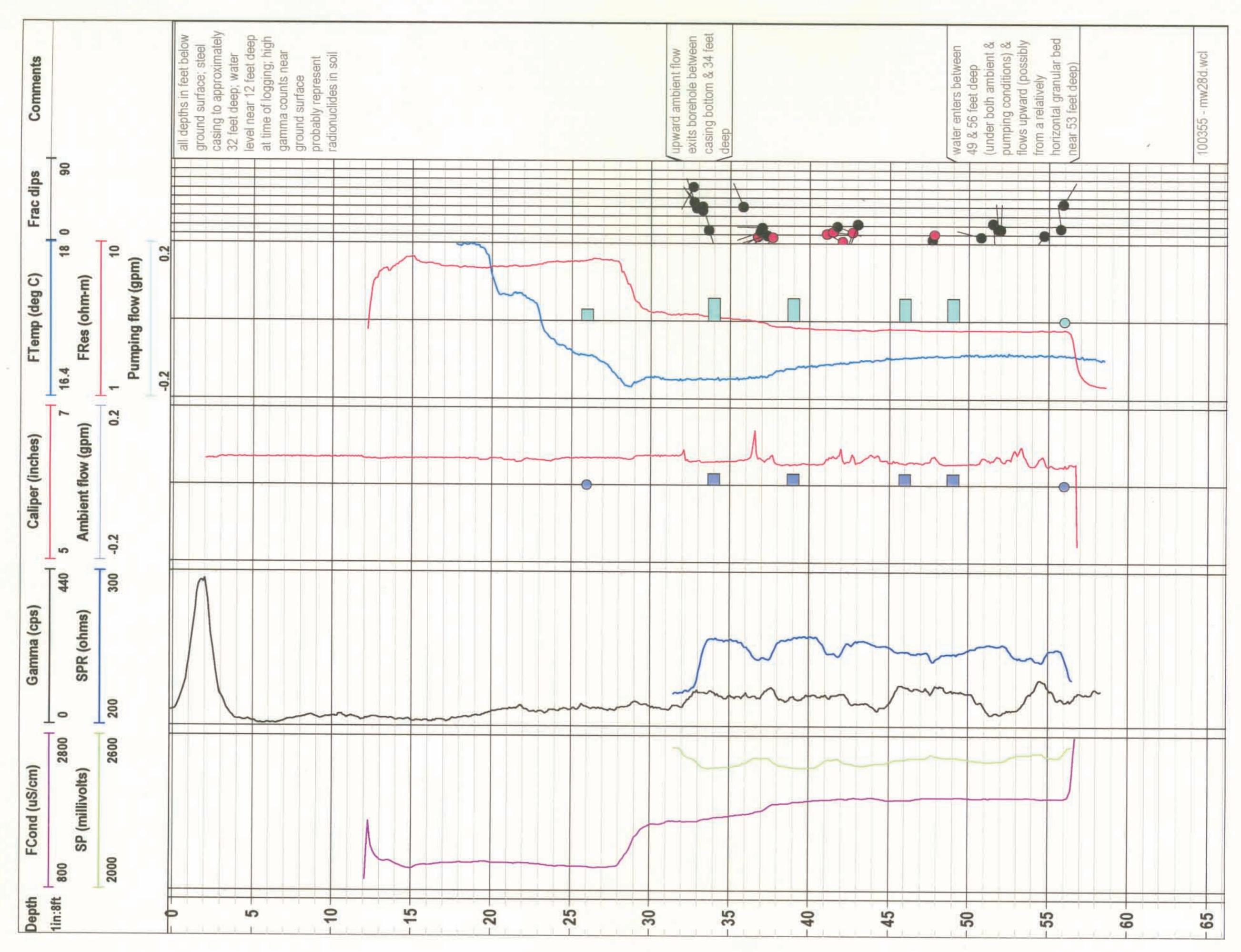

100355 - 100355e.rpt

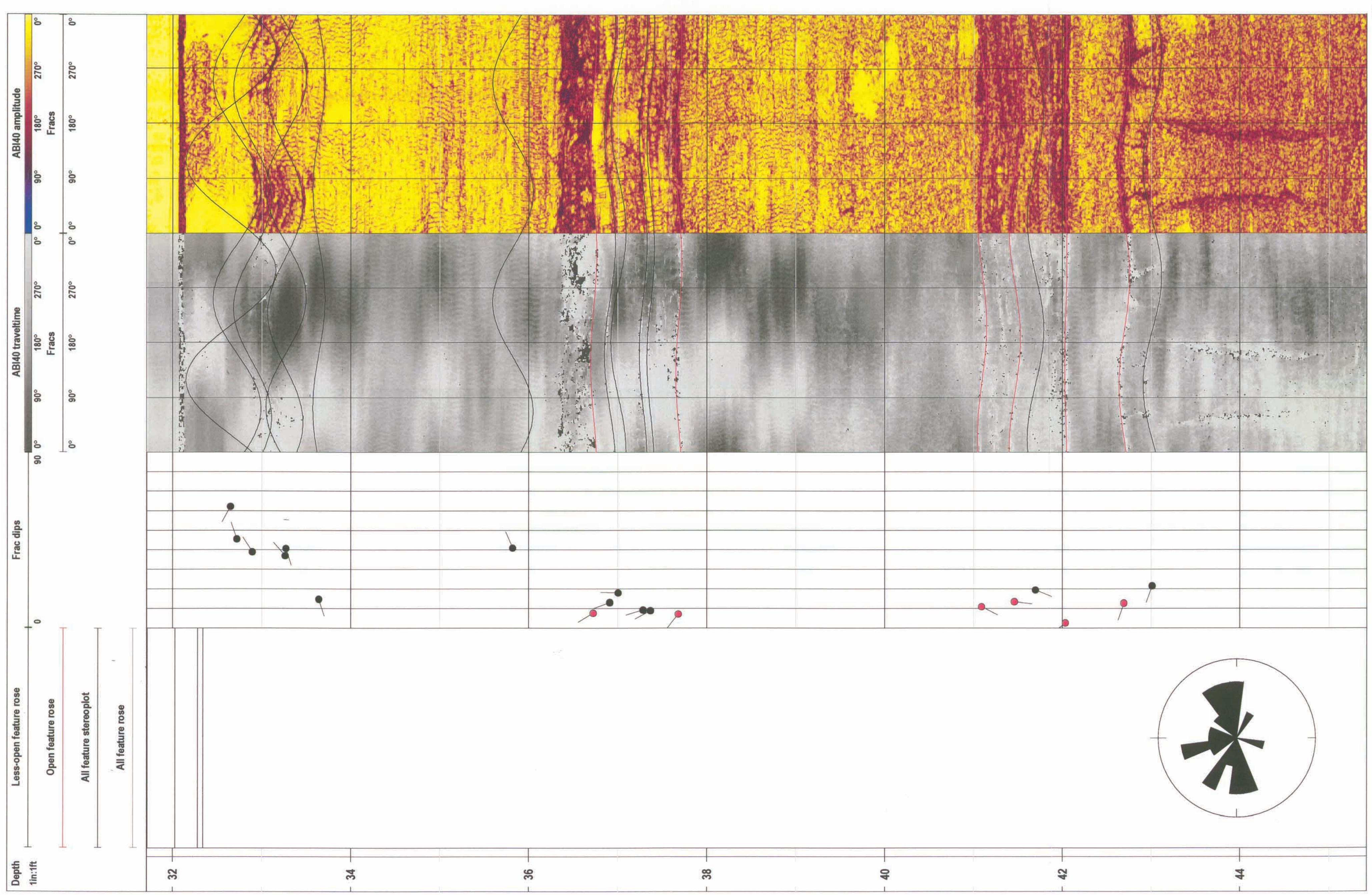
Appendix A

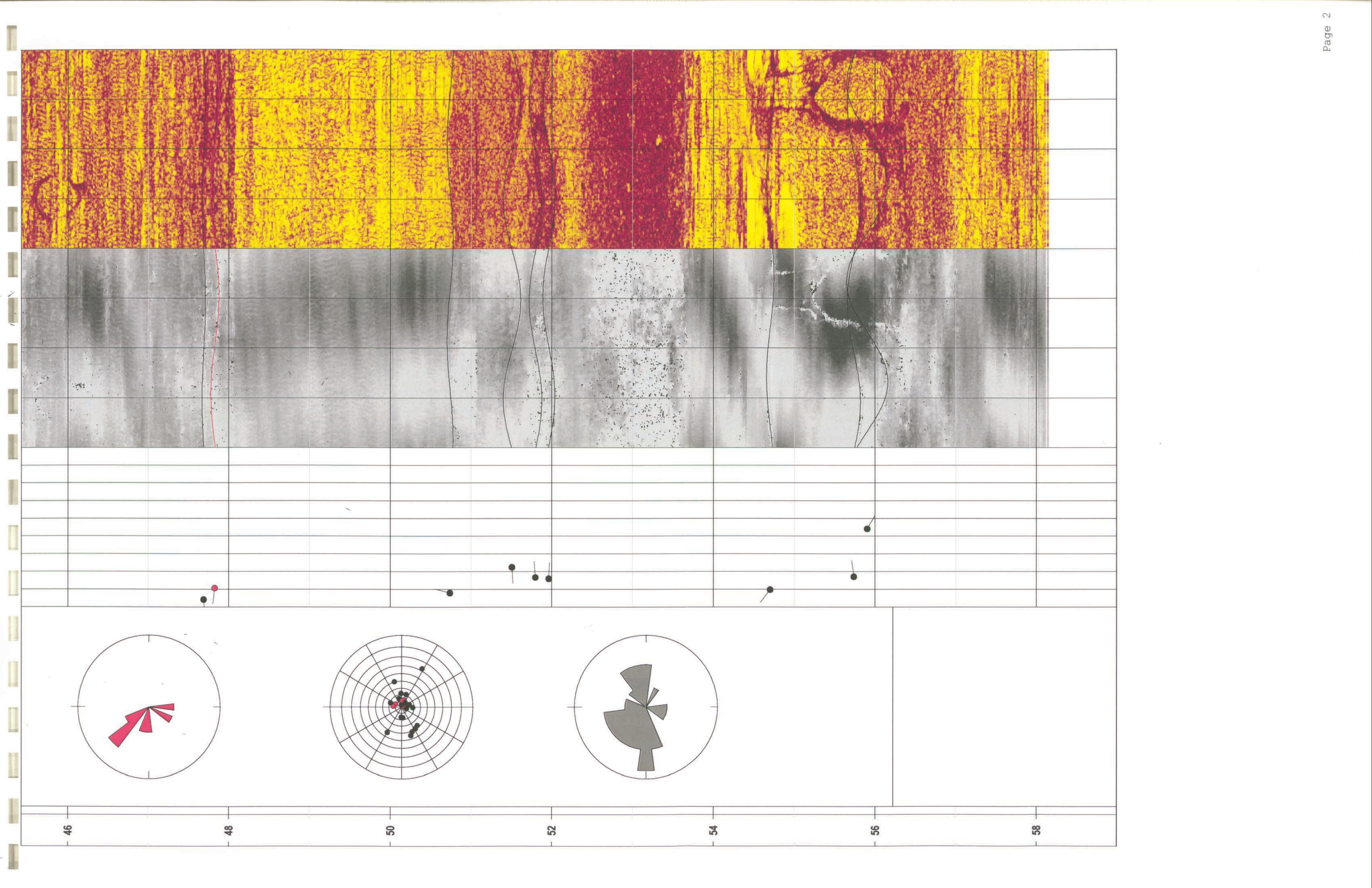
Borehole Geophysical Logs

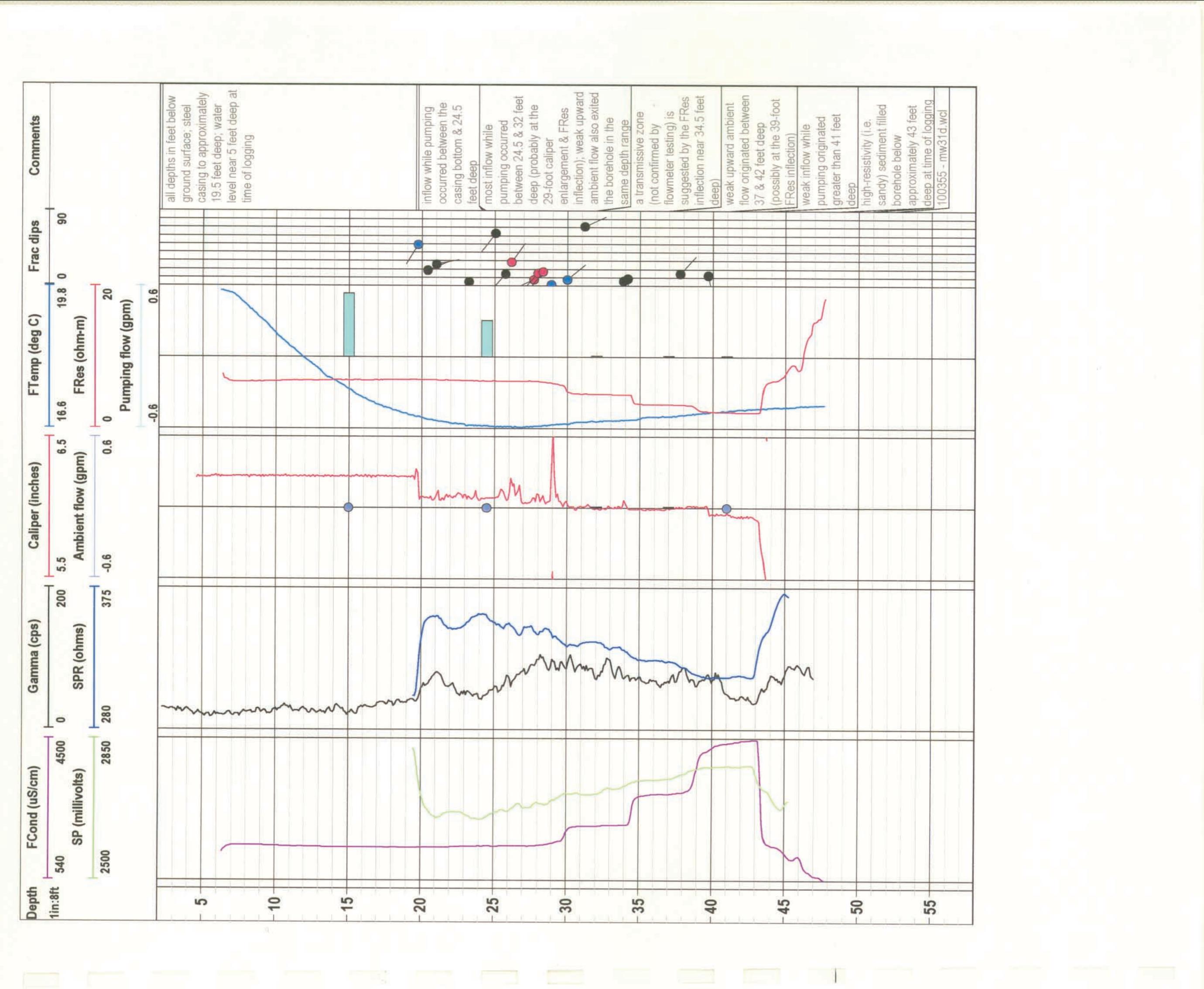

GEOPHYSICAL APPLICATIONS


Project - Well: Shaw Env'l/Maywood, NJ - MW-27D conventional logs

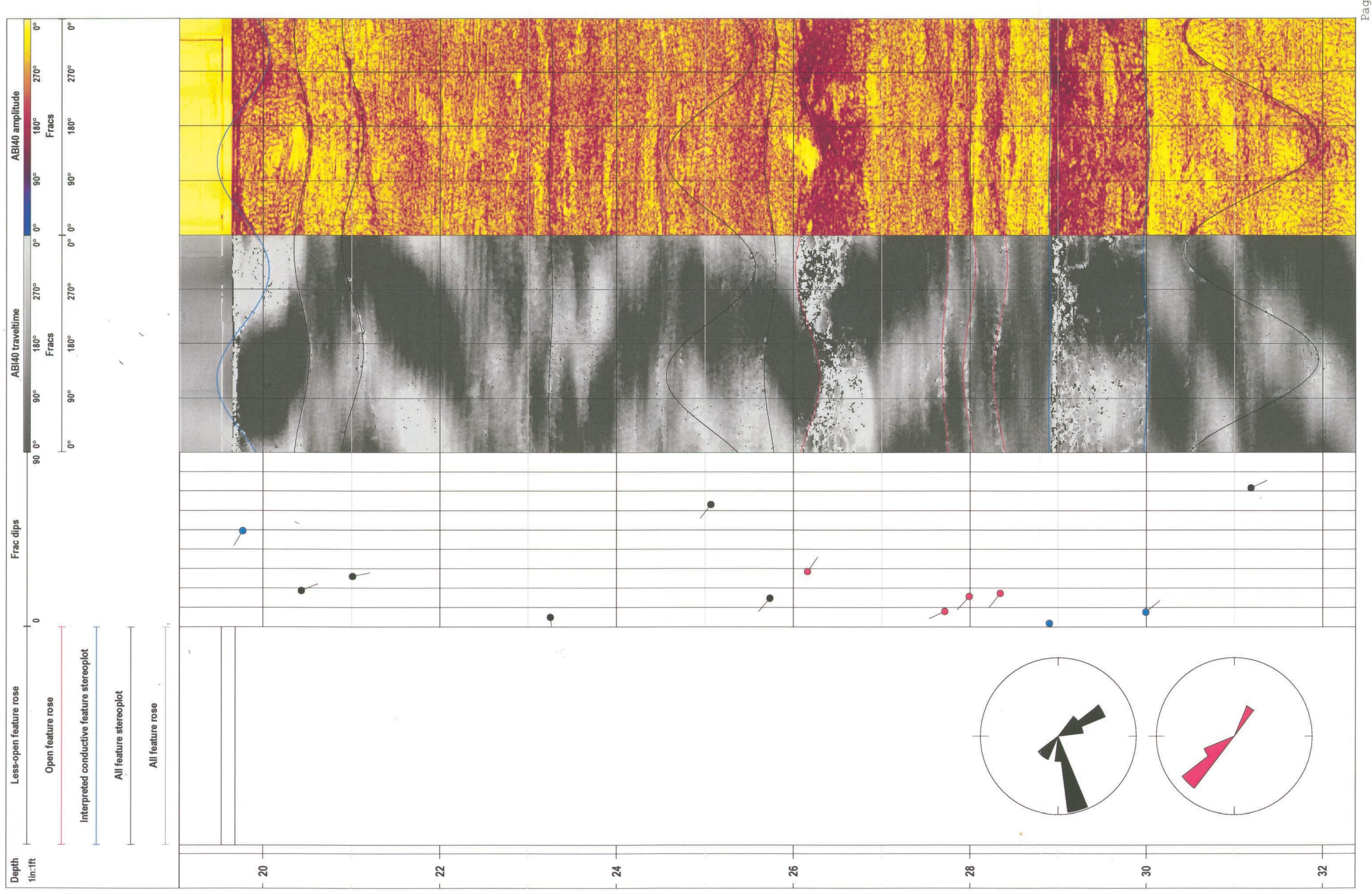

Γ

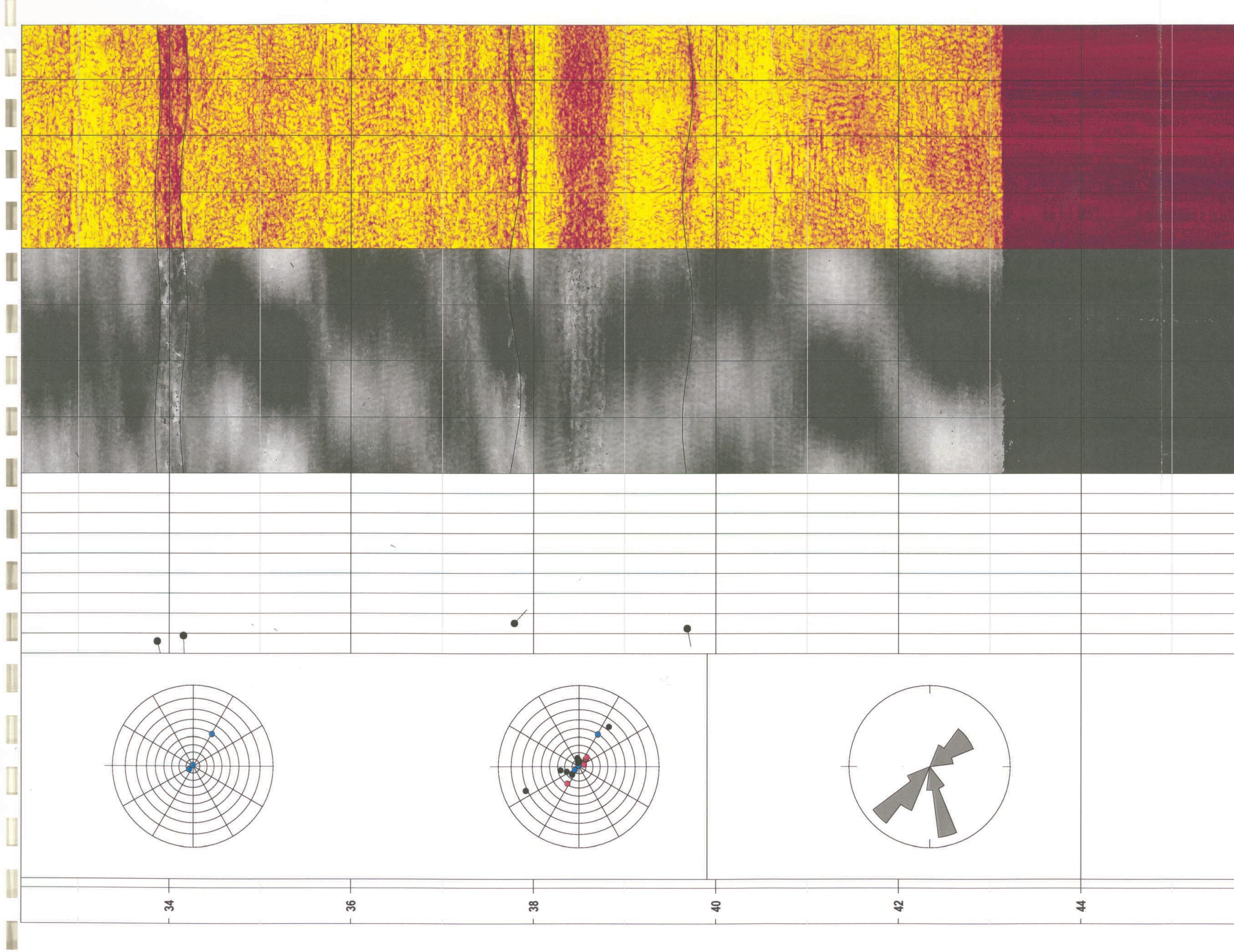

Page 2

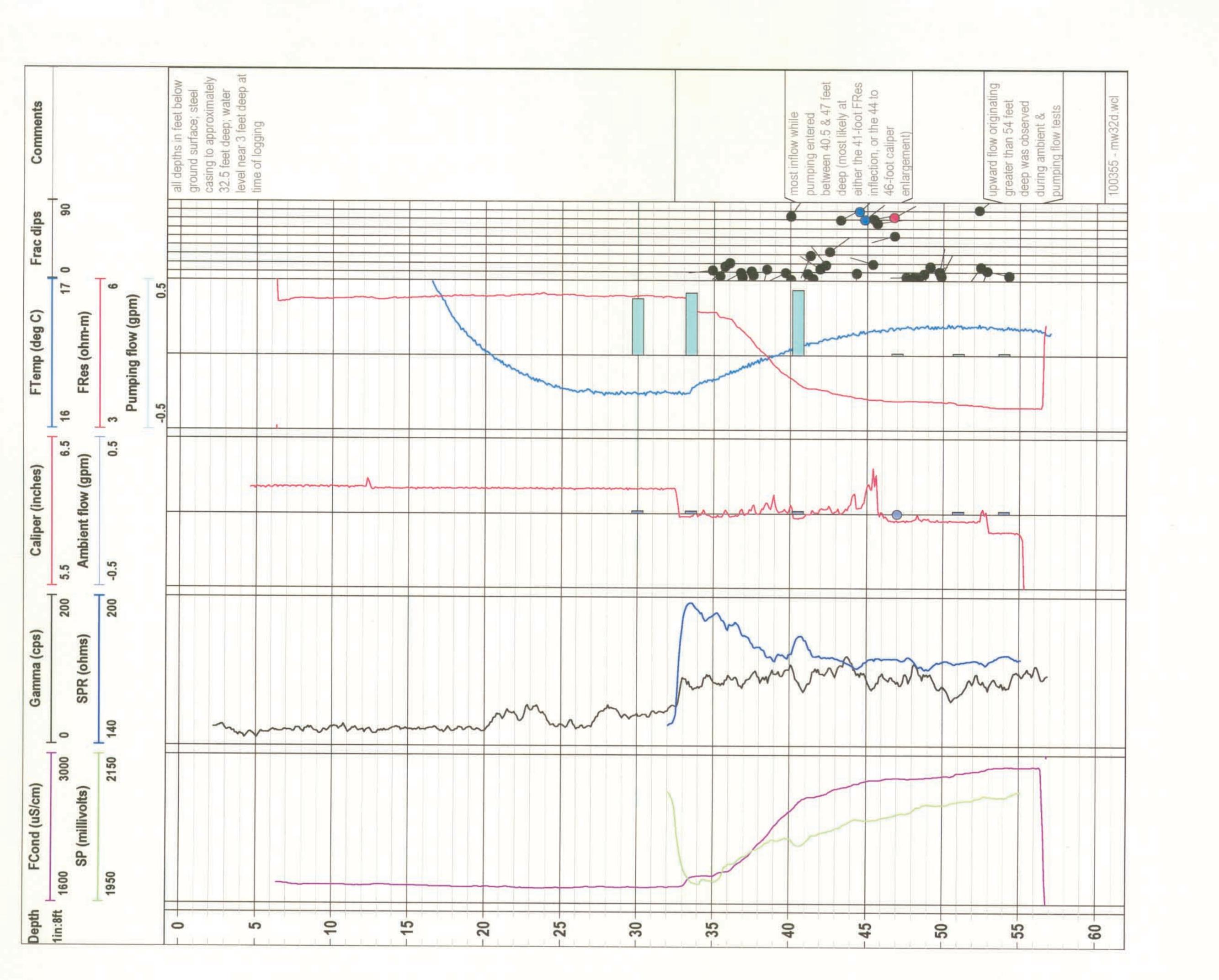

- MW-28D conventional logs d, NJ Shaw Env'l/Maywood Well: Project -

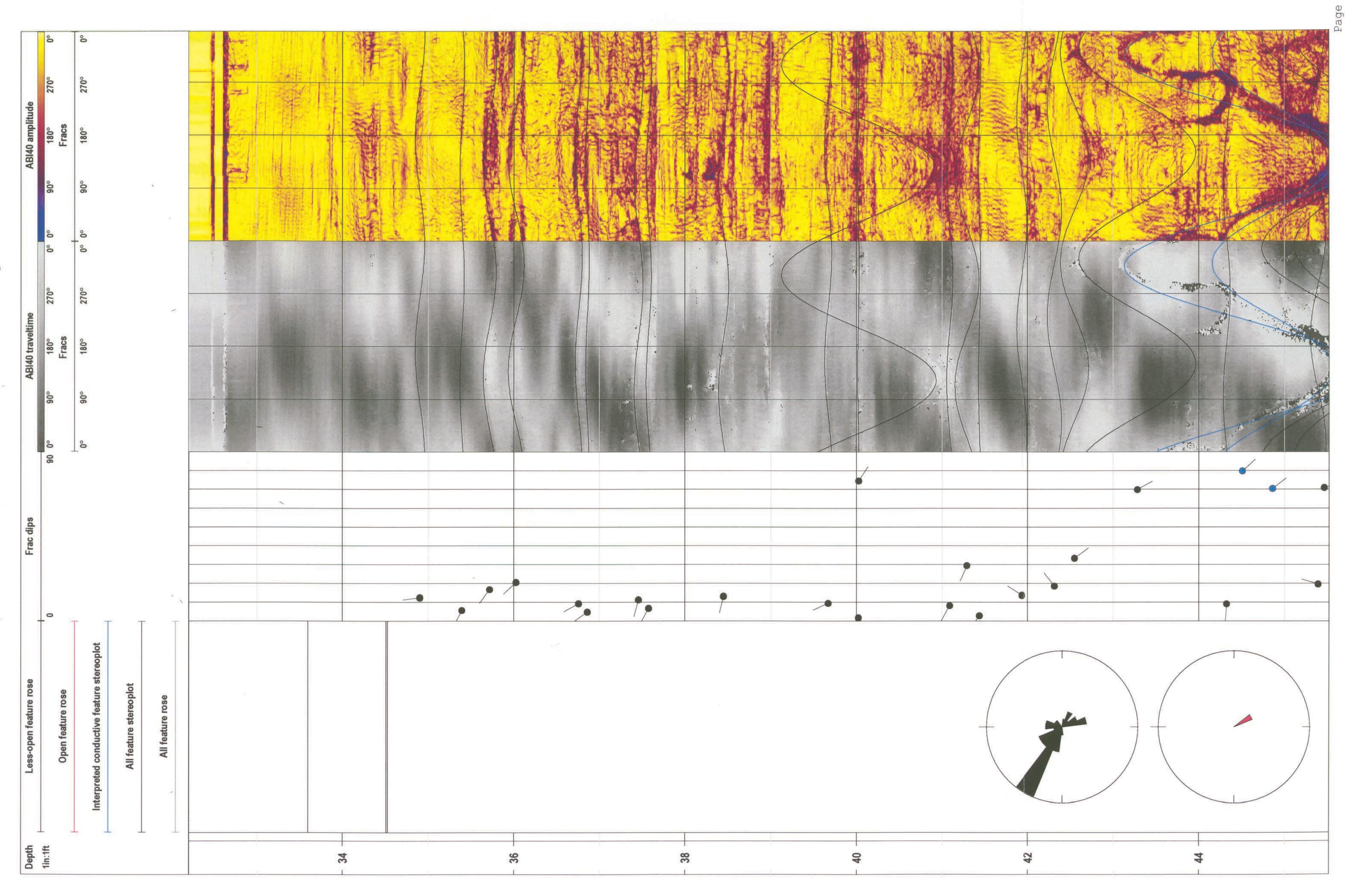

og 1 acoustic televie 28D MM R -0 8 'I/May ш Shaw Vell: さ **Proje**(

1.00

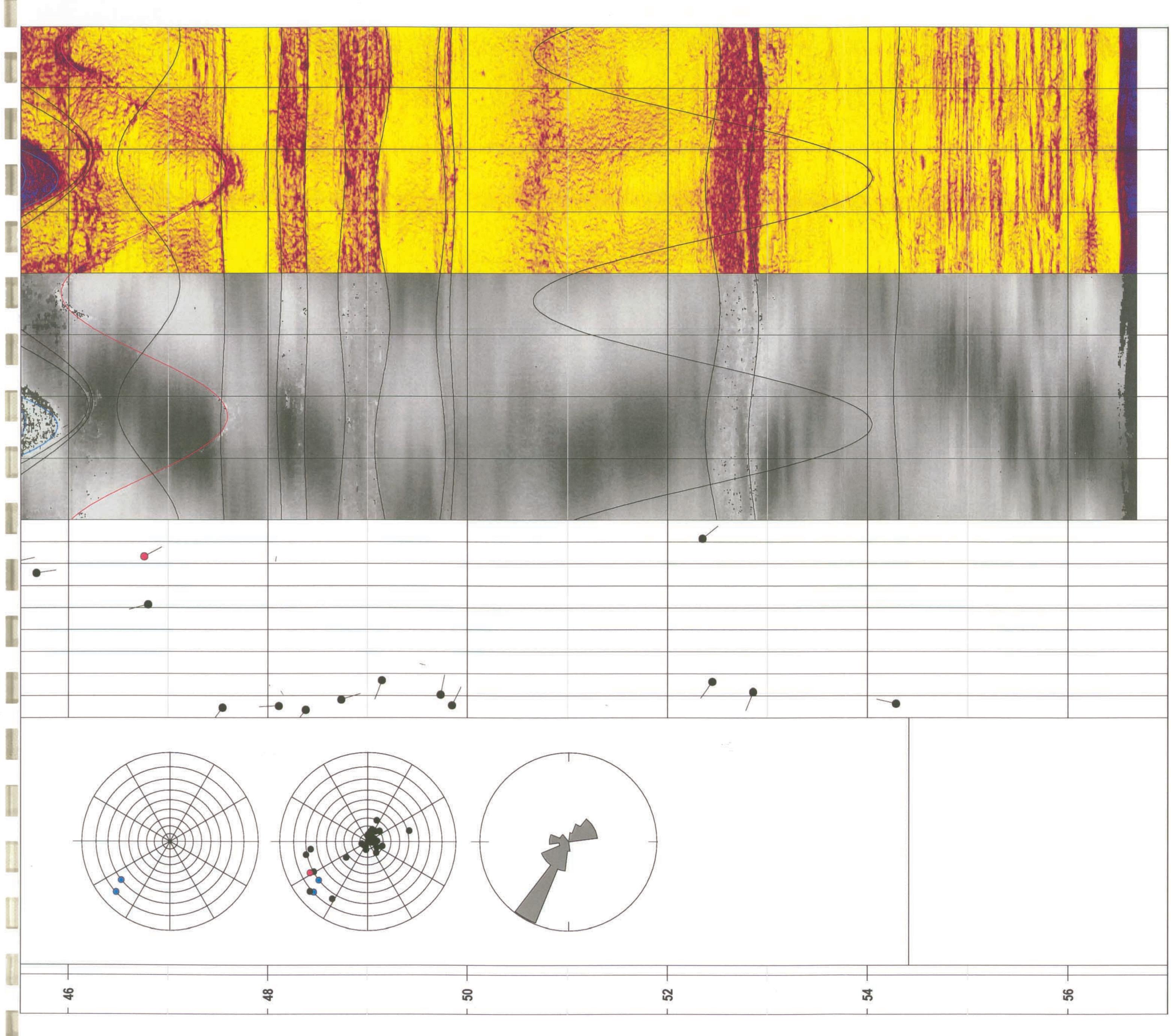


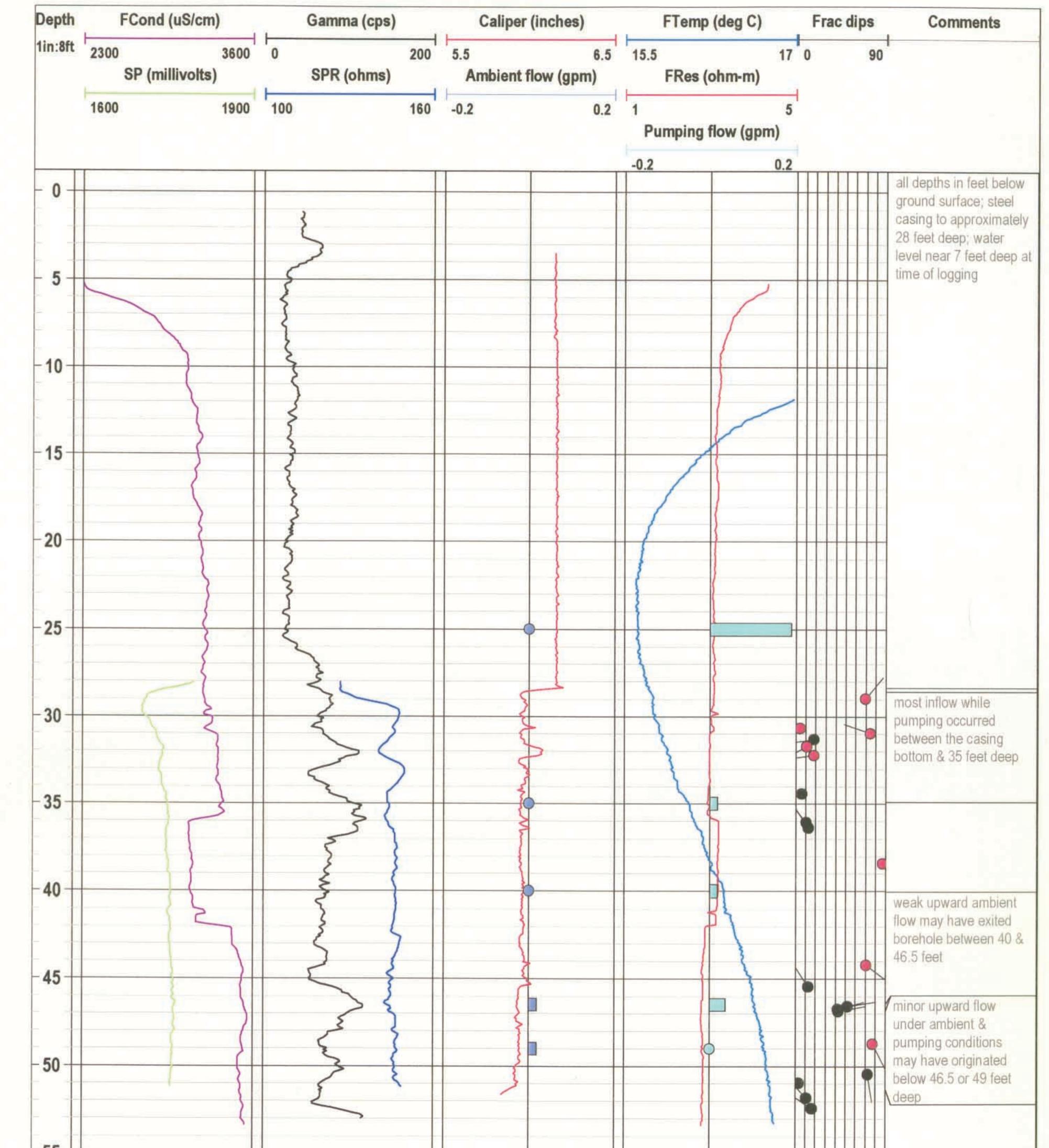

- MW-31D conventional logs Shaw Env'I/Maywood, NJ Project - Well:

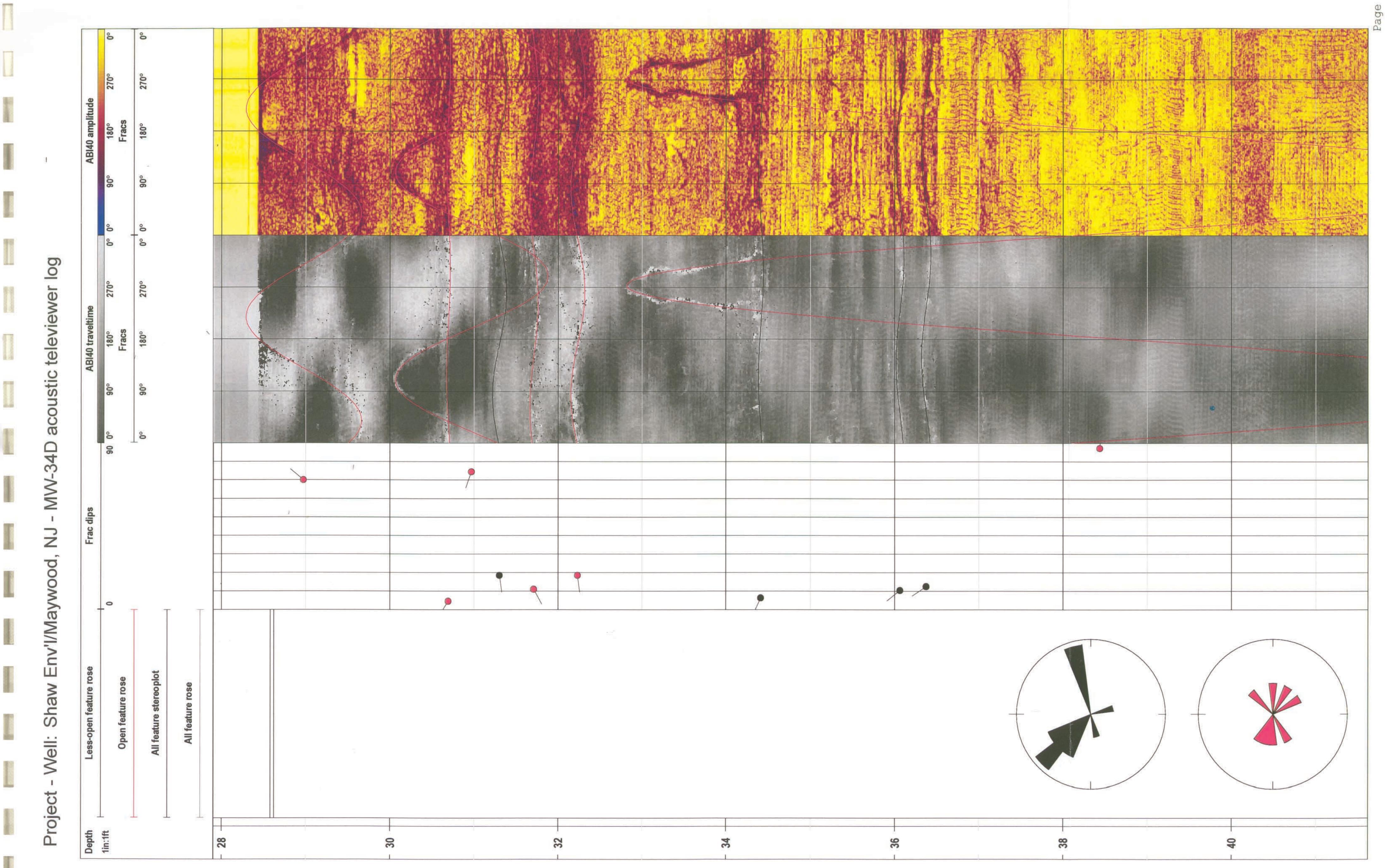


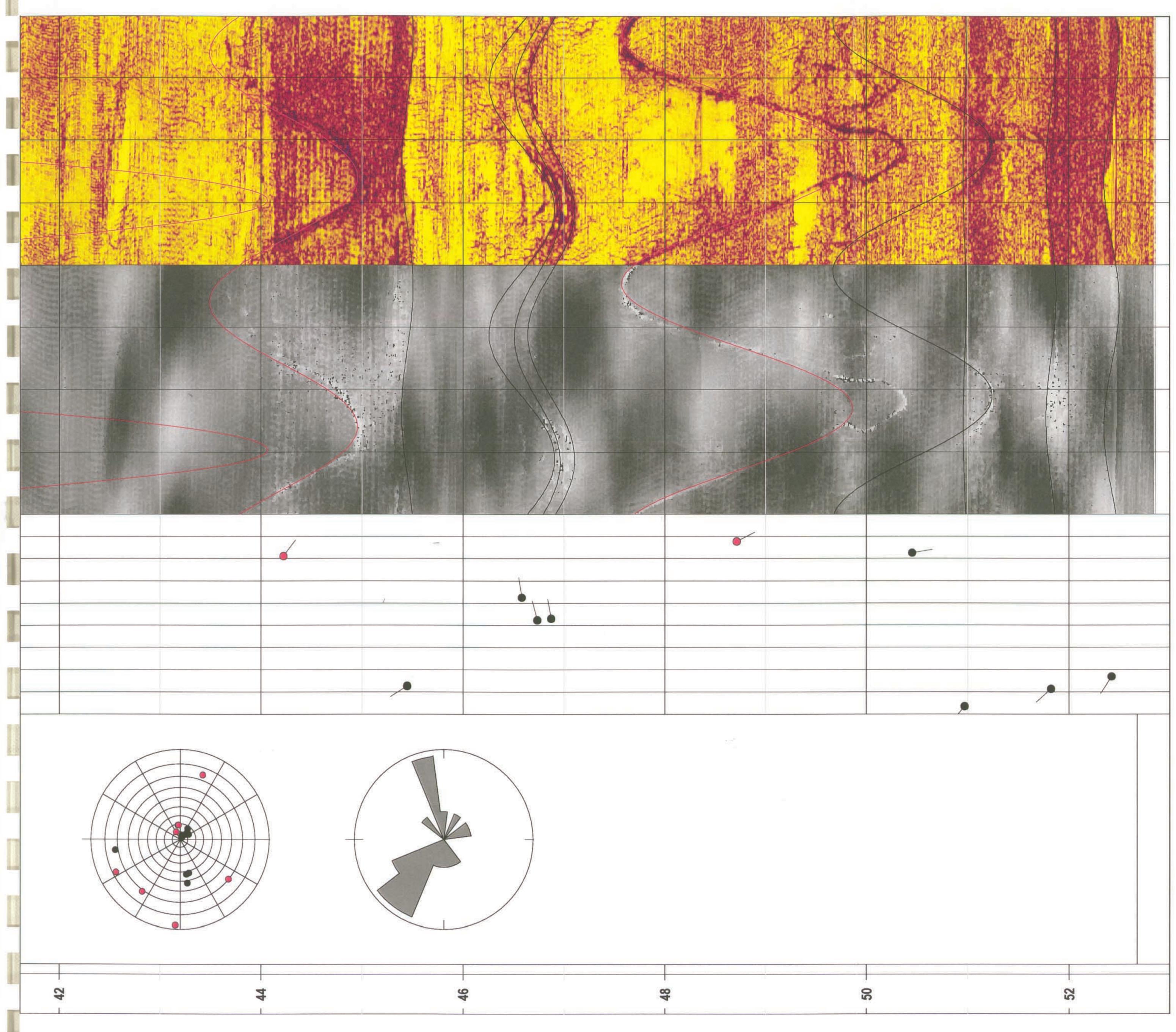

No. of Concession, Name	and the state of the second second	
	Shares in the second	
	and second as a second	
	Saddinities and	
	Se Part and the	
	Walter Care The	
	Contra Maria	
	CARE AND L	
	STATISTICS STATISTICS	
	the suit of the	
	and a start of	
	st	
A C	2	

Page 2


- MW-32D conventional logs Shaw Env'I/Maywood, NJ Project - Well:




10.11


Project - Well: Shaw Env'l/Maywood, NJ - MW-34D conventional logs

- 55 -				
- 33 -				
	1. In the second se			100355 - mw34d.wcl
	 			100000 - 111W040.W01

÷.

Appendix B

۰,

* 1

Fracture Orientations Measured from Acoustic Televiewer Logs Fracture Orientations Interpreted from MW-27D Acoustic Televiewer Log Maywood Chemical Superfund Site Maywood, New Jersey Prepared for: Shaw Environmental 100355 - mw27di.xls

depth (feet)	down-dip compass azimuth (degrees)	dip angle (degrees)	fracture category (open = 105 less-open = 100 conductive = 107)
33.51	94.7	78.4	100
35.69	144.8	17.9	100
37.13	224.2	15.6	107
40.16	270.4	23.6	100
44.26	146.1	14.8	100
48.90	317.4	4.7	105
49.21	146.9	80.6	105
49.92	293.3	7.7	100
49.98	151.0	81.6	100
50.13	283.0	8.1	100
51.00	353.1	23.7	100
51.48	9.5	39.1	100
52.33	90.9	82.2	100
52.82	41.6	45.4	100
52.93	62.8	42.6	100
53.93	316.7	16.8	100
55.20	95.8	42.9	100
55.50	275.6	38.6	100
55.68	269.2	28.8	107
56.55	268.4	30.1	100
57.67	275.1	26.4	100
58.69	74.7	78.7	100

Note that down-dip compass azimuth is perpendicular to the strike direction.

Fracture Orientations Interpreted from MW-28D Acoustic Televiewer Log Maywood Chemical Superfund Site Maywood, New Jersey Prepared for: Shaw Environmental 100355 - mw28di.xls

	down-dip compass	dip	fracture category (open = 105
depth	azimuth	angle	less-open = 100
(feet)	(degrees)	(degrees)	conductive = 107)
32.65	298.4	62.5	100
32.72	71.6	45.7	100
32,90	57.2	39.1	100
33.26	49.2	37.1	100
33.27	253.4	40.8	100
33.64	252.3	14.8	100
35.83	66.5	41.1	100
36.73	328.8	7.8	105
36.92	340.4	13.2	100
37.01	1.7	18.0	100
. 37.29	342.7	9.5	100
37.37	332.3	9.1	100
37.68	309.9	7.2	105
41.09	207.5	11.1	105
41.46	186.6	13.5	105
41.69	201.6	19.5	100
42.04	322.0	2.8	105
42.69	289.9	12.8	105
43.01	290.3	21.7	100
47.69	265.5	4.5	100
47.83	276.5	10.9	105
50.74	14.4	8.2	100
51.51	267.2	22.5	100
51.80	85.8	16.8	100
51.97	92.2	16.1	100
54.70	307.0	9.9	100
55.74	82.3	17.2	100
55.91	119.6	44.2	100

Note that down-dip compass azimuth is perpendicular to the strike direction.

Fracture Orientations Interpreted from MW-31D Acoustic Televiewer Log Maywood Chemical Superfund Site Maywood, New Jersey Prepared for: Shaw Environmental 100355 - mw31di.xls

			fracture
	down-dip		category
	compass	dip	(open = 105
depth	azimuth	angle	less-open = 100
(feet)	(degrees)	(degrees)	conductive = 107)
19.77	300.8	49.7	107
20.43	157.1	18.8	100
21.01	168.5	26.2	100
23.26	262.1	5.1	100
25.06	307.4	63.4	100
25.74	311.1	14.8	100
26.16	124.3	28.6	105
27.72	335.3	8.2	105
27.99	312.5	15.7	105
28.34	309.9	17.4	105
28.90	242.4	2.2	107
29.99	140.9	7.8	107
31.19	155.5	71.9	100
33.87	257.0	6.2	100
34.16	268.4	9.1	100
37.79	131.5	15.3	100
39.69	259.0	12.7	100

Note that down-dip compass azimuth is perpendicular to the strike direction.

Fracture Orientations Interpreted from MW-32D Acoustic Televiewer Log Maywood Chemical Superfund Site Maywood, New Jersey Prepared for: Shaw Environmental 100355 - mw32di.xls

			fracture
	down-dip		category
	compass	dip	(open = 105
depth	azimuth	angle	less-open = 100
(feet)	(degrees)	(degrees)	conductive = 107)
34.90	353.1	12.5	100
35.39	297.6	5.8	100
35.72	307.3	16.8	100
36.03	318.1	20.5	100
36.76	332.0	9.4	100
36.86	324.8	4.9	100
37.46	285.0	11.5	100
37.57	298.4	6.9	100
38.45	283.8	13.2	100
39.67	335.4	9.6	100
40.02	312.2	1.8	100
40.03	121.9	74.6	100
41.09	299.6	8.3	100
41.29	293.5	29.5	100
41.44	306.7	2.9	100
41.93	32.0	13.8	100
42.31	51.3	18.6	100
42.55	143.4	33.5	100
43.28	150.8	70.0	100
44.32	275.1	9.3	100
44.51	137.0	79.8	107
44.86	141.8	70.5	107
45.39	16.5	19.7	100
45.46	168.1	71.1	100
45.68	172.4	66.1	100
46.76	151.6	73.4	105
46.80	345.0	51.7	100
47.55	306.7	4.7	100
48.11	358.1	5.5	100
48.38	307.9	3.6	100
48.74	162.2	8.3	100
49.14	291.3	16.9	100
49.73	101.2	10.8	100
49.84	116.8	5.8	100
52.35	139.5	81.7	100
52.45	306.3	16.4	100
52.86	292.6	11.9	100
54.28	12.6	6.5	100

Note that down-dip compass azimuth is perpendicular to the strike direction.

Fracture Orientations Interpreted from MW-34D Acoustic Televiewer Log Maywood Chemical Superfund Site Maywood, New Jersey Prepared for: Shaw Environmental 100355 - mw34di.xls

			fracture
	down-dip		category
	compass	dip	(open = 105
depth	azimuth	angle	less-open = 100
(feet)	(degrees)	(degrees)	conductive = 107)
28.97	39.2	70.2	105
30.69	302.8	4.7	105
30.97	289.7	74.7	105
31.30	262.0	18.7	100
31.71	242.4	11.2	105
32.23	262.9	18.6	105
34.41	295.3	6.5	100
36.06	320.4	10.7	100
36.37	326.6	12.7	100
38.44	93.4	87.5	105
44.22	126.3	71.3	105
45.45	327.6	12.9	100
46.58	80.5	52.7	100
46.74	75.0	42.5	100
46.87	79.3	43.3	100
48.71	153.0	77.8	105
50.45	170.6	72.6	100
50.97	309.1	3.6	100
51.82	317.4	11.5	100
52.42	304.7	17.0	100
46.58 46.74 46.87 48.71 50.45 50.97 51.82	80.5 75.0 79.3 153.0 170.6 309.1 317.4	52.7 42.5 43.3 77.8 72.6 3.6 11.5	100 100 100 105 100 100 100

Note that down-dip compass azimuth is perpendicular to the strike direction.

Appendix C

.

Daily Field Reports

Daily Field Report Borehole Geophysics Logging Project Maywood Superfund Site Maywood, New Jersey performed for Stone & Webster, Inc.

Date:

50/5.2

Work location(s):

Subcontractor:

Standby hours:

Geophysical Applications, Inc.

GeoApp Personnel: Mark Blackey

On-site work hours:

none

Work performed (borehole designations, logging runs);

MW-27d: Fluid temperature Juid caliper natural gamma single fance (SPR) spontanes resis acoustic televiewer, heat-pulse min pumping CON (ambientin the

0800 - 1620

 Equipment used:
 Mount Sopris 4MXA logging winch & electronics box

 Mount Sopris caliper/fluid temp/fluid resistivity probe

 Mount Sopris flowmeter probe

 Mount Sopris SP/SPR/gamma probe

 ALT acoustic televiewer probe

 ALT optical televiewer probe

 Laval borehole video system

Problems or obstacles encountered:

none

Geophysicist's signature: M. Black

100355.frm.doc

Daily Field Report Borehole Geophysics Logging Project Maywood Superfund Site Maywood, New Jersey performed for Stone & Webster, Inc.

Date: Work location(s):

6/24/03 . ______ MW-310 <u>mw-28d</u> _____

Geophysical Applications, Inc.

Subcontractor:

GeoApp Personnel: Mark Blackey

On-site work hours: _____0700 -> 1650

Standby hours:

Work performed (borehole designations, logging runs):

nonl

mw-28d: FTemp/FRes caliper natural SP SPR aconstic televiewer, heat is alse Campientpumpho MW - 312: calises natural Janna

hat-Dulie te leviewer SPR acoust DUMPING Flowmeter Campient

 Equipment used:
 Mount Sopris 4MXA logging winch & electronics box

 Mount Sopris caliper/fluid temp/fluid resistivity probe
 Image: Comparison of the sector of th

Problems or obstacles encountered:

nme

Geophysicist's signature: M. Black

100355.frm.doc

Daily Field Report Borehole Geophysics Logging Project Maywood Superfund Site Maywood, New Jersey performed for Stone & Webster, Inc.

Date:

6/25/03

Work location(s):

MW - 34D, MW-321

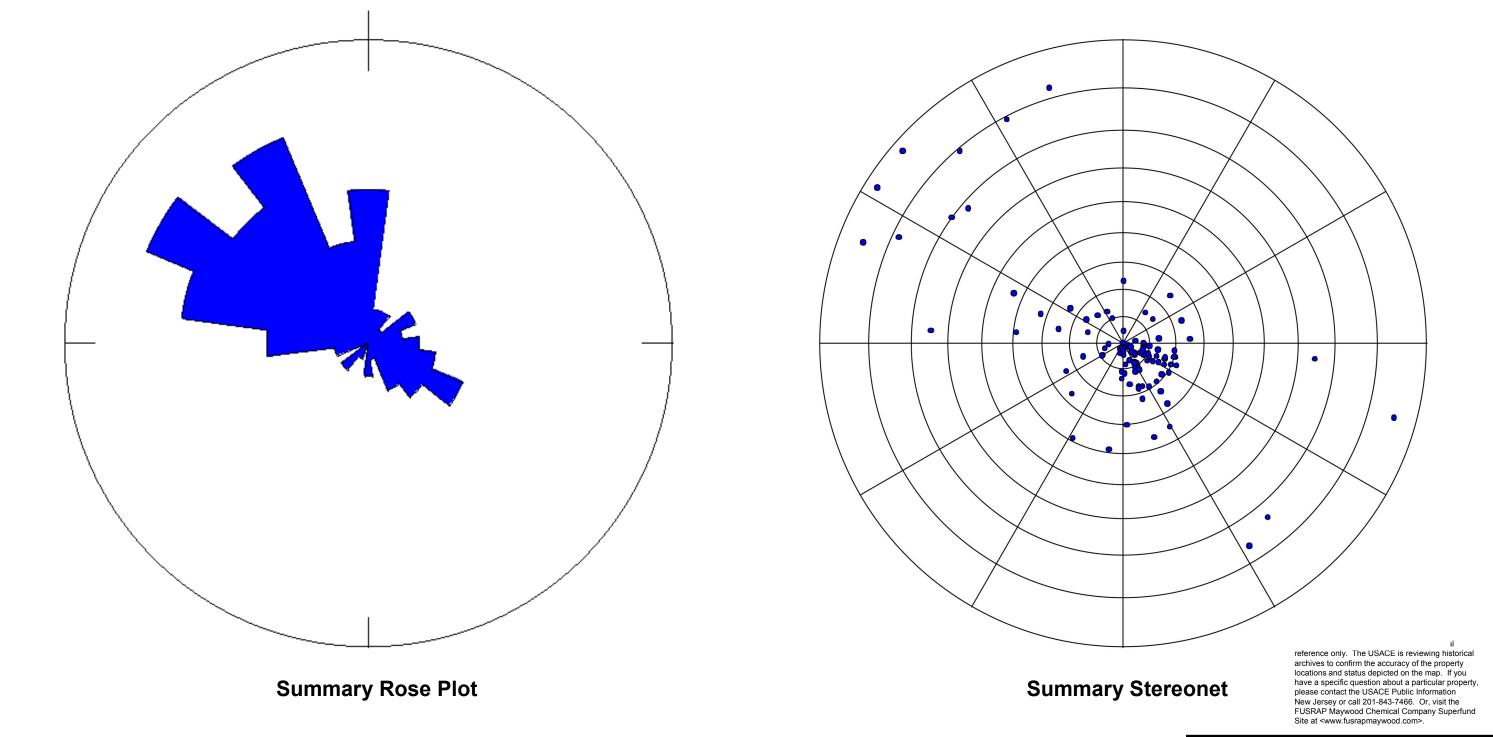
Subcontractor:

Geophysical Applications, Inc.

GeoApp Personnel: Mark Blackey

Standby hours:

Work performed (borehole designations, logging runs):


mw. 34d: Fremp FRei caliper natural gamma SPR acoustic taleviewer hat-pulse SP Flowmetter (ambient & pumping MW-32d: same as above Mount Sopris 4MXA logging winch & electronics box Equipment used: Mount Sopris caliper/fluid temp/fluid resistivity probe Mount Sopris flowmeter probe Mount Sopris SP/SPR/gamma probe (ABI40) ALT acoustic televiewer probe ALT optical televiewer probe Laval borehole video system Problems or obstacles encountered: nonc M. Black Geophysicist's signature:

100355.frm.doc

APPENDIX G.2

GWRI ROSE DIAGRAM/STEREONET PLOT OF WATER FILLED FRACTURES

(EXCERPTED FIGURE 3-12B, JUNE 2003)

Legend:

Summary rose plot diagram displays the dominant down-dip fracture azimuth observed within borehole geophysical data in all FMSS boreholes logged. Summary stereonet is a lower hemisphere, equal angle, polar projection. Summary stereonet diagram displays the dominant down-dip fracture azimuth and angle of fracture dip observed within borehole geophysical data in all FMSS boreholes logged. Black stereonet pole plots indicate less open fractures. Red stereonet pole plots indicate more open fractures. Blue stereonet pole plots indicate water filled fractures.

Magnetic north is located to the top of each diagram.

Figure 3-12 b: **Summation of Conductive Bedrock Fracture Orientations** within FMSS based on Borehole Geophysics

APPENDIX H

Monitoring Well Certification Form - B

GROUND WATER MONITORING WELL CERTIFICATION – FORM B-LOCATION CERTIFICATION

Name of Permittee:	STONE & WEBSTER	
Name of Facility:	FUSRAP Maywood Superfund Site	
Location:	Maywood, NJ 07607	
,		

NJPDES Number:

LAND SURVEYOR'S CERTIFICATION

NJ

Well Permit (As assigned by NJDEP's Water Allocation Section): This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second): Latitude (one-tenth of a second): Elevation of Top of Casing (cap off) (one-hundredth of a foot): Owner's Well Number (As shown on the application or plans): 26-65219-

SEAL

NAD 83 West <u>74-04-16.62</u> North <u>40-53-55.12</u> <u>65.16 (NGVD 29)</u> <u>MW-27D</u>

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

min PROFESSIONAL LAND SURVEYOR'S SIGNATURE

ANGELO J. FIORENZA PROFESSIONAL LAND SURVEYOR'S NAME (Please print or type)

NJ LIC NO. 37586 PROFESSIONAL LAND SURVEYOR'S LICENSE#

GROUND WATER MONITORING WELL CERTIFICATION – FORM B-LOCATION CERTIFICATION

Name of Permittee:	STONE & WEBSTER	
Name of Facility:	FUSRAP Maywood Superfund Site	
Location:	Maywood, NJ 07607	
_		· · · · · ·

NJPDES Number:

LAND SURVEYOR'S CERTIFICATION

NJ

Well Permit (As assigned by NJDEP's Water Allocation Section): This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second): Latitude (one-tenth of a second): Elevation of Top of Casing (cap off) (one-hundredth of a foot): Owner's Well Number (As shown on the application or plans): 2 6-6 5 2 2 0 -

NAD 83 West 74-04-16.21 North 40-53-53.63 64.50 (NGVD 29) MW-28D

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

LAND SURVEYOR'S SIGNATURE

ANGELO J. FIORENZA PROFESSIONAL LAND SURVEYOR'S NAME (Please print or type)

NJ LIC NO. 37586 PROFESSIONAL LAND SURVEYOR'S LICENSE#

GROUND WATER MONITORING WELL CERTIFICATION -- FORM B-LOCATION CERTIFICATION

Name of Permittee:	STONE & WEBSTER	
Name of Facility:	FUSRAP Maywood Superfund Site	
Location:	Maywood, NJ 07607	
-		

NJPDES Number:

LAND SURVEYOR'S CERTIFICATION

NJ

Well Permit (As assigned by NJDEP's Water Allocation Section): This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second): Latitude (one-tenth of a second): Elevation of Top of Casing (cap off) (one-hundredth of a foot): Owner's Well Number (As shown on the application or plans): 26-66774-

NAD 83 West <u>74-04-29.04</u> North <u>40-53-48.96</u> <u>49.08 (NGVD 29)</u> <u>MW-31D</u>

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

DAND SURVEYOR'S SIGNATURE

ANGELO J. FIORENZA PROFESSIONAL LAND SURVEYOR'S NAME (Please print or type)

NJ LIC NO. 37586 PROFESSIONAL LAND SURVEYOR'S LICENSE#

GROUND WATER MONITORING WELL CERTIFICATION – FORM B-LOCATION CERTIFICATION

Name of Permittee:	STONE & WEBSTER	
Name of Facility:	FUSRAP Maywood Superfund Site	
Location:	Maywood, NJ 07607	
-		

NJPDES Number:

LAND SURVEYOR'S CERTIFICATION

NJ

Well Permit (As assigned by NJDEP's Water Allocation Section): This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second): Latitude (one-tenth of a second): Elevation of Top of Casing (cap off) (one-hundredth of a foot): Owner's Well Number (As shown on the application or plans): 26-67268-

NAD 83 West <u>74-04-25.82</u> North <u>40-53-48.06</u> <u>49.18 (NGVD 29)</u> <u>MW-32D</u>

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

SURVEYOR'S SIGNATURE PROFESSI

ANGELO J. FIORENZA PROFESSIONAL LAND SURVEYOR'S NAME (Please print or type)

NJ LIC NO. 37586 PROFESSIONAL LAND SURVEYOR'S LICENSE#

The Department reserves the right in cases of violation of permit specified ground water limits or Ground Water Quality Standards (N.J.A.C 7:9-6.1 et seq.) to require that wells be resurveyed to an accuracy of one hundredth of a second latitude and longitude. This shall not be considered to require a major modification of the NJPDES permit.

SEAL

GROUND WATER MONITORING WELL CERTIFICATION – FORM B-LOCATION CERTIFICATION

Name of Permittee:	STONE & WEBSTER	
Name of Facility:	FUSRAP Maywood Superfund Site	
Location:	Maywood, NJ 07607	

NJPDES Number:

LAND SURVEYOR'S CERTIFICATION

NJ

Well Permit (As assigned by NJDEP's Water Allocation Section): This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second): Latitude (one-tenth of a second): Elevation of Top of Casing (cap off) (one-hundredth of a foot): Owner's Well Number (As shown on the application or plans): 26-65221-

NAD 83 West <u>74-04-18.50</u> North <u>40-53-54.48</u> <u>62.24</u> (NGVD 29) <u>MW-33D</u>

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

ANGELO J. FIORENZA PROFESSIONAL LAND SURVEYOR'S NAME (Please print or type)

____NJ LIC NO. 37586 PROFESSIONAL LAND SURVEYOR'S LICENSE#

GROUND WATER MONITORING WELL CERTIFICATION – FORM B-LOCATION CERTIFICATION

Name of Permittee:	STONE & WEBSTER	
Name of Facility:	FUSRAP Maywood Superfund Site	
Location:	Maywood, NJ 07607	

NJPDES Number:

LAND SURVEYOR'S CERTIFICATION

NJ

Well Permit (As assigned by NJDEP's Water Allocation Section): This number must be permanently affixed to the well casing.

Longitude (one-tenth of a second): Latitude (one-tenth of a second): Elevation of Top of Casing (cap off) (one-hundredth of a foot): Owner's Well Number (As shown on the application or plans): 26-65218-

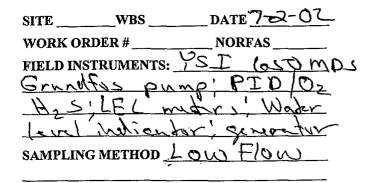
	NAD 8	33
West	74-04-17.3	8
North	40-53-53.0	1
	60.63	(NGVD 29)
	MW-34D	

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment.

AND SURVEYOR'S SIGNATURE PROFESSIONAL N

ANGELO J. FIORENZA PROFESSIONAL LAND SURVEYOR'S NAME (Please print or type)


NJ LIC NO. 37586 PROFESSIONAL LAND SURVEYOR'S LICENSE#

APPENDIX I

Well Purging and Sampling Records

Shaw[~] Stone & Webster, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

Datin
Well I.D 38 W115
SAMPLE I.D <u>20q -024645</u>
MEAS. REF. POINT (Ft. AGS or BGS) BG_
WELL DEPTH (Ft. TOC) 10. 58' 9.58 ciofins
INNER CASING/OPEN HOLE DIAM (1a) 2"
DEPTH TO TOP OF SCREEN (FI TOC) 18-72 40.0
WLL VOLUME (Gal)
DIMD INTAKE (TOC)

Sample Time (From/To)	Water Level () ((Ft TOC)	Discharge - (milliliter/ minute)	Volume Purged ~(GAL) クረ	Temp °C	Specific Cond, (mS/cm)	pH	Eh (mv)	DO (mg/L)	Turbidity (NTU)
0945	284 - 911	300	1500	18.85	2016	6.79	-4.0	18.81	6.3
D950	10,779,11	180	2400	18.21	2007	6.77	-7.2	27.95	6.9
0755	9.61	480	4800	17,59	2004	6.76	-5.8	33,66	1.2
1000	9,61	540	7500	16.07	2327	6.74	-6,4	35.70	0.1
1005	9.62	600	\$0500	15.77	2319	6.75	-12.6	34,20	-0,2
.1010	9.61	460	12900	16.03	23/1	6,76	-15,8	34,83	-0.3
1015	9,61	240	14,00	17.03	2308	6.76	-18,5	34,03	-0.2
1020	9,12	280	15300	17.55	2315	6.78	-19,8	33.02	3.1
1025	9,11	340	17200	17.46	2329	6.77	-21	35.72	-0,2
1030	9.11	3-80	18600	17,56	2317	6.78	-23.0	32,41	-0,3
1.040	9,11	350	20350	17,50	2321	6.78	-21.7	33,63	D.Z
1045	9.11		1	17.61	2322	6.78	-20.8	31.64	-0.3
1050	San	ple	·						
		0							
							ttis.		
APPEAR	APPEARANCE/COLOR SH. Kurzy / My CULOY					ODOR Slicht adar			
	SAMPLED BY (PRINT) SI Hall 1C. Kassen				SAMPLED BY				

SIGNATURE

DATE/TIME 2-2-02

(151)

WELL CAP REPLACED AND LOCKED BY $G_1 M_2$

SIGNATURE

Shaw [•] Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE MANNA WBS ____ DATE 7-8-82_ WORK ORDER #_ NORFAS FIELD INSTRUMENTS: 2 ' 100 المحرر ا rei mp. SAMPLING METHOD

F

V

MEAS. REF. POINT (Ft. AGS or BGS)

WELL DEPTH (Ft. TOC)

INNER CASING/OPEN HOLE DIAM (la) 4"

DEPTH TO TOP OF SCREEN (FITOC) 28,5 (open hale)

WLL VOLUME (Gal)

PUMP INTAKE (Ft. TOC)

Sample Time From/To)	Water Levei (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	pH	002 p3 Eh (mv)	DO (mg/L)	Turbidity (NTU)
325	12.10	260	1300	15,89	5079	6.86	- 44.0	10.17	16.3
330	12,10	240	2500	16.23	5069	6.78	-31.4	11.05	17./
335	12.11	210	3550	16.64	5038	6.75	-26.1	10.75	16,8
340	12.15	420	5650	16.02	4988	6,72	-23,7	10,46	15.7
1345	12.17	420	7750	16,17	4940	6.69	-27,5	10.53	12.6
1350	12,20	420	9850	15,99	4932	6.69	-21.4	11,55	12,3
355	12,22	420	119 50	16.16	4941	6.66	-237	11,70	12.2
1400	12,21	420	14050	15,94	4919	6.65	-22,3	11.87	9.9
405	12,21	400	16050	15,86	4908	6.65	-22.1	11.95	8,7
N/D	12,21	420	18150	16,10	48 89	6.64	-20.1	11.67	8.8
415	Samp	rle 7	-ine					- <u></u>	
	·								·····
	•								
							*		
<u> </u>									
PPEARA	NCE/COL	OR Cler	~/514	r. yell	W CULV	✓ C OR	Slink	t cid	• · · ·
AMPLEE	BY (PRINT	1. 5.A	all'	2		MPLED BY	L.K	xaus 2	
IGNATU	RE	an Sel	Am	Ali		NATURE	<i>\.</i> [v-	
FIL CA		ED AND LO	CKED DV	X	D 47	TE/TIME ¹	7-8-1	17 11	170

Shaw * Stone & Webster, inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE My WBS_	DATE 7 9-02
WORK ORDER #	NORFAS
FIELD INSTRUMENTS	STDLELOZCO
+ H2S mitic	· Control bon'
Submersible	prmp' 4ST'
Horiba ; Wa	ter level indired
SAMPLING METHOD	Low Flow
	-

Well I.D_B38W19D
SAMPLE 1.D 126-024648
MEAS. REF. POINT (FLACSor BGS)
WELL DEPTH (Ft. TOC) <u>BO, 2'</u>
INNER CASING/OPEN HOLE DIAM (la)
DEPTH TO TOP OF SCREEN (Ft TOC)
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC)

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity
1305	16.18	320	640	15.84	3847	6.67	27.4	13.64	B ().0
1310	16,18	340	2340	16.01	3822	6.92	15.1	13.98	0.00
1315	16.18	110	2890	16.81	37(.4		12.7	13,14	0.00
1320	16.18	250	4140	16.51	3761	6.50	8.9	12.11	0.00
1325	16.17	250	5390	17.17	3749	6.52	5.2	12.89	O(0)
1330)	16.16	250	6640	17.02	3758	6.49	3.0	13.28	
1335-	16.17	240	7840	17102	3749	6.30	1.3	12,90	
1340	Sa	mple		vel					
		4							
									\sum
	·								
					$ \longrightarrow $				
-					N				
					/				
-					= 1		<u> </u>		
 							·		
)	·					:		
T									
	<u> </u>							<u> </u>	
	NCE/COLO	<u> </u>	ar/n	y cal	₫Y OD	or S	ight	t od	Or
	BY (PRINT)	Shar	th' A	<u>a VI</u>		APLED BY	Lyng	n Kn	222-
SIGNATU		mout	Litall			NATURE	7. 1	~F	
WELL CA	P REPLAC	ED AND LO	OCKED BY	20	DA1	TE/TIME	-1-02	= /	<u> </u>
•								/	

SITEMA	W NAMES	n	ATE 7~11)-02	Wall I F	RZR	r wa	<u>c</u> 0	•
	RDER #		NORFAS					30	52
				mps;		· · · · · ·	T EL AGO or		
PID	$\underline{0}_{\underline{\zeta}}$	4 HzS	-LEL	moin	WELL	DEPTH (Ft.	тос)	0.41	
Subme	, , 0		5mn dt.	, 14, I	INNER	CASING/O	PEN HOLE	DIAM (la)	<u> 2″</u>
PVVV		Natix	12121	ind, car				(Ft TOC)	
SAMPLIN	G METHOD	<u>LOW</u>					ul)		
		E	2		rumri	IVIANE (FL	. TOC)		
Sample	Water	Discharge	Volume	T	Specific	,, <u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Time (From/To)	Level (Ft TOR)	(milliliter/ minute)	Purged (ml)	Temp ℃	Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
1050	7,78	1000	200	17.73	1154	6,43	-20.9	10.57	-1.5-
10.57	7,79	2000	200	17,73	1164	4.38	-19,4	7.66	-0.7
0011	7.79	3200	240	18.39	1158	6.37	-15.6	9.65	-0,8
1105	7.80	4850	330	17.22	1161	6+35	-15.2	11,81	-1.0
1110	7.82	JULYD	320	16.85	1160	6:34	-15.6	13.67	-11
1115	7,83	8150	340	16.77	1159	6,33	-15,4	14.17	-1.1
1190	7.83	9850	340	16.9/	160	6.33	-15,8	15,50	-1,2
1130	Jary	sted							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
					\rightarrow				
			\						
							*		<u> </u>
			<u> </u>						

C

Shaw * Stone & Webster, inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

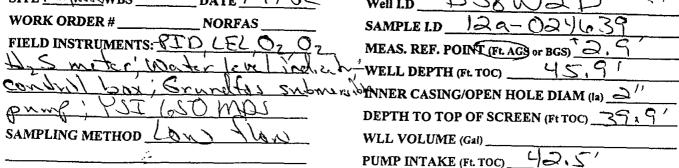
AT A CALL AND A

SITE Manuel WBS_	DATE <u>7~11-07</u>
WORK ORDER #	NORFAS
FIELD INSTRUMENTS	PID, LFL, O2, CO
off Smith	Water level
indiantor 6	mindfust submer, y
pump' Canit	al las
SAMPLING METHOD	Com fun

Well I.D_MIISS-773
SAMPLE 1.D 126-24638
MEAS. REF. POINT (FLAGF or BGS) + 2, ()
WELL DEPTH (Ft. TOC) /
-INNER CASING/OPEN HOLE DIAM (la)
DEPTH TO TOP OF SCREEN (Ft TOC) Not given
WLL VOLUME (Gal)
PUMP INTAKE (FL TOC)

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
-320-			· · ·	error					
1315	11.39	300	1506	16.50	7753	6+92	-28.6	0.50	30,3
1320	11.37	180	1680	18.18	7745	6.92	-37,2	0,36	36,3
1325	11.42	260	2980	17.18	7748	6.91	-40.3	0.35	42.6
1330			4280	16,77	7740	6191	-43,2	0.29	45.07
1335	11,40	240	5481	17.08	7745	6.92	-45,4	0.27	49.0
1340	11-36	200	5480	17.78	7748	6,93	412.6	0.33	61.4
1345	11.36	200	7480	17,26	7786	6.92	-44.3	0.29	37.]
1350		200	8480	17,46	7776	6,91	-41.3	0.27	28.9
1355	11,38	210	9530	17.28	7786	6.91	-41,8	0.27	31.7
1400	11.38	210	0580	17.70	7785	6.91	-40.9	0.26	29.1
53	Up qu	4-7	and	1-0					
			<u> </u>						
				-					
									\rightarrow
				$ \longrightarrow $					
				}	۲		[
					}				
	·				/				
							<u>*</u>		
		<u> </u>	<u>_</u>]
APPEARA	NCE/COL	OR (PUSS, V)	e) (met t	color	OD	OR_{Λ}	, odo	<	
	BY (PRINT	<u>sha</u>	- join	5~11	SAI	MPLED BY	Lan	n Ke	.oom
SIGNATU		flim	L Br	<u></u>		NATURE	12	Ep.	
WELL CA	P REPLAC	ED AND LO	OCKED BY	_>[7	DA'	TE/TIME	7-11-02	- 12	30

Shaw * Stone & Webster, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS


SITE My win WBS _DATE 7-15-02 WORK ORDER # NORFAS FIELD INSTRUMENTS: P IFL $\alpha \tau$ (.O. + 1 0-Water level burnd ~ 0 Sv Nn SILSOMO con VY SAMPLING METHOD (\sim) ð 15 •

Well I.D. B38W24D	
SAMPLE I.D 104-024650	
MEAS. REF. POINT (FL AGS of BGS) 01 ()	
WELL DEPTH (Ft. TOC) _287	
INNER CASING/OPEN HOLE DIAM (Ia) $2^{\prime\prime}$	
DEPTH TO TOP OF SCREEN (Ft TOC) 22 /	
WLL VOLUME (Gal)	

PUMP INTAKE (Ft. TOC) 24'

	Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L.)	Turbidity (NTU)
	1005	9.18	270	1350	19.16	608	6.00	43.4	0.76	68.3
	1010	9.18	240	2550	19,40	633	5.98	26,1	0.50	38.6
	1015	9.18	230	3700	19.79	638	5.98	216.2	0.44	29,1
	1020	9.18	260	5000	20.53	650	5.98	5.0	0.42	27.5
	1025	g.au	220	6100	19.93	654	5.98	-1.0	0141	18.6
	1030	9,22	320	7700	19.62	674	5.96	-4,2	0.34	14.4
	1035	9.25	380	9600	19.66	691	5.96	-8.8	0.32	8.9
	1040	9.25	320	11200	19.64	709	5.96	-10.9	0.29	4.9
4	045	9.25	320	12800	19.64	717	5.96	-15,4	0.28	2.2
	<u> </u>	p	rel							
			· · ·							
-					[
┡						\rightarrow	\leq			
╟										
┡										
╞		•						[
-							· · · · · · · · · · · · · · · · · · ·	<u> </u>		
L	<u> </u>				<u></u>			<u> </u>		
			DRSH M	2/10/	11/11/	<u> </u>	or	v. od	VY	
		BY (PRINT)	Spring	n the	<u>, // ~</u>	SAI	MPLED BY	Laura	KASSA	<u>w</u>
	SIGNATU		All	-tit			NATURE			1
•	WELL CA	P REPLAC	ED AND LO	OCKED BY	3r	_ DAT	TE/TIME	7-15-0	2/1	122
									7	

Shaw - Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS SITE Maywood WBS _____ DATE 7-17-02 Well LD _____ 38 W 2 P

Sample Time (From/To)	Water, Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (mi)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
ORD	21.81	210	1680	14.70	487	6.72	236.1	0.55	42.4
0925	54.84	200	2680	14.89	499	6.71	503	0.51	22.3
	22.10	-	3680	14.89	538	6,72	171.5	0.47	9.6
09357	22.17	200	4680	15:05	543	6.72	156.1	0.41	7.1
0940	22.45	<u>a00</u>	5680	14,91	539	6.72	144.5	0.38	4.9
0945	22.79	280	7980	14.57	538	6.72	127.3	0.34	2.9
0950	22.87	240	8280	15.61	530	6.71	120.2	().3z	2.8
0955	22,88	200	9280	15.40	534	6.70		0.30	2.6
1000	Ser	ngle							
		0							
			-		\leq				
			<u>N</u>	<u>\</u>		<u> </u>			
		<u> </u>				\geq			
							\searrow		
			\searrow						
				<u>\</u>	\				
	:				/				
								·····	
APPEARA	NCE/COLO	RHT	<u>Clear</u>	/hs c	2 Wrod	or	s ode		
SAMPLED			Hall'			PLED BY) 1-	Suaw.	
SIGNATU	e	Hall	12		SIG	NATURE	-//		<u> </u>
WELL CAP	P REPLACI	ED AND LO	CKED BY_	SH	_ DA1	TE/TIME	217-02	-//0	20
:								/	

Shaw Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE MaynelwBS. DATE 7-1802 WORK ORDER # _NORFAS FIELD INSTRUMENTS: $\widehat{\mathbb{T}}$ (O)F/ ΓD netti <u>O-7</u> 44 Gru Cin 55 mer mp <u>- Cre ~</u> ~ (r ~~c) ~ THOP MZ0 Mps ſ 100 DDX SAMPLING METHOD Low Winde

Well I.D B38W18D
SAMPLE I.D
MEAS. REF. POINTCE VGS BGS TO 1010
WELL DEPTH (Ft. TOC) 4010
INNER CASING/OPEN HOLE DIAM (Ia)
DEPTH TO TOP OF SCREEN (Ft TOC) 5777 35 10
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC) 3916 3715

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purgeď (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
0850	Sia1	240	2400	19,38	668	5.73	367.9	0.47	13,8
0857	5.22	280	3800	19.83	696	5.86	349.2	0.48	12.7
0500	5,21	280	Saou	20.15	691	5.86	340.6	0,52	12.1
0905	5.21	280	(00)	20,14	696	5.85		0.55	11.8
0910	5.21	280	8000	20.21	711	5.84	334.6	0.52	11.2
0915	SizI	280	9400	20,29	724	5.84	332.6	0.50	10.9
0920	5.22	280	0800	15,06	737	5.83	331.6	0.47	10.6
0932	5	- <u></u>	Le_	we	<u> </u>	ļ			[
		0	 						
		<u></u>							
				L(<u> </u>		 	\geq
	<u> </u>								
	[<u> </u>			
j	ļ	ļ	ļ			<u> </u>			· ·
						<u> </u>	 	[
		· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u></u>		<u> </u>	
)	· · · · · · · · · · · · · · · · · · ·		
		 				<u> </u>		ļ	
						<u> </u>			
				<u> </u>		<u> </u>			
						<u> </u>		<u> </u>	
	APPEARANCE/COLORODOR								
	D BY (PRINT	<u>) - </u>	ASJan		SAMPLED BY Nor 2				
SIGNATURE SIGNATURE SIGNATURE DATE/TIME 7-18-02/09							2/100	10	
WELL C.	WELL CAP REPLACED AND LOCKED BY $DATE/TIME 7-18-02/(199)$								<u> </u>

and the second secon

NER DE VESTE P

15 7.82

"Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

50-8 DATE / -SITE Vleryu www.WBS Well I.D _ 126-WORK ORDER # NORFAS_ SAMPLE I.D FIELD INSTRUMENTS: PID, LEV <u>C0</u> MEAS. REF. POINT (Ft. AGS or BGS) · 12/22 WELL DEPTH (Ft. TOC) **INNER CASING/OPEN HOLE DIAM (1a)** 24.4 DEPTH TO TOP OF SCREEN (Ft TOC) SAMPLING METHOD WLL VOLUME (Gal) ·CYC 23' PUMP INTAKE (Ft. TOC)_ f:11 5-92 Notel Sample Water Discharge Volume Specific (milliliter/ Cond, Time Level Purged Temp Eh DO Turbidity (From/To) (Ft TOR) minute) (ml) °C (mS/cm) pН (mv) (mg/L) (NTU) 8.40 40 C २ S_{n} 27 ଧିସ୍(5.0 ふ a, -0 0 ्र ς, 72 $\partial \mathcal{A}($ 80 8 0 2 a, 89 20, yal 76 G 4 8 104.6 da 65.0 Х えの 80 Q() 50. 7570 Y C コ 27 \mathcal{A} 8 7, 35 7 7 2 40 a 5 0 $\partial \alpha \langle 0 \rangle$ 20 d. 1 * acı" , 7 143.8 $\forall \zeta$ 4.5 6 Q \overline{A} しとう フィムタ 136.0 а ,24 8 3640 an (50 C ODOR_W Lt. Brun delor APPEARANCE/COLOR Hazy SAMPLED BY (PRINT) SAMPLED BY SIGNATURE SIGNATURE DATE/TIME 7-18-02 WELL CAP REPLACED AND LOCKED BY __

A Cleaned YSI650 MDS of

₽

Æ

debre (1 DO)

haw - Stone & Webster, Inc.

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEMAYNOWBS DATE 7-24-02 WORK ORDER # _____ NORFAS _ FIELD INSTRUMENTS: PFD, LEL, O CO, H2 S mater Water leve) indicator, Grandfis submeroi T<u>ST</u>(50) pump' costo 1 801 SAMPLING METHOD LOW FLUN

Well I.D						
SAMPLE I.D $19a - 024(c1)$						
MEAS. REF. POINT (Ft. AGS of BGS) - 0 , 5						
WELL DEPTH (FI. TOC)						
INNER CASING/OPEN HOLE DIAM (1a)						
DEPTH TO TOP OF SCREEN (Ft TOC) $45.5'$						
WLL VOLUME (Gal)						

	Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	На	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
	1320	4,32	150	950	18.40	126	6.97	-23,8	1.14	84.0	
	1325	4,34	200	19JU	18,70	128	6.69	-28.5	0.52	72.7	
	1330	4.29	200.	29.50	19.19	308	6.67	-35.8	0.49	54,2	
	1335	4.45	190	3500	17.42	997	6.84	=4716	2.33	27.5	H
	1340	9/14/44	240	5100	18,37	1129	6.84	-47,8	0.35	29,0	
	1345	4.49.	240	6300	18.29	1193	6.85	- 42.2	25.0	21.5	
	1320	4.50	230	7450	18.18	1213	6.88	-35.8	0.34	13.1	
	1355	4.50	240	8650	6.52	laal	6.89	-27.2	0,32	10-2	
	1400	4,49	240	9850	18.01	1228	6190	- 19.4	0.31	4.9	
	1405	Sa	mo'	2			 		-		
			0								
:											
						<u> </u>					Λ
\neg											γ
	/										
								÷#			
-	APPEARANCE/COLOR Clear / Very light Je/modor Mo odor SAMPLED BY PRINTY SI Hall SAMPLED BY Leftary										
	SIGNATURE SIGNATURE										
	Well cap replaced and locked by SH date time $7 - 29 - 02 / 1930$										
	A Cleaned flow-through cell of debre,										

Shaw² Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEMynum WBS ____ DATE 7-2.5-02 WORK ORDER #_ ___NORFAS FIELD INSTRUMENTS: PIDILEL, O. CO, 12,5 mb UMDI: icutor, Submirall Wa Fr 1.1.4 in prop 1 Cuntul Sm Rid 1 SAMPLING METHOD 12 $\mathcal{N}\mathcal{N}$

Well I.D_MW24D
SAMPLE I.D 12,5-021645
MEAS. REF. POINT (Ft. AGS or BGS) 114 - piver lore on
WELL DEPTH (Ft. TOC) $(0)^{-1}$ $(0)^{-1}$
INNER CASING/OPEN HOLE DIAM (1a) $\frac{2^{\prime\prime}}{2^{\prime\prime}}$ (h3, h).
DEPTH TO TOP OF SCREEN (Ft TOC)
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC)

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	En (mv)	DO (mg/L)	Turbidity (NTU)	
6905	13.02	320	1600	14.42	4768	5.55	47.7	0.53	16,4	
0910	13.76	270	29.50	14.99	4777	6.50	-44.0	0.42	3,2	
C915	3,72	270	4300	15.20	4777	6.56	-55.3	0.38	2.2	
0920	13.64	250	0702	5.13	4786	6.58	-60.9	0.35-	1.5	
0925	13.64	240	(.750)	15.78	4818	6.57	-58.0	6,34	type	1.4
0530	13.64	Ors	8000	15.96	4836	6.47	-45.8	0.34	1.3	
6535	13.64	2.50	OLES	15.74	4835	6.50	-39,7	6+34	1.2	
0540	Sn.	nele	-el_							
ļ		0		· · · · · · · · · · · · · · · · · · ·			·			4
				<u>_</u>						
	L			-						
							\sum			
								<u> </u>		
		\square								
									2	<i>.</i>
						·				
				•			*			
			,							
	NCE/COLO	~		orless ml		DORS	H. O	ASJUN	5light a	oder
SIGNATU		Muult	• •		SI	GNATURE	22 5 6	m		
		ED AND LO		2+7		TE/TIME	725-00	2/09	<u>¥8</u>	
C	leetz	10	(pli	nte	tof t	his	we		ONLY	
			•		\sim		7,D F	1 125	-6216	48

Shaw - Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEMANN ____ DATE 7-25-02____ **VBS** WORK ORDER # NORFAS_ FIELD INSTRUMENTS: \underline{PTD} ()) FL $\left(\right)_{2}$ mirinal 4 H2 S 20) MORS: (W 7 Wa Flor SAMPLING METHOD __ l くらん

	Well I.D MW 24DD
	SAMPLE 10 12 6-021 646
	MEAS. REF. POINT (Ft. AGS or BGS) 1de 1/h cf sticking
ų	WELL DEPTH (Ft. TOC) 105'
	INNER CASING/OPEN HOLE DIAM (1a) $\frac{4}{1}$
	DEPTH TO TOP OF SCREEN (Ft TOC)
	WLL VOLUME (Gal)
	PUMP INTAKE (Ft. TOC)

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	En (mv)	DO (mg/L)	Turbidity (NTU)
1000	12,53	200	1000	15.63	3629	7116	-127,2	(,3)	25.9
1005	12,66	220	2100	15.72	3654	7.02	-120.2	0.78	19.7
1010-	12.63	<u>200</u>	3100	15.81	3656	7.00	-116.7	0.80	24.8
1015	12.63	210	4200	15.79	3658	6.98	-113.7	0.83	23,0
1020	12,63	190	5700	15.57	3672	6.96	-107.9	0.80	21.1
1025	12,67	240	6300	15.77	36.85	6.94	-103,8	0.77	17.6
1030	Sam	ple							
		0							
					· · · · · · · · · · · · · · · · · · ·				
						_			
							*		
APPEARANCE/COLOR Clear Colorlys W/Emg Hammaha SAMPLED BY (PRINTS S. HZ H) SAMPLED BY L. Kass									
SIGNATU	SIGNATURE SIGNATURE								
WELL CA	Well CAP REPLACED AND LOCKED BY $\frac{51}{2000}$ DATE/TEME $7-\frac{3}{2}5-\frac{6}{2}7/\frac{0}{2}90$								

Shaw - Stone & Webster, Inc.

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

U _DATE 7-25-02 SITENLY WBS NORFAS_ WORK ORDER # FIELD INSTRUMENTS: PID. LEL 0-Į. 650 N levie ININ C 14 Dono SAMPLING METHOD KU G NN シ

Rowin
Well I.D 280075
SAMPLE I.D 126-021 (097
MEAS. REF. POINT (Ft. AGS or BGS) With a iven
WELL DEPTH (Ft. TOC) <u>SYIO</u>
INNER CASING/OPEN HOLE DIAM (la)
DEPTH TO TOP OF SCREEN (Ft TOC) Not 5 in the
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC) $_{} \stackrel{\checkmark}{\rightarrow} \stackrel{\checkmark}{\rightarrow}$

٤.

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	En (mv)	DO (mg/L)	Turbidity (NTU)
1255	10.44	250	3750	15,12	400	6.57	165.9	0.09	44.1
1300	10:44	210	0202	15.48	390	6.48	162.2	0.54	27.7
1305	10,44	240	0250	15.52	398	6.51	1.56.9	0.47	15.2
1310	10,44	240	7450	15.51	404	6.54	151.1	0.42	11.2
1315	10.44	240	8650	15.36	413	61.55	146.7	0:39	6.9
1320	10.45	260	G 950	1.5.44	416	10.57	143.6	0.36	5.5
132.5~	10.45	260	11250	15.79	420	6.58	139.7	0.36	3.8
1330	10.45	<u>260</u>	12550	15.73	422	6-59	137.0	0,35	3.1
1335	10.45	240	13750	15.57	427	6160	133.4	0,32	2.2
1340	\langle			1					
 	\int	$\sim \sim$	$\simeq \chi$, (
								\frown	
			`						
		<u> </u>							
					<u> </u>				
ļ	<u></u>				$ \rightarrow $	~			
			×					/	
			\rightarrow						
APPEARA	NCE/COLO	R <u>Clea</u>	r (some	sectional)	/www.or	DOR_St	$t \rightarrow 0$	100	
SAMPLED	BY (PRINT)	Shaw	~~~	(MPLED BY	<u>L, k</u>	Egs.Jav	ζ	
SIGNATURE SIGNATURE KV-									
WELL CA	P REPLACE	ED AND LOC	CKED BY	<u>-K</u>	DA	TE/TIME	7-25-1	02/1	348

Shaw - Store & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE MUJON CHBS ____ DATE 7-26 02 WORK ORDER # ___NORFAS __ FIELD INSTRUMENTS: PID, LEL, Oz, CO, 2D, Smider Water level 650 MDS; Canbul 75 metr; bbx 1 Gru bine alle pum Sn 1410 SAMPLING METHOD

	Well I.D MW-23D
	SAMPLE LD 126-021651
	MEAS. REF. POINT (Ft. AGS & BGS)
	WELL DEPTH (Ft. TOC)
١	INNER CASING/OPEN HOLE DIAM (Ia) $\frac{\partial I}{\partial}$
P	DEPTH TO TOP OF SCREEN (Ft TOC)
4	WLL VOLUME (Gal)
	PUMP INTAKE (Ft. TOC) 55

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	En (mv)	DO (mg/L)	Turbidity (NTU)
082.5	11.45	190	760	17.26	2228	6.56	71.4	1.48	198,7
0830	11.74	ROU	1760	16.63	2291	6.56	-2.5	0,82	312.0
0835	11-84	200	2760	16.93	2284	6.59	-19.5	0.76	291.1
0840	12.02	200	3760	17.11	2272	6,60	-25.7	0.69	220.0
0845	12.13	150	4710	17.16	2240	6.60	-23.4	0,74	135.57
0850	12.28	200	5710	16.79	2226	6.58	-20.2	0.65	75.8
0855	12.42	220	6810	16.67	aala	6159	-16.8	0.62	42.6
0900	12.48	200	7810	16.86	2205	6.59	-14.8	0.56	30.9
000905	12.56	$\partial a 0$	8910	16.64	2210	6.58	-12.7	0.50	24.9
0910	12.58	21D	9960	6.96	2210	6.58	-12.6	0.48	34.0
0915	12,58,	200	10960	n.25	2209	6.58	-12.0	0.47	19,0
0920	12.59	200	11960	17.09	2216	6.58	-10.9	0.46	16.5
0925	12.61	200	12560	17.02	2230	6.58	-10.3	0,44	15.0
<u>0530</u>	Sun	. \ e							
		7							
							<u> </u>		
			to when country	······································			\mathbf{i}		
					A LOUGH TO THE ACTION	and the second se	\sum		
							*		
APPEARANCE/COLOR Culor No culor odor Non detected SAMPLED BY (PRINT) Shnor Mail SAMPLED BY, Land Culor SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE WELL CAP REPLACED AND LOCKED BY DATE/TIME 7-26-02									

Shaw Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEMayuusto WBS_	DATE 7-26-02
WORK ORDER #	NORFAS
Meter Water 1 bux; Grundfo	PID, Oz, CO, Hz S, LEC <u>evel</u> indicatur Cuntrol <u>os submersible</u> pump MDS.
SAMPLING METHOD	

-- -- ---

Well I.D _	MW-	-25 P	
SAMPLE	1.D_12b-	02165	52
– MEAS. RE	EF. POINT (Ft. AG	s)or BGS)	
WELL DE	PTH (Ft. TOC)	60.85	/
INNER CA	ASING/OPEN HO	LE DIAM (la)	0//
DEPTH TO	O TOP OF SCREE	N (Ft TOC)	t river
	UME (Gal)	<u> </u>	0
PUMP INT	AKE (Ft. TOC)	55'	

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/ኒ)	Turbidity (NTU)
1000	13.24	210	2100	14.48	2314	7.48	-201.0	0.46	22.3
1005	3,30	200	3100	14.92	2311	7.46	-200.0	0.42	22.1
1010	13.41	040	4300	14,65	2311	7,48	-195.3	0.35	33.9
1015	13.49	910	5350	15.16	2312	7.49	-189,1	0,24	36.8
1020	13,56	250	6600	15.13	2310	7.51	-197.8	0.21	33.3
1025	13.65	280	8000	15.11	2309	7151	-196.3	0.20	35.2
1030	13.65	200	5000		2308	7.48	-214,2	0117	34.3
1035	13.65	200	10000	15.48	2305	7.49	-212,8	0118	35.Z
1040	Sor~	p'h				L		·	
1045		0							
1050									
1055	\langle			 					
1100						} 			
	· · · · · · · · · · · · · · · · · · ·								
					$ \rightarrow $	· · · · · · · · · · · · · · · · · · ·		<u></u>	
		· <u> </u>							
								<u></u>	
SAMPLEI SIGNATU		~ 1	n Hel	col SH	SA SI	DOR MPLED BY GNATURE ATE/TIME	0 chu Lann 2-26-02	Kas	ул и Ч, —

ζ.

Shaw * Stone & Webster, inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE Mayural WBS	DATE 7:28-02
WORK ORDER #	NORFAS
FIELD INSTRUMENT	rs: PID, LEL, O, CO,
2 H2S met	YST MDS 650'
Grundfos su	bacelble pump!
Control box	Water Levelindicat
SAMPLING METHOI	Low FUN

. . .

Well I.D_MISS-4B
SAMPLE 1.D 126-021656
MEAS. REF. POINT (FL AGS or BGS) (
WELL DEPTH (Ft. TOC) $\sim 47'$
INNER CASING/OPEN HOLE DIAM (12)
DEPTH TO TOP OF SCREEN (FITOC) NOT Sime
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC) $\sim 40'$

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged · (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
1020	11.89	300	300	16.38	1592	6159	-70.0	1.18	16.3	
1025	11.89	002	1800	16.38	1582	6.58	-69.3	0.61	35.0	
1030	11.90	310	3350	16.26	1566	6158	-68.0	0,60	68.0	
1035	11.91	300	4850	16.22	1568	6.58	-71.0	0.39	78.8	⇒ <u>\$</u> {6 ₄
1040	11.90	260	6150	16.66	1572	6.58	-71,2	0.37	61.1	می کرد دو س
1045	11.90	260	7450	16-61	1564	6.58	-71,6	0.35	60.3	54
1050	11.89	260	8750	16,63	1559	6:58	-70,4	0.33	46.0	
1055	11.89	250	0000	16.86	1558	6.57	-70.1	0,32	37.6	
1100	11.89	250	12500	16.97	1554	6.58	-707	0.32	41,2	
1105	11,88	250	13750	16.73	1553	6.58	-70.8	0,31	37.0	
1110	Sn.	hol o		,			i			Í
1115		0								
120		1						·		
1125		1		1						
		1								
		1			、					
		,			-\					4
		·								
					/		-			
							*			
		OR <u>Clear</u>	())	munt sei	1		, ,	chimi		u[]
	D BY (PRINT	<u>n SNan</u>	The los	<u>1011</u>		MPLED BY	~	<u>ra na</u>	<u>ussan</u>	
SIGNATU		CED AND LO	Inter.			GNATURE	7-29-0			

Shaw * Stone & Webster, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE May WBS DATE 7-2982 WORK ORDER #_____NORFAS ____ ĒO, FIELD INSTRUMENTS: PLD, LEL \bigcirc +H_Shoetr' (ast) M KON Can 21 Subm ble v si pinp: flow Low SAMPLING METHOD

Well I.D_MISS3B
SAMPLEID 126-021655
MEAS. REF. POINT (EL AGS) BGS) BC 1/
WELL DEPTH (FL TOC) 39, 2
INNER CASING/OPEN HOLE DIAM (Ia)
DEPTH TO TOP OF SCREEN (Ft TOC) Not given
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC) 351

ζ.

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp ℃	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
OALS	11.23	400	800	15.17	1376	6.20	2,6	0.78	26.3
0920	11.23	350	2550	15.64	1367	6.22	0.4	0.50	21.1
0925	11.20	310	4100	16,22	1365	6.23	-1.7	0.38	18.0
0930	11,20	250	5500	16.22	358	6.24	- a.6	0,36	15.8
0935	11.21	280	6900	16,21	1357	6124	-3.2	0.32	13.7
0940	11.21	300	8400	16.30	1360	6.25	-3.5	0.31	12.4
0945	llial	300	9900	16.46	1364	6.25	-3,8	0,30	11.8
0950	Sun	ple							
0955				(
	$- \subset$								
		\searrow							
	· · · · ·		\sum						
	<u>+</u>								
							·		
					<u></u>				<u></u>
APPEARA SAMPLEI SIGNATU	RE	OR Clean D Shaw CED AND L	1		SA SIC DA	DOR <u>N</u> MPLED BY GNATURE TE/TIME	Lanc	2/10	<u>333400</u>

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE Mayung WBS 519-02 DATE / WORK ORDER # NORFAS FIELD INSTRUMENTS: 5 ծ-^) m Den tiv КÙ SAMPLING METHOD 2

Well I.D \underline{M} \underline{M}

	Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	pH	Eh (mv)	DO (mg/L)	Turbidity (NTU)
ĺ	1310	6.83	240	1920	18.56	1834	7.40	-39,2	0.49	85.1
	1315	<u>6182</u>	260	3220	18.60	1832	7.39	-58.6	0.42	91.1
		6.83	260	4520	18.64	1835	7.39	-73,6	(),35	98.7
	1325	6.84	270	5870	18,12	1841	7.37	-68.9	8 1.05	90.0
	1330	6.84	260	7170	19.28	1848	7.37	-80.6	(), 30	84.9
-	13.35	6.83	260	8470	19,20	1849	7.38	-82.0	().29	80.7
	1340	0185	260	9770	19,43	847	7.38	-82,9	0.27	77.2
	134.5		260	11070	19.29	1844	7.38-	-82.9	().26	08,4
-	1350	0.85	240	1237011	9.09	1843	7.39	-82.4	A 7, 1	2.7
	13557		260 1	36701	9.55	8481	7.37-	-78.2	1	09.2
ŀ	1400 (0.850	360	4970	8.82	1854	7,37-	78,2		63.2
ļ	405(0.850	250 1	6220	18.72	856-	7.37 -	-78.1	0 0 1	56.1
Ц	410 (0,850	250 1	74701	8.84	1848	7.35-	-77.8	0.22	50.1
	4151	0.853	22011	872011	9.33	1845-	7.357-	-77.1	0.22	18.8
μ	4201	0.85	250 1	89601	8.721	8451	7,37-	77.0	Oall	18.3
Ц	425 6	,84E	2502		8.61	8411	7.36-	76.6	0.204	12.5
<u> </u>	,	,845	2 <u>50</u> a	21460	9.10	840-	7.35-	76.0	0.201	11,4
μ	4556	* 85 =	2602	27601	8.541	837-	7.35	7.5.7 (0.193	38.2
μ			160 3		9.501	838	7.34 -	75.1 (j.203	35.4
Ц	445 (2,850		2571011	8.81 1	8347	1.35-	73,9 (),193	56.5
Ц	4506	5.83	ISUB	6010a	<u>0.7011</u>	8307	1,34 -	75.0 (<u>).2013</u>	51.9
			R <u>Clen</u>	· · · · · · · · · · · · · · · · · · ·	culur	_ ODC	R Mu	N		
			Stlans	n'Ha	[]	SAM	PLED BY <u>/</u>	-aure	Kass	RW
	IGNATUR		so white the second sec	(loft	<u> </u>	SIGN	ATURE	·······	(*	·
١	VELL CAP	REPLACE	D AND LO	CKED BY_		DAT	e/time 7	-36-02	-/ 15	25
	`		Pa	se 1	of	2	,			

Shaw - Store & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE Mayusol WBS	
WORK ORDER #	NORFAS
FIELD INSTRUMENTS:	ID, LEL, M, S,
Or & CO meter	Grundtus
submersible pur	no Cantul buy
Water level	indicat

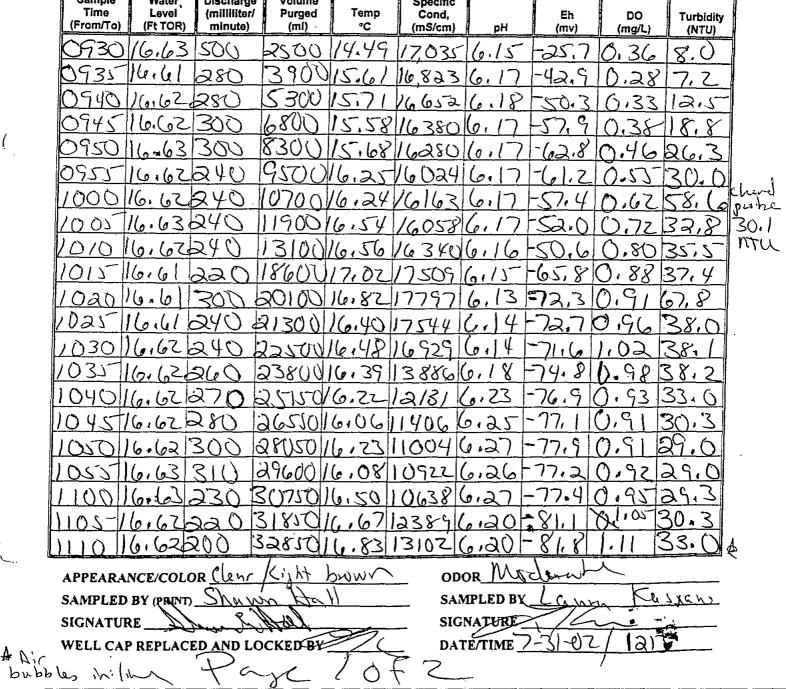
. .

SAMPLING METHOD

	"
Well I.D_MW-2D	
SAMPLE LD 236-021661+236-021662	
MEAS. REF. POINT (FLAGS or BGS)	ي م
WELL DEPTH (FL TOC) 48,5	
INNER CASING/OPEN HOLE DIAM (1a)	
DEPTH TO TOP OF SCREEN (FI TOC) Wat civen	
WLL VOLUME (Gal)	
PUMP INTAKE (Ft. TOC) $(44)/(2)/(2)$	

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (mi)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
1455	6.84	180.	26910	19.94	1835	7:35	=75.5	0.19	33,3
1500	6.85	200	27910	20.37	1831	7.33	-74.2	(),20	31,1
1505									
						γ			
								$\sum $	
)			
]								
		2 4	\frown	Y N	-				
	\sim								
			- 4						
			\rightarrow						
				\rightarrow					
						\rightarrow			
	:								
						4	k		
	<u></u>	<u> </u>		<u></u>]
APPEARA	NCE/COLO	9R			OD	OR		<u></u>	
SAMPLEE	BY (PRINT)		<u> </u>	<u></u>	SAN	NPLED BY	\sim	1	
	RE				SIG	NATURE _		\searrow	<u></u>
VELL CA	P REPLAC	ED AND LO	OCKED BY		DA1	TE/TIME			\sim
:		t	~ · · ·	7 ~	57				

Shaw^{*} Store & Webster, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS


Well I.D $\underline{B38}$ $\underline{W17D}$ SAMPLE I.D $\underline{O20}$ $\underline{O21659'}$ $\underline{O20}$ $\underline{O21660}$ $\forall MEAS. REF. POINT (Ft. AGS of BGS) <math>\underline{O}$, \underline{O}' (Filterwy) $\forall WELL DEPTH (Ft. TOC) \underline{\simeq} 15'$ INNER CASING/OPEN HOLE DIAM (Ia) $\underline{2''}$ $\forall DEPTH TO TOP OF SCREEN (Ft TOC) <math>\underline{Wn}(NAW)$ WLL VOLUME (Gal)

G

PUMP INTAKE (Ft. TOC)_

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
0945	10.18	440	2200	15.87	2815	6.79	-65.3	0.34	0.4
5620	10.18	340	3900	17.45	2807	6.82	-77.1	0,34	0.9
0955	10.17	380	5800	17.26	2814	6.85	-79.5	0.26	0.3
1000	10.18	380	7700	17.13	2812	6.86	-80.6	0.26	()-
1005	10,18	360	9500	17.15	2518	6.86	-81.2	0.24	0.0
0101	10.18	380	11400	17.19	2810	6.87	-81.1	0.23	-0.1
1015	10,18	360	13200	17.13.	2808	6,87	-81.6	0.23	-0.2
1020	10.18	370	15050	17.11	2804	6.87	-81,6	0.22	-().3
1025	10.18	380	16950	17.17	2806	6.87	-82,7	O.22	-0,3
1030	10.18	380	8 850	17,19	2804	6.87	-82.8	O.ZZ	=0.3
1035	10.18	37()	20700	17,24	2796	6.87	-82.8	0.22	-0.3
1040						\bigcap			
1045				\					
	\leq			2	2	<u> </u>			
		Ym	$\sim \sim$						
				\		\			
		\sim			-				
		\sum				<u>) </u>			
	•				, ``	4	\rightarrow	\sum	
						·			
APPEAR	ANCE/COL	OR Cle		Jas col	M OI	dor	tochini	~ 02	WIT
SAMPLE	D BY PRRINT	n <u>Shau</u>	2nd Ho		SA	MPLED BY	1		AJJAN
SIGNATU		Marrie CC	U.S.	<u> </u>		GNATURE	\geq	~;¥	200
WELL CA	AP REPLAC		OCKED BY			TE/TIME			
		ATI	redeption	h to b	ottom	ind:cu	ted o.	~ wel	1/08
		clocs	Not v	eflect	the	actua	1 we	11 dept	h at p

Stone & Webster, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS SITE -310C No WBS DATE Well LD **WORK ORDER #** NORFAS SAMPLE LD ಎ F FIELD INSTRUMENTS: 0246 MEAS. REF. POINT (EL AGS) BGS) WELL DEPTH (Ft. TOC) INNER CASING/OPEN HOLE DIAM (ia) BEPTH TO TOP OF SCREEN (Ft TOC) SAMPLING METHOD WLL VOLUME (Gal) 2 t | n, PUMP INTAKE (FL TOC) Sample Water. Discharge Volume Specific

Shaw Stone & Webster, hc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEWBS DATE 7-31-07	Well I.D_MISS-SB
WORK ORDER #NORFAS	SAMPLE LD
FIELD INSTRUMENTS:()	MEAS. REF. POINT (FL AGS or BGS)
- Cel Jot	WELL DEPTH (FL TOC)
	INNER CASING/OPEN HOLE DIAM (Ia)
	DEPTH TO TOP OF SCREEN (Ft TOC)
SAMPLING METHOD LOW tww	WLL VOLUME (Gal)
	PUMP INTAKE (Ft. TOC)

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (mililiter/ minute)	Volume Purged (ml)	Temp ℃	Specific Cond, (mS/cm)	рн	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
1115	16.62	200	33850	16.81	13366	10.19	-97.4	1.15-	34.1	
1(20	16.62	606	34850	16.99	13976	6.17	-94,6	1.18	33.9	
1125	16.61	370	36700	15.93	13395	6,15	-87.0	1.09	49.6	ļ
1130		260	38000	16.70	10226	6.28	-98.9	0.96	36.6	
11.35	16,62	22U	39100	16.74	12542	6.20	-94,3	1.09	30.3	
1140	16.62	230	40250	16:80	13017	6.19	-91,8	1.13	31,7	
1145	16.62	220	41350	16.57		4.18	7.15	7875	31.6	
4-50-							-88,9	116		
1155		$\left(\right)$	\sum							
1200										
1205	\leq									
1210		\rightarrow								
1215				`						
1220				Ln						
				Y.		~ 11				
	1				/	ן) כ				
					\mathcal{M}	}	$\left(\right)$			
							\sum			
	:									
			·							
APPEARA	NCE/COL	OR	livit .		OD	OR				

0

501

SIGNATURE _________ WELL CAP REPLACED AND LOCKED BY _____ A Cleaned Huw through cell. Page 2

Grun b

SAMPLED BY (PRINT)_

SAMPLED BY ______ SIGNATURE ______ DATE/TIME ______

V Stone & Webster, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE _____WBS ____ DATE ____7 WORK ORDER #_____NORFAS _____

SAMPLING METHOD Submissible fump

. .

FIELD INSTRUMENTS:

Well I.D MW-4D SAMPLE LD _ 7.36-02/666 MEAS. REF. POINT (Ft. AGS or BGS) WELL DEPTH (FL TOC) 42,71 INNER CASING/OPEN HOLE DIAM (1a) $-\frac{4^{\prime\prime}}{2}$ DEPTH TO TOP OF SCREEN (Ft TOC) WLL VOLUME (Gal)

PUMP INTAKE (FL TOC) 39'

	Sample	Water	Discharge	Volume	<u> </u>	V Course		- Jan			ল
•	Time (From/To)	Level	(milliliter/ minute)		Temp ℃	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
	1325	5.60	500	2500	16.96	563	7.12	-56,6	0.61	442.9	1
	1330	5.60	360	4300	18,04	561	7.08	-68.6	0.34	512.4	
	1335	5,58	200	5300	19,39	547	7.11	-72,4	0.40	416.8	
	1340	5,59	240	6500	20.20	558	7.11	.79.6	0,2.2		
6	1345	5.58	260	7800	18,52	556	7.08	-78,6	0.32	320.1	
L	1350	5,59	2.90	9250	18,42	556	7.05	- 75,6	0.36	202,5	
	1355	5.58	280	10650	18,42	556	7.03	-74,3	0.39	174,1	Cleaned 2 0.12
	1400	5.58	200	11650	17,58	573	7.04	-64.2		253	Flow The Org
	1405	5,58	200	12650	19,54	576	7.03	-66.7	0.40	161.1	Cell
	1410	5.58	200	13(FD	19.79	581	7.04	-63.0	0,46	143.7	
	1415	5,58	200	14650	19,66	580	7.02	=63,4	0.47	12.6.4	
	1420	5.58	200	15650	19,68	580	7.02	-61,2	0,50	120,8	CLER
	1425	5,58	200	16650	18,59	587	7.03	-57,1	0,53	138.3	Contra and
Hed to Money	1430	5,58	200	17650	19.70	591	7.02	-57.9	0.49	115.9	Cag
PUMP, Discharg WHS BERKY	1435	5,58	200	18650	19.90	592	7.02	-56.4	0.51	103.0	
200 M b/mind	1440	5,59	280	20050	19,08	589	7.02	-56,9	0,51	96.6	
	1445	5.58	270	21400	18,55	589	7.02	-56.2	0,49	92.6	7
	1450	5,58	260	22700	18,54	588	7.00	-54.6	0,51	84.8	
	1455	5,58	250	23950	18,62	588	7.00		0.55	76.9	
	1500	5.58	260	25250	18,51	588	7.00	=50,5	0.57	71.4	
Ĺ	1505	5,59	260	26550	18,51	588	2.00	-48.2	0.58	87.2	
Ĺ	APPEARA	NCE/COL	DR <u>Orange B</u>	SR V Turbid	STEleary	Flooting OD	OR				
	SAMPLEI	BY (PRINT)	Sha-	- ~ E.H	ra H	SAI	MPLED BY	<u></u>	<u>.</u>		
	SIGNATU	RE	man	Marth 2		SIG					
	WELL CA	P REPLAC	ED AND LO	OCKED BY	S. Hall	DA1	TE/TIME				
	ν.			•	Page	6701	L				
					<u> </u>		·				

Shaw Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE	WBS	DATE _	8-1-02
WORK OR	DER #	NORFA	AS
FIELD INS	TRUMENTS:		<u></u>

SAMPLING METHOD ______ Sybmers, ble fung

Well I.D MW-4D SAMPLE I.D 236-021666

MEAS. REF. POINT (Ft. AGS or BGS) _____

WELL DEPTH (Ft. TOC)

INNER CASING/OPEN HOLE DIAM (1a) 4/ "

DEPTH TO TOP OF SCREEN (Ft TOC)

WLL VOLUME (Gal) ____

PUMP INTAKE (Ft. TOC) 39'

	Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
	1510	5,59	260	27850	18.07	588	6,99	-46.2	0.60	66.3
: .i —	1515	5.59	260	29150	18.11	587	6.99	-44,5	0.61	63.5
	1520	5,59	2.60	30450	18,53	587	6.99	-42.6	0.64	57.0
		5.59	260	31750	18.34	587	6.99	-40,1	0.66	55,1
	1530									
V_	1535	\leq	241	1 p l	20					
Ē		- <u></u>								
		SPOR	w/Bo	16 D.	Saral	Take	the	Samp	le.	
			/							
L										· · · · · · · · · · · · · · · · · · ·
			<u>-</u>							
į										
	·									
					_					
								*		

APPEARANCE/COLOR ______ SAMPLED BY (PRINT) ______ Shaw A E that SIGNATURE ______ Shaw A LAN WELL CAP REPLACED AND LOCKED BY ______ S. Hall

ODOR

SAMPLED BY _____

SIGNATURE _____

DATE/TIME _____

Page 2 of 2

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE ______WBS _____ DATE <u>\$-2-02</u> WORK ORDER # _____ NORFAS _____

FIELD INSTRUMENTS: _____

SAMPLE 1.D 236-021667 MEAS. REF. POINT (Ft. AGS or BGS) _____ WELL DEPTH (Ft. TOC) ____ 51.87 4" INNER CASING/OPEN HOLE DIAM (la) ____ DEPTH TO TOP OF SCREEN (Ft TOC) WLL VOLUME (Gal)

PUMP INTAKE (Ft. TOC) 451

SAMPLING METHOD _ Subarros able fump

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	En (mv)	DO (mg/L)	Turbidity (NTU)	Ì
0930	9.0	100	500	19.69	464	10,12	170.Z	0.55	337.0	
0935	9,2	400	2500	18,51	493	10.20	155.8	0,47	373	
0940	9.16	240	3700	19.31	479	10,23	143.7	0.27	278.9	
0945	9,18	240	4900	19,41	477	10.28	126,1	0.25	209.2	
0450	9.18	240	6100	19,48	468	10,30	118,6	0.24	177.8	
0455	9,19	240	7300	19.48	453	10.33	105.5	0.24	1350	
1000	9,19	230	8450	19.41	442	10.34	96.0	0.25	123.2	
1005	9,18	240	4650	19,41	434	10.31	5813	0.28	114.3	4
1010	9.21	240	10350	18.93	419	10.22	113,0	0.47	114,0	
1015	9,19	240	12050	19,40	420	10.16	1021	0.42	95.1	
1070	9,18	240	13250	19,25	416	10.06	96.0	0,51	84.3	ļ
1025	9,18	260	14550	19,12	414	9,96	96.9	0.61	73,83	
1030	9,19	250	15 800	19.09	4/4	9,85	91.2	0,71	70.0	
1035	9,19	250	17050	19.13	414	9.76	90,4	0,82	70.5	
1040	9,19	250	18300	19.00	417	9.65	90.0	0.94	68.8	
1045	9,18	250	19550	19.07	420	9,56	89,8	1,06	61.9	
1050	9,18	250	20850	19.06	423	9,47	90,4	1,19	59,2	
1055	9.18	260	22150	19.15	431	9.33	87.1	1,28	531	
1100	9,18	260	23450	19,17	435	9,27	89,6	1,48	52,3	
1105	9,19	260	24750	19,08	442	9,17	92.6	1.67	46.7	
110	9.19	260	26050	19.14	446	9.08	95, 2	1.79	44.6	

APPEARANCE/COLOR Mear Some Flooting Perticulated DOR SAMPLED BY (PRINT) __________ Shawn Hall _______ SAMPLED

e r ...I) SIGNATURE __

SAMPLED BY

SIGNATURE _____

WELL CAP REPLACED AND LOCKED BY Thom Hold

DATE/TIME _____

701 89

Shaw Store & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE ______WBS _____ DATE ______ WORK ORDER # ______NORFAS _____

FIELD INSTRUMENTS: _____

Well I.D $\underline{MW-5D}$ SAMPLE I.D $\underline{23b-02(667)}$ MEAS. REF. POINT (Ft. AGS or BGS) WELL DEPTH (Ft. TOC) $\underline{51.87}$ INNER CASING/OPEN HOLE DIAM (Ia) $\underline{44}$ DEPTH TO TOP OF SCREEN (Ft TOC) $\underline{45}$

SAMPLING METHOD _ Sybnersuble Pump

	Sample	Water	Discharge	Volume	-	Specific				
	Time	Level	(milliliter/	Purged	Temp	Cond,		Eh	DO	Turbidity
	(From/To)	(Ft TOR)	minute)	<u>(ml)</u>	°C	(mS/cm)	pH	(mv)	(mg/L)	(NTU)
	1115	9,19	260	27350	19,50	451	9.04	94.7	1.88	47.6
	1120	<u> </u>	hang	ed Ba	tter;	es r	VO NO	acting)	1	
	1125	9,19	260	28650	19,44	469	8.79	95.6	2.17	370
h15-	1130	9,19	260	29 950	19,64	478	8,66	107,6	2,46	-1,2
~ 	1135	9,19	260	3 250	19,53	483	8,59	114.4	2,56	-1,4
	1140	9,19	260	32550	19.61	488	8,50	120.8	2,64	29.9
ſ	1145	9.19	260	33850	19,71	494	8,41	129,5	2.72	29,1
	1150	9.19	260	35150	19.79	499	8,32	137.6	2,79	29,8
	1155	9,19	260	36450	19.76	508	8,17	146,2	2,96	26.0
	1200	9,19	260	37750	19.66	514	8.11	151,8	3.01	24,2
	1205	9,19	270	39100	19.80	520	7,99	159.7	3.11	25,6
	1210	9,15	240	40300	20,12	524	7.90	158.9	3,20	21.5
	1215	9,14	220	41400	20,13	527	7.86	163,9	3.22	21.8
-	1220	9,14	220	42500	20.12	534	7,79	168.3	3,28	28.9
	1225	9,12	220	43600	20.27	537	7,72	169.4	3,38	19,0
	1220	9,12	220	44700	20,21	541	7,68	169,2	3.46	18,4
	1235	9,13	210	45750	19.97	492	7.61	168.7	3.51	328
	1240	9,13	200	46750	20,41	548	7,57	170.6	3,56	31.0
	1245	9,15	200	47150	20,41	551	7,53	169.7	3,62	21,0
	1250	915	220	48850	20.26	554	7.49	165.0	3,71	27.5
	V205	9.13	220	49950	20,31	556	7,44	161.6	3,74	20.7

APPEARANCE/COLOR _ SAMPLED BY (PRINT) _____ man all a SIGNATURE _

ODOR_____

SAMPLED BY _____

DATE/TIME _____

SIGNATURE _____

WELL CAP REPLACED AND LOCKED BY

2

Shaw - Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE Mayous WBS ____ DATE 8-2-02 WORK ORDER # ______ NORFAS _____ FIELD INSTRUMENTS: PID, CEC, M, S, O, of CO motor Control box; water level cholicator; Bubmersible pump YSI GOMPJ flow SAMPLING METHOD

Well I.D $MW - SD$
SAMPLE 1.D 236-021(.67
MEAS. REF. POINT (Ft. AGS or BGS) 5/187 em
WELL DEPTH (Ft. TOC)
INNER CASING/OPEN HOLE DIAM (la)
DEPTH TO TOP OF SCREEN (Ft TOC)
WLL VOLUME (Gai)
PUMP INTAKE (Ft. TOC)

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp _°C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
1300		220	51050	20,30	558	7,44	161,2		20.9	1
1305	09,14	230	52200	2031	560	7,40	1588	3,80	18,6	- Dok - 3.0
1310	19,12	220	53300	20.57	562	7.36	155.3	3.87	17.6	
1315	09.13	210	54350	20.37	567	7.34	152,5	3.8-	14.7	
1320	09.13	210	55-400	20.30	568	7.34	152.0	3,57	14:5	
1325	09.13	220	56500	20.29	570	7,31	151.2	3.98	14.2	
1330	09,13		A	20,49	572	7,30	149,3	4,02	12,6	
1336	SX.	MPLY	ed							
ļ		- 41	our	PUNC	ell	Mit	rea	chec	ľ	
ļ				V						
					<u>.</u>					
										ĺ
· .		· <u> </u>								
										<i>/_</i>
							*			

APPEARANCE/COLOR SAMPLED BY (PRINT) ___ SIGNATURE WELL CAP REPLACED AND LOCKED BY

30(3

ODOR	
SAMPLED BY _	
SIGNATURE	
DATE/TIME	•

Shaw Store & Webster, Inc OD SUPERFUND SITE ENVIRONMENT

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE Maywow WBS DATE 8-5-02 WORK ORDER # NORFAS FIELD INSTRUMENTS: PLO LEL O, CO +H2m 1050 MD $r \leq T$ Grund sín binersi contro x vol C, SAMPLING METHOD £

Ĺ

Well I.D MW-7D
SAMPLE 1.D 1 33 6- 021669
MEAS. REF. POINT (Ft. AGS of BGS)
WELL DEPTH (Ft. TOC) 45.4
INNER CASING/OPEN HOLE DIAM (Ia) 4 11
DEPTH TO TOP OF SCREEN (Ft TOC) Not given
WLL VOLUME (Gai)
PUMP INTAKE (Ft. TOC) 40'

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	En (mv)	DO (mg/L)	Turbidity (NTU)		
0740	10.18	<u>ब्य</u> 0	1440	16000	1437	6,82	-132.0		1827.9		
0745	10.18	220	2540	16,28	1440	6.87	-137.0	0.11	1692.0		
0750	10.19	240	3740	16.17	1441	6.91	-140.0	0.07	1360.0		
0755	10,18	220	4840	16,47	1440	6.94	-139.7	0110	698.3		
0800	10.25	360	6640	16.08	1441	6.91	-118,9	Oil7	5a6.0		
0805	10,21	280	8040	16.25	1443	6.94	-125.0	0,13	379.5		
0810	10.15	240	9240	16,65	1443	6.95	-1232	0.13	348.2		
0815	10,14	<u>a40</u>	10440	16.52	1443	6.96	-126.5	0.13	337,0		
0820	10.14	240	11690	16.54	1443	6.96	-124.1	0.12	296.5	-	
0825	10.14	230	2790	16.52	1442	6.97	-122.7	0.13	273.9		
0830	10.13	240	13990	16.50	1442	6.97	-120.9	0.12	275.0		
0835	10.14	200	14990	16.44	1431	6.92	-112.1	0.27	336.3	¢	
0840	10.10	a10	16040	16.52	1439	6,97	-124,1	0.14	270,3		
0845	10,10	230	17190	16158	1439	6196	-12412	0,13	261.2		
7850	10.11	230	19490	16,44	1438	6.97	-123,0	O_{11}	288.3		
0855	10,13	240	206 90	16.40	1437	6.97	-123.9	0.10	266.4		
0900	10,12	250	21940	16.44	14.35	6.97	-123.0	0.10	222.3		
0905	10.12	2210	22990	16.50	1435	6.97	-124.0	010	224.2		
0910	10,12	210	24040	16.64	1436	6.96	-125.9	0.10	217:1		
0915	10.15	aa0	25140	16,54	1431	6.93	-116.2	0.12	214.6		
0920	10.13	2 30	26290	16.50	1436	4.95	-719.3	0:10	200.3		
APPEAR	ANCE/COLO	11	1/-11	t brown	<u> </u>	DOR N	m	obser	vec		
	D BY (PRINT	CIV	11. 0	<u> </u>		AMPLED BY	1 11	SJAW			
			all a	Ac		GNATURE	an-				
SIGNATURESIGNATURESIGNATURESIGNATURESIGNATURESIGNATURESIGNATURESIGNATURE											
Acleaned flow-through cell. Pagel of 2											
		Ta	sel	ot e	2						

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE Myon WBS	DATE <u>δ-5-52</u>
WORK ORDER #	NORFAS
FIELD INSTRUMENTS:	
	<u> </u>

SAMPLING METHOD

Well I.D MW-7D
SAMPLE I.D 235-02166 5
MEAS. REF. POINT (Ft. AGS or BGS)
WELL DEPTH (Ft. TOC) $45.7'$
INNER CASING/OPEN HOLE DIAM (1a) $\underline{4}$
DEPTH TO TOP OF SCREEN (Ft TOC) MIt g. Jon -
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC) 40'

Sample Water Discharge Volume Specific (milliliter/ Turbidity Time Level Purged Temp Cond, Εh DO (From/To) (Ft TOR) minute) (ml) °C (mS/cm) (NTU) рH (mv) (mg/L)2 230 27440 94 118.8 189. 3 Чu ລ \cap 2 ð 33 17 3() 285 01 13 ЧO 2 2 3 a 4 ς 8 0 ລ () 3 24() 0990 7 6152 31 ς 2 (ະ QU e) ٦ 2 3 २ ৬ দ ୦ Ja h 000 15 80 () ってつ ፞፞፞፞፞፞ Ľ ລ 00.5 2 aa 8(. aac10 0 7 <u>ጉ</u> ሮ X 7 0. MIN e79 35 83 A 210 9 2 0 020 10 ન્રિચ 50 6.54 8 2+ 7 ()025 10 22 7 \mathcal{O} UDAGE a 036 10 1 È \mathcal{A} 3 *ιΣ* () -92 2 O'990 16,59 23 75 42 6 8 Ч 2 40 44 090 ብ 89.7 6 66 73 220 '2 マ 6 . 0,08 45190 69 041 10. z_z -858 Í 142 08 Z 12 6, 020 120 hOQ 07

APPEARANCE/COLOR SAMPLED BY (PRINT)

SIGNATURE _

WELL CAP REPLACED AND LOCKED BY A Claumed AWW-through cell Page 20f 2

ODOR_ SAMPLED BY SIGNATURE DATE/TIME

良良

1.

14.4 3.4

Shaw - Skone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEMANNING WBS _____ DATE 8-502 WORK ORDER # __ NORFAS_ FIELD INSTRUMENTS: PID LFLOZ, CO, 2 Smiter rst GSUMPS <u> 0 H</u> Water lev rote cenerator Grundt CUNTUL BUS SAMPLING METHOD OV

Well I.D MW-20D
SAMPLE I.D
MEAS. REF. POINT (Ft. AGS & BGS)
WELL DEPTH (Ft. TOC) <u>S5'</u>
INNER CASING/OPEN HOLE DIAM (la)
DEPTH TO TOP OF SCREEN (FI TOC) ADt give
WLL VOLUME (Gal)
$\frac{1}{10000000000000000000000000000000000$

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	pH	En (mv)	DO (mg/L)	Turbidity (NTU)
1255	10.25	180	1440	17,13	4189	6.83	-79,5	0.66	-5.6
1300	10.26	<u>aid</u>	2490	16:02	4197	6.81	-75.8	0,58	-5.6
1305	10.26	220	3590	16.11	4197	6.80	-74.7	0,46	-5.6
1310	10.18	220	4690	16.33	4187	6.79	-75.6	0,37	-5.6
1315	10.27	220	5790	16:01	4190	6.79	-7.5.9	0.32	-516
1320	10.27	220	6890	16.19	4190	6.80	-75.8	0.30	-5.7
1325	10.27	220	7990	16.20	4180	6.79	-75.8	0.28	-5.6
/330	10,27	220	9090	16.14	4172	6.80	-75-6	Dias	-5.7
1335	10.27	240	10290	15.92	4192	6,80	-75.1	0,23	-5.6
1340	10.28	240	11490	16.16	4174	6.80	-75.4	0,21	-5.6
1345	10.28	240	12690	16.09	4185	6.80	-75.1	0.20	-5.6
1350	10.28	240	13890	15,92	4193	6.50	-75,1	0,18	-2.4
1355	10.28	240	15090	15.88	4190	6.80	-75.1	0118	-6,0
1400	10.28	R40	16290	15.90	4191	6.80	-75.3	0.17.	-4.3
1405	10,28	aa0	17390	16.20	4191	(.80)	-75.1	0.16	-0.6
1.410	10.28	220	18490	15.90	4189	6.81	-75.2	0116	0.0
1415	10.28	dad	19550	16.04	4186	6.81	-75.3	0.16	-511
1420	10,28	220	20690	16.06	4192	6.81	-75.1	6.14	-5.4
1425	10.28	240	21890	16.00	4189	6.81	-75.4	0113	-6.7
1430	10.29	240	23090	ISin	4157	6,82	-63.3	0.21	-5,0 k
1435	10,29	240	24/290	15,72	4194	6181	-69.8	0.11	-5.0
APPEARA	ANCE/COLO	DR Clean	r except	tsome	black or	DOR SI-	t, oc	li	
) BY (PRINT	511 7	111	sedim	_ + /	MPLED BY	L.K	assim	
SIGNATU		gound	Uses.	,	citr si		X	G~	
WELL CAR REPLACED AND LOCKED DY									
Payer 1 of Z									
		\mathcal{P}	aye	1 0	ťΖ	_		V .	
			-8-		`				

Shaw * Store & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEMajor wBS	DATE 8-5-07
WORK ORDER #	NORFAS
FIELD INSTRUMENTS:	
- See pe	K 10+
SAMPLING METHOD	

Well I.D $\underline{M} - 200$ SAMPLE I.D $\underline{}$ MEAS. REF. POINT (Ft. AGS or BGS) $\underline{0.0'}$ WELL DEPTH (Ft. TOC) $\underline{55'}$ INNER CASING/OPEN HOLE DIAM (ta) $\underline{4''}$ DEPTH TO TOP OF SCREEN (Ft TOC) \underline{M} $\underline{51'}$ WLL VOLUME (Gal) $\underline{50'}$

Sample Time (From/To	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	En (mv)	DO (mg/L)	Turbidity (NTU)
1440	10.29	240	26690	15.46	4181	6.81	-71.3	0.10	-5.5
1445	10,29	240	27890		4184	6.81	-72.3	0.11	-5.6
1450	Szr-	mol	e						
1455		Ŭ							
1500									
									\backslash
							$\left \right\rangle$		
									\sim
ļ									
i									
					\backslash				
)				
					-	,			
			Col	leed	-d W	ns/n	lsp/	Solit	.
					4	\sim \cdot \cdot	. cade	0	
							ä		

Page 20f

APPEARANCE/COLOR ______

WELL CAP REPLACED AND LOCKED BY _

SIGNATURE _

ODOR______SAMPLED BY______SIGNATURE______

معمد من المكان الماني الدي	· · · · · · · · · · · · · · · · · · ·									
• . •										
						L Webster, Inc				
	T	SRAP MA	YWOOD	SUPERFU	MIN CITE I	INVIRON	MENTAL	REMEDL	ATION VSIS	
т л и	PO	WELL	SAMPLING	RECORD/F	IELD WATE	ER QUALIT	3201			
	All all	WBS	DAT	E8-6-	02	Well I.D	1JA	12-1	1	
	WORK ORDI			RFAS		SAMPLE		<u>o - 0</u> -	0.0	7
	FIELD INSTR		PID,L	EL, OZ,	<u>c</u> o,		EF. POINT (F	1.1	,3'	
	a Has	mater	7510	ton sw	punisij		PTH (Ft. TOC ASING/OPEN		. .	1/
-	Inchil	neter 1	by Way				O TOP OF S			given
	Proft	SI 60	<u> </u>				LUME (Gal)_	\geq		
	SAMPLING N	METHOD	1 Flu	~		PUMP IN	TAKE (Ft. TC)C)	6	
					î	Specific				Turbidity
	Sample Time	Water Level	Discharge (milliliter/	Volume Purged (ml)	Temp °C	Cond, (mS/cm)	рН	Bn (m∨)	DO (mg/L)	(NTU)
	(From/To)	(Ft TOR)	minute)	1080	15.93	14192	5.97	-32,1	0.30	1.3
	0730 Nego	10.85	500	2050	16.34	14256	6.03	-31.1	0.20	$\frac{10}{10} = \frac{10}{5}$
	247	10.55	240	3280	15.39	14259	6.04	-2leila	$\left[\begin{array}{c} 0.2 \\ 0.1 \end{array} \right]$	10.57
	0545	10.90	270	4630	15.66	14432	6.05	- Jd,6	$\Delta 17$	11,70
	0950	10.51	260	5930	15.57	14503	6,05	-24.0	0.12	9.12
	0955	10.92	<u>a60</u>	7230	15.67	4350	(10)	-34.2	0.12	9.74
ï	1000	10.91	240	8430	15151	14520	6.04	-34.0	0,10	11.50
	1005	10.93	230	10780	15.21	146.07	<u></u>	-35:0	0.09	9,50
	1010	10,74	240	-	1.00	1,1007	VAL	-34.7	0.08	9.63
	1015	10.14	230	13080	14.92	14770	6.01	-33,7	0.07	10.04
	$\frac{10a0}{135}$	10.94	240	1428	14.94	1453	16.01	1- 5411	0,07	
	1000	10.5	1240	15480	14.76	14889	$\frac{16.01}{1000}$		10.07	10.15
	1035	-110,99	1250	16/51	214.78	14900	16.00	1-251	0,06	
DO	1040	10.90	1240	17930	015.40	14 192	10.01		10.07	
cit is	1045	-10,94	1240	5 1913	015.71	•N1717.4-	-170	1-29+1	60.08	9.78
Zivui	<u>JO5C</u>	> 10,94	230		015.80	127011	No In)-49.2	20.05	8,52
	1022	-1/0.90	1250	s also	015.48	1440	36.00)-50.	90.04	8.99
	1100	- 10.94	+ 240	2393	0 15.6	1 1430	74.0	1-55,9	10.04	8140
			TOATY					1		1

125

١

Ner5

4-6-0

ODOR_

SAMPLED BY

SIGNATURE _

DATE/TIME_

Do kit is

05 Ô }

0.94

WELL CAP REPLACED AND LOCKED BY

SAMPLED BY CRIME

SIGNATURE

APPEARANCE/COLOR Clear 1/ 5 molt Black Particulated

Shown E

Ω

之中

ていい

Shaw Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE May No dwBS_ _____ DATE <u>8-7-0</u>-2 WORK ORDER # NORFAS_ FIELD INSTRUMENTS: PID; LEL, O2, CO, <u>Sm</u> 7-11 PSI 650 MDS X 1 (? indios 0 Jaty leve ž ev SAMPLING METHOD Low Flow

Ø

Well I.D BRPZ-9
SAMPLE I.D 126-021672
MEAS. REF. POINT (Ft. AGS (FBGS)
WELL DEPTH (Ft. TOC) 56.7
INNER CASING/OPEN HOLE DIAM (Ia)
DEPTH TO TOP OF SCREEN (Ft TOC) $32'$
WLL VOLUME (Gal)
PUMP INTAKE (EL TOC) $40'$

Sample Tíme (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific <i>Cond</i> , (mS/cm)	рН	Bh (mv)	DO (mg/L)	Turbidity (NTU)	
0845	11.47	100	800	14.83	9691	6.53	-101.7	0.55	12.4	
0850	11.64	205	1825	15.10	9900	6.46	-91.3	0.38	12.2	
08.55	11.79	190	2775-	15.48	9891	6.43	-91.1	0.30	15.0	
CA00	11.87	240	3975	15.22	9754	6.43	-87.1	0.30	13.8	
0905	12.04	200	497.5	15.53	9703	6.45	-93.4	0.23	8.54	
09/0	12.18	240	6175	15.27	9519	(c, 46)	-95.4	0.21	8.05	
0915	12.25	200	7175	15.36	9469	6.48	-98.3	0.16	9.47	
0920	12,30	190	81-25	1,5.43	9457	6.47	=96.0	0016	9.77	
0925	12.45	260	942.5	15.19	9462	6.45	-88.4	0.15	10.01	
0930	19.20	240	10625	15.50	9510	6.45	-88.6	0.13	9.42	
C)935	12.60	240	11825	15.33	9469	6.45	-89.7	0.13	8.64	
0940	12.61	200	12825	15.52	9433	(0.147)	-91.9	0,12	11.20	
CAUS	12.73	260	14125	15.25	9574	6.42.	-86.9	0.10	7.30	
09.50	12.77	240	15325	15:39	9404	6147	-90.6	0.11	8-63	
0955	12.81	200	16325	15.46	9422	6.46	92.6	0.10	12,00	
1000	12,82	200	17325	15.56	9883	(37)	-85.8	0.09	7.35	
1005	12.83	200	18325	15.82	10272	(n. 30	-81.7	0.09	6.50	
1010	12.86	240	19525	15.46	10536	6.25	-78.3	0.09	7.67	
1015	12.88	2005	20575	15.64	10607	6.26	-78,8	0.09	6.69	
1020	12,90	200	21575	15166	10520	6.26	-77.5	0.08	9.06	
1025	12.91	210	22(2)	<u>t5.84</u>	10839	(0.22	-72.8	0.07	6,08	
APPEARA	NCE/COLO	R <u>Small</u> a	mont ble			DOR	onc	notic.	ed	
SAMPLEI) BY (PRINT)	Sitt	<u>all</u>	now	Lor sa	MPLED BY	Lit	assa u)	
SIGNATURE SIGNATURE										
Well CAP REPLACED AND LOCKED BY SA DATE/TIME $\frac{8}{7}/\sqrt{2}/\frac{12}{3}$										
Ś	52	1 20	93	\bigcirc						

Shaw⁻ Stone & Webster, Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

____ DATE 8-7-07_ SITE MAYNED WBS_ __NORFAS __ WORK ORDER #_ FIELD INSTRUMENTS: PID, Oz, COLEL ter Water level inclica tur' < me mersible pump; SV Sunch 650' genuntur - c bux lestra SAMPLING METHOD _ F1. vv. 1 LOW

BBBZ-C
Well I.D 1011 C 5
SAMPLE 1.D 126-021671
MEAS. REF. POINT (Ft. AGS of BGS)
WELL DEPTH (Ft. TOC)
INNER CASING/OPEN HOLE DIAM (1a) 2
DEPTH TO TOP OF SCREEN (Ft TOC)
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC)8

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
1255	12.05	230	1380	15.00	20799	5.63	-5-4.3	1,21	1736.4	-
1300	13.50	180	22.80	16.77	21485	5.81	-128.7	3.61	1740.5	-
1.305	14.55	160	3080	17.47	22215	5.85	-218.4	6:02	1747.5	
1310	15.98	500	4080	15.95	22354	<u>5.50</u>	-273.0	5.90	1737.6	
1315	16.39	240	5280	16.58	22396	5-94	1-276.7	4,19	344.1	
1320	16.70	200	6280	16152	<u>2236C</u>	5.94	-280.9	2.04	1739.3	_
1325	16.90	200	7280	17.55	22746	5.94	-281.0	8.80	1456.5	
1330	17.01	180	12680	18.24	2251	5.56	-282.5	14.51	1717.7	4 4
1335		-		18.53	22820	6.00	-264.0	11.74	203.7	Q.
1340	18.10	200	13680	18.15	2256	6.01	-272.7		1410.1	
1345	18.18	200	14680	17.75	22411	5.56	-287.	12.47	195.5	1
1350	18.25	160	1.5480	17.10	22308	15.55	Fas3.0	2.16	12003	
1355	18:42	180	16380	17.54	22424	5.95	-364.0		105.1	
1400			17680	16.74	22126		- 3/5.0		73,0	
1405	17.90	210	18730	17.12	22070				391.5	
1410	19.00	200	19730	17.60	2244	5.87			1746.1	4
1415	19.05	200	20730	18.61	21208		-304.9		1750.3	·
1420	19.05	180	21630	18,81	22014	1 5.79	-329.3	5 1.73	733.7	_]
1425	19.60		22830		27087	5,75	-338.6	4.10	103,3	-
1430	LLC OD				021580	15.73	5-347,	54.17	255.	3
1435	19.77	200	24830	19.30	021383	3 5.71	-347.	15.17	189.4	×
	Clenr	Darks	my to	<u></u>		odor <u>S</u>	ton a	<u>od</u>	Jr/Su	Hur-like
	RANCE/COI ED BY (prin	C 11				SAMPLED F	BY		/	_
SAMPL	-	(I) <u></u>	201-11			SIGNATURI	£			
		CED AND I	OCKED BY	ST		DATE/TIME	8-7-0	2/17	13	
				_				t	١	
	* Ch	and	lines Page	ofa. (of	11-	X-F	ur tur biolin	Laid ity	LASAU	
			Page	10+	:3	Tim	· biolin	ster 2	020	

FUS Muyusii RK ORDE	WELL S	AMPLING	$\frac{\text{UPERFUN}}{\text{RECORD/FIL}}$		Webster, bc NVIRONMENTAL REMEDIATION R QUALITY SAMPLE AND ANALYSIS Well I.D $\underline{AB} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} C$					
Sc. WPLING M	ETHOD_	101			DEPTH TO WLL VOI	ASING/OPEN O TOP OF S LUME (Gal) FAKE (Ft. TO		-oc) <u> </u>]		
Sample Time	Water Level	Discharge (milliliter/	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
From/To)	(Ft TOR) 19.78	minute)	25830		21605	5.71	-348.3	0.39	600	1
440	19.75	190	26780		21800		-355.2		32.1	
4(7)	19.95	200	27780	19.09		5.70	-300-	-0.6S		
451	19.90	190	28730		21819	5.72	-270,		31.7	
INN IN	19.90	300	30230	17.63	121650	12:12	10/01	-	-	Furbich
1525 1525 1525 1535 1535 1535 1557 1557 160 160 160	521.49			019.99 019.20 019.0 018.9 018.9 018.9 018.9 018.9 018.5 018.5 018.5 018.5 018.5 018.5 018.5 018.5 018.5 019.0 018.9 0 019.0 0 019.0 0 019.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120999 	5.79 			7294 6406 714 2960 710 2960 710 2960 710 2960 9710 2960 9710 2960 9710 2960 9710 2960 9710 2960 9710 2960 9710 2960 9710 2974 2974 2974 2974 2974 2974 2974 2974	10m701210
	EARANCE/C		~			SAMPLE	CD BY	\geq		
	PLED BY (P					SIGNAT				
SIG! WEI	NATURE	PLACED AN	A Adj cunt	BY	Grun gelv	DATENT des des des	me	pump). Rate 20f_2	,

(

•

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE <u>MAY WOOD</u> WBS	DATE 7 Augo 2
WORK ORDER #	NORFAS
FIELD INSTRUMENTS:	<u> </u>
PAGE 1	
OF	
SAMPLING METHOD	

Well I.D BRPZ 5SAMPLE I.D $12 b \cdot 021671$ MEAS. REF. POINT (Ft. AGS or BGS) 0.0WELL DEPTH (Ft. TOC) 62INNER CASING/OPEN HOLE DIAM (Ia) 2''DEPTH TO TOP OF SCREEN (Ft TOC) 42'WLL VOLUME (Gal) 58'

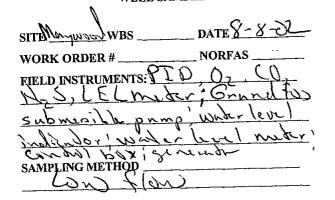
Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
1625	21.59	220	44020	18.62	215-98	5.65	-331.8	1.78	51/
1630	21.56	200	45020	18,34	21576	5.65	-334.6	1.63	40,0
1635	21.59	120	46120	17.18	21646	5.45	-334.9	1.65	27,7
1640	21.59	220	47220	17,12	21581	5.60	-331.5	1.31	31.0
1445	21.58	200	48220	16.97	21583	5.65	-330.9	1.26	24.8
1650	21.59	200	49220	16,96	21590	5,65	-331.1	1,27	22.3
1655	21.58	200	50220	16.58	21458	5.66	- 129.4	1.33	27.5
1700	21,42	200	51220	16.97	21406	5.66	-328,4	1.26	21,7
1705	21.42	Z00	52220	17.39	21510	5.66	-3,29,7	2.64	28.7
1710	21,43	240	53420	18.15	21501	5.68	-334.9	1.89	27.0
1715	21,49	200	54420	17.10	21636	5.48	- 334.0	1.86	22,0
1720	21.22	200	55460	17.25	21693	5.68	~ 331.5	1.59	24,3
1725	21.22	200	54400	18.18	21809	5.68	- 331.4	1.66	21,5
1730	21.14	200	57400	14.63	21948	5.69	-332.6	1.58	21.00
	\leq								
		2~~~	$\sim O$	<u> </u>	()	\frown			
	*				\setminus				
			<u>}</u>	d	7	\geq			
					\sum				
				· · · ·					
							*		

Kak 202

APPEARANCE/COLOR __

SAMPLED BY (PRINT) ____

SIGNATURE


WELL CAP REPLACED AND LOCKED BY

ODOR	
SAMPLED BY	
SIGNATURE	<u> </u>
DATE/TIME	

4.

Shaw Stone & Webster, Inc.

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

¢.

Well I.D MW-3D
SAMPLELD 120-CBILDLOT
MEAS. REF. POINT (Ft. AGS of BGS) 0 1
WELL DEPTH (Ft. TOC)
INNER CASING/OPEN HOLE DIAM (Ia)
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC)

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	pН	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
1425	8.71	100	700	16.22	12532	6.53	18.3	1.10	3.5	
1430	8.81	140	1400	15.24	12452	6.35	-16,1	1.28	9.4	
1425	8.96	200	2400	15.02	12386	6.35	-17.5	1.07	5.1	
1440	9.15	180	3301)	15.12	12271	6,38	-19.2	0.91	4.6	
1445	10.45	320	4900	15.01	115108	6.38	-21,9	G165	2.8	
14.50	9.36	160	5700	14.98	10417	6.37	-24,4	0.62	4.0	
1455	9.41	240	6900	14.96	9671	6.38	-26.1	0.63	$\left[1, 1, 1\right]$	
0071	9.41	260	8200	14.95	9149	6.37	-26.8	0.62	1115	
1505	9.43	2a()	9300	14.89	8807	6.37	-28.8	0.57	11.6	
151T	9.43	240	10501	14,90	8632	6.37	-29.4	0.55	12.4	
1515	G.43	230	11650	14,52	8559	6.37	- 30,1	0.53	11.8	
1520	9.43	220	12750	14.80	8517	6.37	- 30,8	0.52	12.3	
	9.43	220	13850	14.79	8473	6.37	-31.1	0.52	10.9	
1530	19,43	ban	14950	14.86	8458	6.37	-31.7	0.52	9,9	
1535	· [1	<u> </u>	<u> </u>			
		1			$\sum_{i=1}^{n}$	<u>h</u>	<u> </u>			
		\square	hW	V AD		\underline{K}		_ <mark></mark>		
	_ <u></u>	T						<u>_</u>		
	+		1			\mathbf{P}				
	TX	T	1			\sum	<u> </u>			
	<u> </u>	+	<u>k</u>							
and the sales open the detected										
APPEARANCE/COLOR CLUP (NICACUT ODOR										
SAMPLED BY PRIME SIGNATURE										
	SIGNATURE C-E-A7									
WELL CAP REPLACED AND LOCKED BY DATE/TIME <u>8 0 C</u>										

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

U

Ł

SITE May www. WBS DATT	E8-13-02	Well I.D BRP4)-10
WORK ORDER # NOR	FAS	SAMPLE 1.D 25-02164
FIELD INSTRUMENTS: PTO (F	2,02,CO	MEAS. REF. POINT (Ft. AGS (EGS)
& N2 meter, Gru	<u>not tos subnesil</u>	WELL DEPTH (Ft. TOC)
pump, Water level in	dicator	INNER CASING/OPEN HOLE DIAM (12)
Centril box; generator	- 755650	DEPTH TO TOP OF SCREEN (Ft TOC)
SAMPLING METHOD		WLL VOLUME (Gal)
Low the		PUMP INTAKE (FL TOC) 25'

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	En (my)	DO (mg/L)	Turbidity (NTU)		
1350	12,45	180	900	16.87	2823	6.90	63.3	1.42	26.4		
1355	12.45	160	1700	16.97	2943	6,87	58,3	1.16	62.3		
1400	12.45	160.	0525	17.64	2966	6.84	19.2	1.24	\$ 19.6		
1405	12.45	300	<u> 9007</u>	6.21	2983	6.81	-71.2	1.05	33.8		
1410	12,45	300	0012	12.51	2984	6.79	-356-2	0.96	19.7		
1415	12.44	180	6400	17,61	2979	6.79	-357.0	0.95	24.0		
1420	12,45	220	7500	16.39	2981	6.77	-316.2	0,83	23.7		
1425	12.45	ZZD	6028	16.27	2983	6.76	-290.9	0.84	18.8		
1430	12.45	210	9650	16.25	2977	6.74	-273.5	0.820	23.4		
1435	12.45	240	02801	16.33	2987	6.71	-265.7	0.75	22.1		
1440	12.43	240	11050	16.44	2591	6.70	-262.1	0.74	23,4		
1445			12200	16.33	2997	6.68	-262.0	0.73	24.9		
1450		220	13300	16.15	3000	6.69	-256.3	0.71	21.4		
1955	12.45	<u>990</u>	14400	15.82	3012		254.60	0.68	21.2		
1500	12.450		15500	16.10	3019	6.68	259.6	0.68	25.1		
1501	12.450	280	16650	16.16	30270	6.68	254.7	0.64	25.2		
1510											
1515	<				┯	-()					
1520		}			$ \downarrow \downarrow \downarrow$						
1525			$-\sum i$	$\sim $							
1530	<u> </u>				<u>l</u>		*				
APPEARA	NCE/COLOF	<u>Clea</u>	-/No	Culin	. OD	OR N	me				
SAMPLED	SAMPLED BY (PRINT) Langh Known SAMPLED BY TOM Hicsche										
SIGNATU	SIGNATURE SIGNATURE										
WELL CA	WELL CAP REPLACED AND LOCKED BY DATE/TIME 8-13-02										

Store & Webster Inc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEMAJWBS ____ DATE 8-13-02 WORK ORDER # NORFAS LEL, 07, CC FIELD INSTRUMENTS: +H, Sm he-1" STIG.MMDS 20 1257 ÷ Nubr 0.55 602; SL Inna SAMPLING METHOD pump

(

Well I.D BRPZ3
SAMPLE 10 26-021670
MEAS. REF. POINT (Ft. AGS or EGS) 01 0
WELL DEPTH (Ft. TOC)
INNER CASING/OPEN HOLE DIAM (1a) 2
DEPTH TO TOP OF SCREEN (Ft TOC) 1/ 2 - 5. 1/2 ~
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC)

	Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)		
15	0940	12.20	280	4200	16.63	8364	6.07	-1.8	0.68	1940		
	OFITS	12,19	260	5500	16.63	8011	6.11	-85.0	0.65	17.0		
	0950	12,19	280	6900	16.88	7602	6.14	-567.9	0.61	439		
	0955	12.17	250	8150	17.10	7303	6.16	-586.2	0.59	322		
	1000	12.12	200	5150	17,45	7/32	6.17	-585.7	0.58	194		
	1005	12,13	190	00101	17.55	7056	(a. 18	-569.7	Oast	145		
:	1010	12,14	220	11200	17.52	6872	6.17	-556.5	0.58	119		
	1015	12,14	220	12300	17.63	6799	(017)	-567.1	0.54	66.2		
	1020	12.12	200	13300	17.81	6835	6.17	-573.4	0.54	61.2		
	1025	12.12	200	14300	17.97	6834	6.17	-5658	0.55	45.8		
	1030	12,19	240	15500	17.26	6708	6.16	-567.8	0.54	33,4		
	كذ30/	12.18	240	16700	17,15	6707	6.05	-581.8	0,53	30.1		
	1040	12,19	260	00081	17,62	6697	6.16	-582.1	0:53	46.1		
	1045	12.18	240	15200	17.53	6644	6.14	-575.1	0.52	ᡃᡱᢃ᠇᠊ᡚ	46.0	
	1050	12.21	270	20400	17.31	6627	6.14	-578,6	0.48	917		
	1055	12.15	60E	21400	18.05	6685	6.14	578.0	0,48	43,2		
	1100		-	-								
	1105				10	-						
	1110		\sim	~ 0			1 < 2				· ·	
[1115			\wedge	CN		$T \land$	$\overline{)}$				
	1120						te			<u>,</u>		
APPEARANCE/COLOR SIT huzz (to no calor odor Mocherat och												
	SAMPLED BY (PRINT) Ly La Sand SAMPLED BY T. Hirsche											
	SIGNATU		14			SIG	NATURE		/	<u> </u>		
	WELL CAP REPLACED AND LOCKED BY DATE/TIME 8-13-02 /:1120											

Shary - Store & Webster, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

- ----

SITEMA, WOSOWBS DATE 8-1402	Well I.D_MW-GD
WORK ORDER # NORFAS	SAMPLE LD 236-021668
FIELD INSTRUMENTS: PID, LEL, U.S.	MEAS. REF. POINT (Ft. AGS 0 (BGS), \bigcirc 1 \bigcirc $^{\prime}$
Sz. CO meter; Grundtox submersible	
primp, cantralbax, PSL 650MD	S'INNER CASING/OPEN HOLE DIAM (1a)
Water level indicator generation	DEPTH TO TOP OF SCREEN (Ft TOC)
SAMPLING METHOD	WLL VOLUME (Gal)
Low-tur	PUMP INTAKE (Fr. TOC) ~30'

Puredy	Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml) ^Q	∼ Temp °C	Specific Cond, (mS/cm)	pH	Eh (mv)	DO (mg/L)	Turbidity (NTU)	
1400	1225	8.05	280	Q1 >> 1	20.38	853	7,40	37,0	1,33	49.1	
2800	1230	8.03	280	SYUX.	20,66	851	7.48	-3/2.0	0.66	55.9	
4200	1235	8.05	280	12600	20.44	852	7.50	-581.8	0.62	61.0	
0022	1240	8.02	260	13900	20.26	849	7.50	-498.0	0.55	156.6	
6050	1245	7.90	<u>230</u>	15050	20,87	834	7,44	-623.3	0.63	1292,0	-Cleane
<u>[50</u>	1250	8.35	260	16350	17.23	749	7.58	-629.6	0.41	107.7	-
945D	1255	8.30	390	18050	20.17	799	7.66	-634.0	0.42	180.2	-adjust
	1360	Via/	280	11050	19.95	835	7.6Y	=624.9	0.51	291.4	
	1305	8.10	300	125JD	20,78	842	7.63	635.6	0.46	278.4	
	1310		aa0	13650		834	7.50	-609,6		257.3	
	1315		240	14850	20.94	<u>४२४</u>	7.42	-607,8	0.53	296.3	
	1320	7.81	200	12220	22,29	828	7.47	-581.D	0.61	504.1	
	1325	8.40	220	16950	21.95	821	7,32	-420,3		7560	
	1330	7.80	220	18020		823	7.32	-320.3		883.0	- Clean
			220	19150		820	7.36	-640.57		470.6	(),
	1340				21,33	814	7.23	-612.3	0.50	1726,7	
	1345	7.87	12	21650		816	7,21	-5619	0.53	1441.8	
	1350	7.91	\sim	·	25:32		7.21	-390.6		082.8	
	1355		1202	25450		828	7.20	<u>-350.0</u>	<u> </u>	012.9	
	1400	<u>7.70</u>			21,33	224	<u>].23</u>	-322.0		757.1	
	14021	1.71		27150	<u>30'NI</u>	818	7.22	50213	OISY R	791.7	
	APPEARA	NCE/COLO	R <u>Clone</u>	17/Me	el pro		\log_{10}	Ine_	nsti	cel	
х		BY (PRINT)		a Sign	r	_ SA:	MPLED BY	T. Hir	sche		
	SIGNATUR		<u>-</u>	\cong			NATURE				
	WELL CAL	P REPLACE	D AND LOO	ckéd by <u> (</u>		DA	TE/TIME_S	<u>- 4 - C</u>	2/		
Page 10FZ											

String - Size & Vebsie, ic FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEWE	3S DATE
WORK ORDER #_	NORFAS
FIELD INSTRUMEN	VTS:
	5
	Den 102
	00000
SAMPLING METHO	du

(

Well I.D MW-COD
SAMPLE LD _ 236-021668
MEAS. REF. POINT (F1. AGS 0(BGS))
WELL DEPTH (Ft. TOC) $34.8'$
INNER CASING/OPEN HOLE DIAM ($ _2$) $\frac{9}{2}$
DEPTH TO TOP OF SCREEN (FI TOC) Mit giver
WLL VOLUME (Gal)
PUMP INTAKE (Ft. TOC) $\sim 30'$

Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (mi)	Temp °C	Specific Cond, (mS/cm)	pH	En (mv)	DO (mg/L)	Turbidity (NTU)
1410	7.85	270	28650	21.15	820	7.23	-282,4		1001.4
1415	2.51	2800	27050	20,87	S20	7,22	-246.6		903,4
1420	7.91	270.	30550	20,82	821	7.22	215.4	0.42	798.0
1425	7.91	270,	52050		820	7123	-187,0	0.42	752,0
1430	7.91	260	33350	20.55	819	7.21	-164.7	0.56	660.9
1435									
1440									
445	\langle						\neg		7
1450			\sum	~>	\sim		$\sum \left(\right)$	(/
455			$\underline{/ \bigcirc}$	$\leq $	$\gamma \vee \gamma$	(\]			
500	·								
				/		<u> </u>			
				$- \langle \rangle$		$\geq V$			
								Z	
			\sim						
				\geq					
APPEARAN	NCE/COLOI	>			0.0				
	BY (PRINT)	`			. OD SAN	IPLED BY	\mathcal{A}		
	E		· ·	· · · ·		NATURE		<u> </u>	
		D AND LOCI	KED BY			TE/TIME		<u> </u>	
Page ZofZ 1									

Ô

Shaw - Store & Webster, nc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE Mayum WBS ____ DATE 8-15-02 _____NORFAS _____ WORK ORDER # ____ FIELD INSTRUMENTS: <u>PID</u>, LEL, O₂ ader Grantfy) CD2, 1225 144 prime Cont Sn Linersi 7 S T N. Z'am 1050 , xod SAMPLING METHOD SA V مرد 1 -0<u>.</u>. (11/2)

Well I.D $MD - 26D$
SAMPLE LD 126-021703/126-02170
MEAS. REF. POINT (Fr. AGgor BGS) -3
WELL DEPTH (Ft. TOC) $53.4'$
INNER CASING/OPEN HOLE DIAM (12)
DEPTH TO TOP OF SCREEN (Ft TOC) Must cive
WLL VOLUME (Gal)
PLIMP INTAKE (FL TOC) $\sim - \frac{1}{8}$

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (ml)	Temp °C	Specific Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)]
1140	12,82	502	3000	18.03	8785	6.78	-258:4	1.42	6.7	1
1145	13.99	180	3500	19:08	8763	6.80	- 3نتى ا	1.14	10.3	
1150	13.12	180	4800	19.05	8772	6.85	-520.9	1.21	13,4	1
1155	13,32	200	5-800	18.95	8748	6.90	-541.3	1.25	7.7	1
1200	13,36	180	6700	18.88	8724	6.92	-544,2	1.31	8.1]
1205	13.47	100	7200	19.73	8737	6.92	-552,4	1,39	7.8	
1210	13,55	180	8100	19,51	8748	4.97	-545,8	1.43	9,7	
1215	3.65	200	9100	20.08	8733	6.58	-550.1	1.52	11.8	
1220	13.71	180	0000	19,74	8737	6.99	-535.9	1.51	912	
1225	13.77	180	10900	19.50	8704	6,96	-528.3	1,57	9.7	
1230	13.18	280	12300	17.82	8775	4.58-	497.8	1:43	5.8-	\mathbf{A}
1235	14.06	900	6055	9.12	8780	6155	512,1	1.55	4,1	
1240	412	180	14200	20.77	8838	7.02	497.2	175	3.7	
1245	14.30	180	15100	21.19	8851	7.02	-535.4	1.80	6.2	
1250	14.31	240	10300	30.28	88391	7.02	533,1	1.67	6.1	
1527	14.22	200	17300	19.43	8733	7.00	525.9	1.69	716	
1300		200	18303	20.42	8705	6.96 -	-525.8	1,75	3,4	
1305	4,510	330	19400	9.62	8731	6.94	506.111	1.56	7.6	
1310	14.65	180	<u>20300</u>	20145	8749	6.95	577.61	18	2.0	ί.
<u>1315 </u>	4.71	180	alaure	X0.01	8753	,95+	590.4	.85	4,3	
1320	4.78	180	<u>221006</u>	20.24	51121	192-	599.17	1.83	8.4	
APPEARAN	CE/COLO	R Clear	H q.	my	_ OD	or	light-			
SAMPLED		L. Ku	and and		_ SAN	IPLED BY _	K_			
SIGNATUR		Kn		<i>7</i> ,		NATURE				
WELL CAP	REPLACE	D AND LOC	KED BY	5_	DAT	TE/TIME_8	-15-0	32/14	35	
A	* A'r	prp	KED BY	i~ !	in.	IP 7	Rah	したい	٦	
	$\mathcal{L}' \mathcal{J}$	61	ろう	Nda	, (R	er sur	- NOw	y/ w	$\sim \sim $	·Ciro
							40	x 10	_ re	

FUSRAP.MAYWOODD	and the second of the second
FUSRAP MAYIYO SDI	1. FUR ASIA SULATION ON
	and the second state of the second state of the second second second second second second second second second

SITE		DATE 18/10/02
WORK ORD	ER#	NORFAS
FIELD INSTR	UMENTS:	
	Y	<u>SI -69 20</u>
<u>(`</u>	IST 450	HDS (6920)

10

SAMPLING METHOD

(

A SULINA INTERNATION CONTRACTOR	
Well LD MITE	
SAMPLE LD	
MEAS. REF. POINT (FL AGS or BGS)	
WELL DEPTH (PL TOC) _61.55 /14	5.55
INNER CASING/OPEN HOLE DIAM (Ia)	
DEPTH TO TOP OF SCREEN (Ft TOC)	······································
WLL VOLUME (Gan	

1 . F

PUMP INTAKE (FI. TOC) 258.51

÷.,

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)		Temp °C	Specific Cond, (mS/cm)	ρН	Eh (mv)	DO (mg/L)	Turbidity (MTV)
13:35	15.55	220		15.18	3.607	6.76	-57.4	1.31	10.08
13:45	20.55	260		15.40	3.613	6. 94	-61.0	1.21	9.3
13:55	21.15	2:0		15.64	3-240		-64.5	1.17	8.3
14:15	2263	Losi F	1pw -		1				<u></u>
14:25	22.41	430	·	15.63	3.72	6.38	-70.1	1-14	9.5
14-43	23.51	440	ļ	15.27	3.77	1-86	-64.5	0.95	8.1
14 5	24.20	2.90	<u> </u>	15.14	3.7	:-37	- 63.7	.93	2.3
15-24	2435	243	ļ	16-15	3.20	6-37	- 635	. °ц	8.0
1519	24.52	?75	 	12.21	3.23	: 27	- 3.1		8-3
15 23	24.60	150		16.41	3 23	6.27	- 38.1	,94	8.3
15:30	24 40	150		:: 13	39%	696	-46.5	· 91	7.3
15:45	24.70	140		16.32	3.38	6.84	- 44.7	.12	7.7
12.00	24.71	130		15.41	2.37	684	-64.5	. 92	7.3
6:14	24-70	130	,	16.38	3.17	6.84	-64.4	-92	7.3
		Colle	sted	sample	@ 1	: 15			

APPEARANCE/COLOR Clear
SAMPLED BY (PRINT) SAL KOKOL
SIGNATURE Jal Malich
WELL CAP REPLACED AND LOCKED BY

DATE/TIME 10/14/02;1700

а - талара - -		
FUSRAP MAY WILL SA	WOOD SULT IN IS IN THE	ALCOUNTING NOT A SAMPLAN AND A
SITEWBS	DATE 10/15/02	Well LD MW-2.2 D
WORK ORDER #	NORFAS	SAMPLE LD
FIELD INSTRUMENTS: YSI 650 M	DS/E920	MEAS. REF. POINT (FL AGS + FGS) WELL DEPTH (FL TOC) 61.20/16.15
·		INNER CASING/OPEN HOLE DIAM (14)
	······································	DEPTH TO TOP OF SCREEN (Ft TOC)
SAMPLING METHOD		WLL VOLUME (Gal)

PUMP INTAKE (FI. TOC) ____

.

11

7

18 July 19 ويعتقره ولكعا التشاك

•

Sample Water Discharge Volume Specific (milliliter/ Time Level Purged Temp Cond, Bh DO Turbidity (From/To) (Ft TOR) minute) (mi) (mS/cm) •C pН (mv) (mg/L) (NTU) 0845 16-15 17.28 0900 16.39 6.78 1000 2.66 -63.9 13.7 1.91 -57.3 0915 18.32 6.56 780 14.90 2.66 1.12 11.0 0930 19.06 320 15-10 6.65 -50.8 2.68 0.94 9.8 1445 19.54 560 0.82 15.29 2.71 6.78 - 67.6 11-6 10:00 20.02 5.60 2.72 0.74 15.31 6.78 -69.3 10.4 15.48 20.55 10:20 560 2.74 6-78 - 70.2 0.75 10.0 10:30 21.70 380 15.50 6.77 2.85 9.0 - 70.7 0.75 10:35 21.71 15.49 300 677 8.5 2.84 -70.7 0.7% 10:40 21.71 677 300 15.50 286 -710 0 72 8.3 10:45 21.71 675 -71.0 300 15.53 2.88 0.77 7.7 21.71 10:50 300 15.53 2.89 -71.0 0.73 675 7.8 21.71 2.84 10:55 15.7 6.75 .73 300 -71.1 7.7 Collect Samples @ 11: AM 11:00 ► 115

APPEARANCE/COLOR	Clear
SAMPLED BY (PRINT)	CAL KOKOL
SIGNATURE	gal laur
	ND LOCKED BY S.U.

ODOR		
SAMPLED B	Y	
SIGNATURE		
DATE/TIME	10/15/02	

....

·y - •

FUSRAP MAYWOO	n an
SITEWBS DATEO-1562	Walle WU-SSID
WORK ORDER #NORFAS	SAMPLE LD
FIELD INSTRUMENTS:	MEAS. REF. POINT (FL AGS or BGS) WELL DEPTH (FL TOC)70.00/14.30(11:45 Am INNER CASING/OPEN HOLE DIAM (12)
SAMPLING METHOD	DEPTH TO TOP OF SCREEN (Ft TOC)
	WLL VOLUME (Gal) PUMP INTAKE (Ft. TOC)

Specific

Т

1 ×

(Fro	ime im/To)	(Ft TOR)	(milliliter/ _ minute)	Purged (ml)	Temp *C	Cond, (mS/cm)	рН	Eh (mv)	DO (mg/L)	Turbidity (NTU)
12	-50	14:30	1500		14.38	8.91	6.64	-37.2	1.15	25.2
13	: 05	16.50	1500		14.58	8.62	657	- 41.4	0.96	12.7
13	:15	16.70	1500		14.80	8.29	6.53	-12.5	0.89	7.0
13	:25	16.90	1500		14-76	8.05	6-50	- 44.8	0.82	6-7
13	:35	16.18	1300		14.77	8 07	649	-45-4		2.3
13	:50	16-43	1500		14.74	8.09	6.49	-47-1	0.80	1.3
14	-00	16.97	1500		14.72	8.10	6.49	- 47.4	0 80	1.2
	1:10	16.98	1500		14.76	8.11	649	-47.2	0.80	1.0
			Reduc	ed flo	w to ~	120 ml	m			
L			Coll	ected		@ 14:				
		·								
L										

APPEARANCE/COLOR
SAMPLED BY (PRINT) SAL HOURL
SAMPLED BY (PRINT) <u>SAL HOUDE</u> SIGNATURE <u>Jol Halley</u>
WELL CAP REPLACED AND LOCKED BY

Sample Water Discharge Volume

ODOR		
SAMPLED BY		
SIGNATURE		-
DATE/TIME	10/15/02	

SITE	WBS _	T	ATE	·	Well I		MW-3	I.D	
	RDER #						,		
	STRUMENTS				MEAS WELL	. REF. POIN DEPTH (FL	T (FL AGS or) TOC)	5' 5 70	9.98
				:			PEN HOLE D F SCREEN (F		
SAMPLIN	G METHOD						II)		······································
		<u>.</u>					тос)		
Sample	Water	Discharge	Volume	T					
Time (From/To	Level	(milliliter/ minute)	Purged (ml)	Temp *C	Specific Cond, (mS/cm)	На	En (mv)	DO (mg/L)	Turbid (NTU
15:20	9.95	2100		14-89	4.11	7.23	- 80.4	1.95	1.7
15.25	10.26	680		1567	4.10	6.87	- 78.2	0.81	1.8
15:35	10.70	650		15 98	4.11	6-76	-76.9	0.71	1.7
15-50	11.30	660		16.04	4.1	6-68	-74.6	0.61	1.5
16:10	12.60	660		16.11	<u>4.11</u>	6-67	-72.8	0.57	1.8
16:15	12.60	300		16-15	4.11	6-66	-71.8	0.58	1.7
16:20		300		1616	4.11	6-66	-71,12	058	1.7
16:25	12.62	300		16.16	4.11	6.6%	-7:-3	0.58	1.7
16:30	12.61	300		16-20	<u>411</u>	6.66	-71.3	0.59	1.7
			Reduce	d flan	to 11	Om1/m			
	<u> </u>		Collec	er sa	uple.	16:40	2		
					1				
ļ									
ļ									
		· · · ·							

· · · ·

_

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEWBS DATE _ <i>10/17/0</i> 2	Well I.D
WORK ORDER # NORFAS	SAMPLE I.D
FIELD INSTRUMENTS:	MEAS. REF. POINT (Ft. AGS or BGS)
	INNER CASING/OPEN HOLE DIAM (1
	DEPTH TO TOP OF SCREEN (FITOC)
SAMPLING METHOD	WLL VOLUME (Gal)

PUMP INTAKE (Ft. TOC) ___

9

50

Sample Water Discharge Volume Specific Time Level (milliliter/ Purged Temp Cond, Bh DO Turbidity minute) (ml) (From/To) (Ft TOR) (mS/cm) °C pH (mv) (mg/L) (NTU) 915 12:05 13.49 2400 \$15 98 49.0 5.12 63.3 : 2.0 2600 52 829 3 IR 3 .5 1.822 :3 5 13 2400 13 51 12 22 4.0 2400 50 813 2 6.4 9 0 7.0 - 4 1850 .40 82 L Ą 22 6.85 25 330 46 14.20 1 54 8 1 8. 1900 13:40 <u>16.70</u> 85 -39 12 .61 26 26. 2 13:50 63 1801 200 13.77 18 -54 24.0 12:55 17.90 -56 200 13.62 1.58 8 + 21.0 6. 14:00 17.85 200 13.70 1.76 17 -571 10 20 6 14:05 17.80 200 1381 185 1.18 - 58.-11 91 200 17.76 1.88 14:10 1394 -58.2 12 20.2 14:15 200 1.88 17. -75 14.27 -58.1 1.11 291 7 1.87 17.75 200 14:20 14.21 6.18 -58.2 1.12 20.1 Start Colleching @ 14:25 ODOR_Slight APPEARANCE/COLOR CLEAF SAMPLED BY (PRINT) _____ SALKOKOL SAMPLED BY gal Kalia SIGNATURE

WELL CAP REPLACED AND LOCKED BY _____

SIGNATURE _____

Sione & Webeler, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEWBSDATEU	Well I.D M(SS-5B
WORK ORDER #NORFAS	SAMPLE LD
FIELD INSTRUMENTS:	MEAS. REF. POINT (Ft. AGS or BGS) WELL DEPTH (Ft. TOC)56.83
· · · · · · · · · · · · · · · · · · ·	INNER CASING/OPEN HOLE DIAM (Ia)
	DEPTH TO TOP OF SCREEN (Ft TOC)
SAMPLING METHOD	WLL VOLUME (Gab

ER CASING/OPEN HOLE DIAM (12) TH TO TOP OF SCREEN (Ft TOC) _____

WLL VOLUME (Gal)

PUMP INTAKE (FI. TOC) ~50

Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Purged (mi)	Temp °C	Specific Cond, (mS/cm)	рH	En (mv)	ĐO (mg/L)	Turbidity (NTU)
15:40	14.65	1800		12.50	2.69	6.70	-58.6	4.32	16.7
				2.65	Y				
15:50	04575	1800		12.56	1.63	6.55	-68.9	2.01	8.3
15:55	15.80	1800		12.55	1.56	6.53	- 71.3	1.09	6.3
16:00	15.80	1800		12.67	0.886	6.58	- 78.8	0.80	4.4
16:10	15.80	1800]	12.64	0.686	6.63	- 81.3	0.68	1.6
16:20	15.80	1800		12.64	0.648	6.63	-79.5	0.65	1.2
16:30	15.80	1800		12.64	0.646	6.64	-79.4	0.65	1.2
16:40	15.80	1800		12.64	0.647	6.63	-74.4	0.65	1.2
		Ç	allecter	samp	les@1	6:45			
		····							
APPEARAN	NCE/COLOR	<u>Clear</u>	<u>*</u>		. OD	OR Slig	jut a dar	-3	

SAMPLED BY (PRINT) SAL KOKOL

SIGNATURE _____ Ol. Kale

WELL CAP REPLACED AND LOCKED BY S.K.

a contraction of the second se
SAMPLED BY
SIGNATURE
DATE/TIME 10/16/02

L DEPTH (FL TOC) 56.85 / 14.65 @

15:20

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE	WBS	D _r	TE 3/13	103	Well I.D	N	W-3	D	
WORK ORDER #NORFAS SAMPLE I.D									
FIELD INST	RUMENTS:	YST 65			MEAS. REF. POINT (Ft. AGS or BGS) (365) WELL DEPTH (Ft. TOC) 45' INNER CASING/OPEN HOLE DIAM (la) 6'' DEPTH TO TOP OF SCREEN (Ft TOC) 20'				
SAMPLING	METHOD _	geundy	cos Re	<u>liflaw</u> IT	WILVO	N IME (C.)			.
Sample Time (From/To)	Water Level (Ft TOR)	Discharge (milliliter/ minute)	Volume Porced (ml)	Тетр °С	Specific Cond, (mS/cm)	рН	년1 (mv)	DO (mg/L)	Turbidity (NTU)
10:25	6.02						(ORP)		
10.38	5.99	Pumpi	n well						
10:40		956	(pH mV)	13.55	3.77	6.87	73.1	0.3	1200
10:45	3:42	600		13.45	4.10	7.21	14.1	0.09	1400
10:50	6.02	370		13.36	4.09	7.27	-25.2	0.04	1049
10:55	6.02	350		13.74	4.09	7.31	-43.9	0.04	763
11:00	6.02	350		13.84	4.09	2.33	- 54.7	0.04	420
11:05	6.02	270	- 44.7	13.85	4.01	7.96	- 59.6	· · · · · · · · · · · · · · · · · · ·	326
11:16	6.02	270	-46.1	13.75	4.01	7.34	- 60.0		281
11:15	6. 02	270	-47.6	13.79	4.01	7.34	-61.3	0.03	192
11:20	6.02	210		13.77	4.01	7.35	- 62.4	0.03	104
11:25	6.02	270		13.79	4.00	7.34	- 68.6		148
11:38	6.02		-51.1	13.78	4.01	7.34	-66.8		90
11:35	6.82	270	- 2 10 1	13.84	4.90	7.35	-66.2	8.02	(07
11:40	6.02	270		13.88	3.98	7.35	-66.4		91
11:45	6.02	2.70	-52.1	13.93	2.96	7.46	-60.7	0.02	80
11:50			- 53.6				-67.5		62
11:55				13.97		7.116	-183	0.03	61.7
	6.02			13.98		7 1.7	-68.6	0.02	547
12:15		<u> </u>	-56.6	1		7.1.7	-71.4	0.02	
12:30	602	270	70.0		14	<u></u>	. 		34.4

APPEARANCE/COLOR <u>Uriginally</u> iron scom SAMPLED BY (PRINT) S.K. on surface SIGNATURE <u>July Column</u> WELL CAP REPLACED AND LOCKED BY S.K. ODOR NONE detected SAMPLED BY S.K. SIGNATURE Jallalas DATE/TIME 3/13/03 ; 12:00-12:30

V

. •

L

Shaw - Stone & Webster, hc FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITE	WBS		DATE 3/1	8103	Wall I	ر م	<u> </u>	~ ~		
WORK OF	RDER #	;	NORFAS		SAMD	и "	<u>38m-)</u>	-2-17		
FIELD INS	TRUMENT	S: Gound	Car Re.	telaur TT	SAMPLE I.D					
			608	-	MEAS. REF. POINT (FLAGS or BGS) WELL DEPTH (FLTOC) (12. INNER CASING/OPEN HOLE DIAM (Ia)					
	···	Gener	ator		INNER	CASINCIA			-5	
	••••••	YSI 4	50		DEPTH		FEN HOLE D FSCREEN (F	명주장[(la)	/ J	
AMPLING	MÉTHOD	Laur E	يسما		WLL V	DLUMF (Ca	1)	(TOC)		
					PUMP []	NTAKE (F).	тос)	11/1		
Sample	141-1-1		PHMV			,,,,,		· Set . Ind	· ·· ·······	
Tima	Water Levei	Olscharge (millilker/	Puryos	Temp	Specific Cond,		ORP			
(From/To)	(Ft TOR)	<u>minute)</u>	(<u>^*C</u>	(mS/cm)	рН		DO (mg/L)	Turbid	
11:45	3.38									
12:05	3:35	ļ	-94.3	12.78	1.227	8.11	248.1	0.17	63	
12:15	4.38	370	-112.4	13.40	0.974	8.54	237.9	0.28	2.0	
12:25	<u>45</u>	300	-823	13.93	1.32	7.88	227·7	-		
12:30	4.05	240	-56.1	14:00	1.85	_7.51	236.6	0.13	1.0	
2:35	4.01	240	-53.8	14.02	1.96	7.46			-1.2	
12:40	4.00	240	-52.9	13.92	1.98		225.5	0.04	-1.2	
12.45	4.00	240	- 32.1	13.92	2.05	7.45	221.8	0.04	- 1,3	
12:50	4:00	210	-51.9	13.94		7.44	219.3	0.04	-1.2	
12:55	4:00	2.00	-52.1	13.95	2.05	1.43	218.9	9.0y	- 1.2	
				13.42	2.05	7.43	218.3	0.04	<u>- .</u>	
		<u>er</u>					·····			
		Stop	<u>pung</u> u	<u>ng Q</u>	10.:55					
		Calle		Seto	<u>f vộc</u>	Same	les			
			(3 XL	(Oml)	(etei)					
·								······	-	
~										
			-							
									1	
			ſ	Carrier Contractor		R No				

SAMPLED BY (PRINT) SPL KOKOL SIGNATURE Sal Kakaf WELL CAP REPLACED AND LOCKED BY S.K.

ODOR	NONE	DETEC	<u>2760</u>
SAMPLEC	BY <u>\$6</u>L	Kako	L.
SIGNATU	RE Jol	Kseh	
ДАТЕ/ТІ М	E3/18	103 .	L
	- -	• • •	

3

Stone & Webster, Inc. FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

SITEWBS DATE 5/28/03	Well I.D <u>MW-32</u>
WORK ORDER #NORFAS	SAMPLE LD
FIELD INSTRUMENTS:	MEAS. REF. POINT (Fr. AGS or BGS)
	WELL DEPTH (FI. TOC)57
	INNER CASING/OPEN HOLE DIAM (Ia)6
	DEPTH TO TOP OF SCREEN (FI TOC)
SAMPLING METHOD Law Flow	WLL VOLUME (Gal)
	PUMP INTAKE (FL TOC)

	Sample	Water	Discharge	Voluma		Specific	l l	ORP	Ī	
	Time (From/To)	Level (Ft TOR)	(miiiiiter/ miлute)	CHIMN	qmeT D'	Cond, (mS/cm)	μH	(mv)	DO (mg/L)	Turbidity (NTU)
										28.1.
	1:27	4.31				0.0	7 9 9		A	
	11.12	4.62		-48.2	14.2.6	3.47	7.22	40.3	0.82	28.L
	11:20	4.68	309	-47.5	<u> </u>	3.48	7.34	25.4	0.45	28.8
	11:25	4.67	280	-469	14.42	3.47	7.32	20.2	0.21	20.2
	11:30	4.67	280	- 46.3	14.41	346	7.34	11.4	0.08	21.0
	11:35	4.67	2.80	-444	14.42	346	7.33	2.9	0.04	19.2
	11:40	4.65	2.60	-46.4	14.41	3.46	7.34	- 12.3	0.05	18.0
	11:45	1.67	260	-68.1	10.52	3.46	7.37	-58.3	0.05	18.2
	11:50	1.67	2.10	69. 8	14.61	3.46	7.37	- 61.7	1.05	16.9
	11:55	4.68	210	-49.2	14.60	3.46	7.37	-64.7	0.95	16.5
							7.37	-68.3	0.05	14.2
	12:00	<u>4.68</u>	210	-49.4	14.60	3.46	(.37	-00.7	0.05	
				.		-	^			A
		A]	_							
							- nt		OK-	
			- ġr	04		- 0K ·	ak	1		-00-
		OK	.	<u> </u>		VN	ļ			OK
Final:	12:30	4:68	210	-50.7	14.62	3.46	7.37	-70.1	0.06	4.8
1.11100-0-1			Sł	i	· · · ·	v 12	00	[
			P	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ngung e	<u> </u>	~~~			
			St		llecting	50.	ples.			
			<u> </u>	art (q	uernng		pies.			
1					T	[}	<u> </u>		
	VPPEARA	NCE/COLO	в Се	3.L.		0	OR N	ONE	·	
	SAMPLED	BY (PRINT)	SAL	KOKO	<u>L</u>	5.5	MPLED BY	Sal	Kakal	
	SIGNATU		Call.	<u>las</u>						
			D AND LOO	-		DA	TETIME	5 [28]	03	
								1-		

ر. کر_ک

FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

Well I.D B38W15 SITE ______ WBS _____ DATE _____ SAMPLE LD 209-024737 Fittered 209-WORK ORDER # _____ NORFAS _____ 0.5865 FIELD INSTRUMENTS: YSE 650 SONDE 6820 MEAS, REF. POINT (Ft. AGS or BGS) ____ 46.5 WELL DEPTH (FI. TOC) ____ <u>2</u>" INNER CASING/OPEN HOLE DIAM (14) _ 40' DEPTH TO TOP OF SCREEN (FI TOC) ____ SAMPLING METHOD Grund for WLL VOLUME (Gal) 42 Low Flow PUMP INTAKE (Ft. TOC) ____ ゟコ Specific Water Discharge Volume Sample Turbidity DO Eh Cond, (milliliter/ Purged Temp Level Time (NTU) (mg/L) (my) °C (mS/cm) ъH minute) (mì) (Ft TOR) (From/To) 3,59 3.3 3,07 Z0.0 1873 7.63 15,42 210 4,1 1107 210 4,6 7.45 0.75 -29.7 15.36 1945 1060 4.1 20 112 40.4 5,4 243 0.51 1948 15.49 220 60 117 4, 2,8 0.45 -42,0 15,50 2/65 36 220 226 B 4. 1122 1,3 0.40 7,32 -42.7 2260 3360 15,60 2-20 1127 4, -43,8 0.9 0,35 7.31 15,71 2271 220 4460 4.1 1132 19.8 -46.4 0.33 7.30 2277 15,59 4.1 220 5560 ハプフ 0,5 -464 0.33 7.30 15.65 2282 220 1142 4.1 0,5 0.31 7.30 -45.2 4.1 2278 15.74 220 1147 0.30 0.4 7,29 -43,7 2276 4,1 15.71 220 1152 5ample 200-024737 NONFiltered 1200 for Fe+Mn 247-99 Sample 200-0 Filtered 1205 ex qc

APPEARANCE/COLOR <u>Clear</u> SAMPLED BY (PRINE) SWAWN He H SIGNATURE <u>SWAWN</u> He H WELL CAP REPLACED AND LOCKED BY ODOR NONC SAMPLED BY TEOD K L PPMAN SIGNATURE TOLK K Lypman DATE/TIME 7-1-04 1200 + 1205 FUSRAP MAYWOOD SUPERFUND SITE ENVIRONMENTAL REMEDIATION WELL SAMPLING RECORD/FIELD WATER QUALITY SAMPLE AND ANALYSIS

MW 31D _DATE 7-1-03 Well I.D WBS SITE _____ SAMPLE I.D 200-024789 100-024786 NORFAS_ WORK ORDER #_ FIELD INSTRUMENTS: VST650 SONDE 6820 MEAS. REF. POINT (Ft. AGS or BGS) 万の WELL DEPTH (Ft. TOC) ___ 612 INNER CASING/OPEN HOLE DIAM (12)_ DEPTH TO TOP OF SCREEN (Ft TOC) Grund FOS WLL VOLUME (Gal) ... SAMPLING METHOD _ 351 Lowflow PUMP INTAKE (Ft. TOC) ____ 5,34 Specific Water Discharge Volume Sample Turbidity DO Bh Cond. (milliliter/ Purged Temp Level Time (NTU) (mg/L) pН (mv) °C (mS/cm) (m)) . minute) (Ft TOR) (From/To) 5.34 11.B -189.7 2.02 7.56 Qq/16.92 2146 290 1347 えろう 4,0 -140,9 0.66 7.30 15.99 2511 290 1640 1352 5,36 6.2 0.45 2.524 7,28 -/35/ 1631 40 300 5.36 31 1357 6.4 0.39 16.33 2501 7,27 136,1 4640 *5,35* 300 1402 7,3 0.33 ι, 16.37 7,28 2445 61 40 407 *5*,35 300 8.3 0:30 1.29 2404 6.37 640 53 300 1412 134 8 0.27 8.5 7,29 2368 9 40 5.36 300 6 1417 -1345 0.25 **8**, 7 7. 30 235 5.36 300 10640 1422 -137,7 0,24 8,3 7.30 2336 121911 66 5,36 310 1427 8.2 9 0,22 7,30 735. 16.46 23/3 1432 - 124788 Mn only 200 NONFILTER Fe # SAN IME 1440 only 200-02-1789 e AMP Fex MA 1445 Fittered

APPEARANCE/COLOR <u>Clear</u> SAMPLED BY (PRINT) <u>Shawn</u> Hall SIGNATURE <u>Signature</u> WELL CAP REPLACED AND LOCKED BY <u>State</u> ODOR <u>NOAY</u> SAMPLED BY <u>TODO K LIPPANN</u> SIGNATURE <u>Toolel 91</u> Ohn DATE/TIME <u>7-1-07</u> <u>1440/1445</u>

APPENDIX J QUALITY CONTROL SUMMARY REPORT (QCSR)

Appendix J: Quality Control Summary Report (QCSR)

Groundwater Remedial Investigation Addendum Report

New York District Formerly Utilized Sites Remedial Action Program Maywood Superfund Site

Prepared by:

Shaw[®] Shaw Environmental, Inc. 100 West Hunter Ave. Maywood, New Jersey 07607

for: US Army Corps of Engineers - Kansas City District Formerly Utilized Sites Remedial Action Program Contract No. DACW41-99-D-9001

March 2004, Revision 3

This page intentionally left blank.

DRAFT QUALITY CONTROL SUMMARY REPORT (QCSR) FOR THE GROUNDWATER REMEDIAL INVESTIGATION ADDENDUM REPORT

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. DACW41-99-D-9001 TASK ORDER 0001 WAD 05, WBS 15

Submitted to:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Submitted by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

> October 2003 Revision 0

Issued to:			Date:	
Copy No.	 Controlled	Uncontrolled		

This page intentionally left blank.

DRAFT QUALITY CONTROL SUMMARY REPORT (QCSR) FOR THE GROUNDWATER REMEDIAL INVESTIGATION ADDENDUM REPORT

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. DACW41-99-D-9001 TASK ORDER 0001 WAD 05, WBS 15

Submitted to:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Submitted by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

> October 2003 Revision 0

Prepared by:

Brian Tucker Project Chemist Date:

This page intentionally left blank.

RECORD OF REVISIONS

Revision Number	Description of Revision	Date
Draft Revision 0	Initial electronic submittal to USACE for review and comment.	August 2003
Revision 0	Submittal to the USACE CX for review and comment	October 2003

This page intentionally left blank.

TABLE OF CONTENTS

RECO	ORD OF REVISIONS	J-5		
TABL	LE OF CONTENTS	J-7		
LIST	OF TABLES	J-8		
ATTA	ACHMENTS	J-9		
ABBR	REVIATIONS AND ACRONYMS	J-10		
1.0	INTRODUCTION	J-11		
2.0	DATA COLLECTION			
	2.1 SAMPLE HANDLING AND CUSTODY			
	2.2 EQUIPMENT CALIBRATION AND MAINTENANCE			
	2.4 MODIFICATIONS TO THE WORK PLAN.			
3.0	DATA ANALYSIS AND VALIDATIONJ-14			
4.0	DATA SUMMARIESJ-15			
5.0	SYSTEM AUDITS	J-16		
6.0	ANALYTICAL AND QUALITY ASSURANCE / QUALITY CONTROL			
	(QA/QC) PROBLEMS ENCOUNTERED AT OFF-SITE LABORATORIES.			
	6.1 CALIBRATION			
	6.2 BLANKS			
	6.2.1 Wet Chemistry Parameters			
	6.2.2 Elements6.2.3 Volatile Organic Compounds			
	6.3 MATRIX SPIKE (MS) AND MATRIX SPIKE / MATRIX SPIKE DUPLICATE (MS/MSD)			
	6.4 LABORATORY CONTROL SAMPLE / LABORATORY CONTROL SAMPLE DUPLICATE	9-29		
	(LCS/LCSD)	J-23		
	6.5 SURROGATE RECOVERIES			
	6.6 FIELD AND LABORATORY DUPLICATES	J-24		
	6.7 ICP INTERFERENCE CHECK SAMPLE AND SERIAL DILUTION RESULTS			
	(ELEMENTS ONLY)			
	6.8 HOLDING TIMES	J-24		
7.0	REFERENCES	J-25		

LIST OF TABLES

Table 2-1	GWRI Addendum Analytical Test Parameters and Methods J-	-13
Table 6-1	Calibration QualifiersJ-	-18
Table 6-2	Qualifications Based upon the Maximum Concentration of Each Parameter in any of the Blanks	-21

ATTACHMENTS

Attachment A*	Data Validation ReportsJ-27
Attachment B*	Data PackagesJ-29
Attachment C**	Site Remediation Program Electronic Data Interchange Manual and HAZSITE DeliverableJ-31

Note: * Due to their size, Attachments A and B are presented electronically on CD-ROM.

** Due to regulatory requirements, the HAZSITE Deliverable portion of Attachment C is presented electronically on a CD-ROM

ABBREVIATIONS AND ACRONYMS

%D	response factor percent difference
%R	percent recovery
%RSD	percent relative standard deviation
BOD	Biological Oxygen Demand
BTEX	benzene, toluene, ethylbenzene, and xylenes
CCB	continuing calibration blank
CCC	continuing calibration compound
COC	Chain of Custody
COD	Chemical Oxygen Demand
CDQMP	Chemical Data Quality Management Plan
FMSS	FUSRAP Maywood Superfund Site
FUSRAP	Formerly Utilized Sites Remedial Action Program
GWRI	Groundwater Remedial Investigation
J	Estimated value
Kestrel	Kestrel Environmental Technologies, Inc.
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
μg/L	micrograms per liter
mg/L	milligrams per liter
MS	matrix spike
MSD	matrix spike duplicate
Paragon	Paragon Analytics, Inc.
PDI	Pre-Design Investigation
QA	Quality Assurance
QAPP	Quality Assurance Project Plan
QC	Quality Control
QCSR	Quality Control Summary Report
RPD	Relative Percent Difference
RRF	Relative Response Factor
SDG	Sample Delivery Group
Shaw	Shaw Environmental, Inc. (formerly Stone & Webster, Inc., a Shaw Group Company)
SPCC	system performance check compound
STL-CT	Severn Trent Laboratories, Inc. of Shelton, CT
Stone & Webster	Stone & Webster, Inc., a Shaw Group Company (now Shaw Environmental, Inc.)
TCL	Target Compound List
TOC	total organic carbon
U	Undetected
USACE	U.S. Army Corps of Engineers
Validata	Validata Chemical Services, Inc.
VOC	Volatile Organic Compound

1.0 INTRODUCTION

Shaw Environmental, Inc. (Shaw), formerly Stone & Webster, Inc., a Shaw Group Company, conducted a Groundwater Remedial Investigation Addendum (GWRI Addendum) of commercial and government properties at the Formerly Utilized Sites Remedial Action Program (FUSRAP) Maywood Superfund Site (FMSS). The purpose of the investigation is to augment information collected during the Groundwater Remedial Investigation (GWRI). The location of the wells sampled are presented in the *Draft Groundwater Remedial Investigation (GWRI) Addendum Report* (USACE 2003d).

This GWRI Addendum Quality Control Summary Report (QCSR) addresses data from analysis of groundwater samples collected from July 2002 to May 2003. The primary objective of the GWRI Addendum Investigation was to further define the extent and limit of benzene in the bedrock aquifer. Other parameters were studied to support evaluation of natural attenuation as a remedial alternative. The results of 11 samples collected as part of the Environmental Monitoring Program 2002 effort were also used for the Draft GWRI Addendum Report. Quality control considerations for these results are described within Appendix G of the Annual Environmental Monitoring Report, 2002 (USACE 2003b). The GWRI Addendum OCSR will support the preparation of the project QCSR. GWRI Addendum samples were analyzed for volatile organic compounds, total and dissolved iron and manganese, and wet chemistry parameters. The wet chemistry parameters included methane, nitrate, sulfate, phosphorus, ammonia, sulfide, total organic carbon, biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Additionally, samples from select monitoring wells were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) Degrader Heterotrophs and Total Heterotroph analysis. As part of Maywood's radiological dose assessment program, work area and personnel air samples were also collected and analyzed for radiological constituents of concern. BTEX Degrader Heterotrophs and Total Heterotroph data, and radiological air sample data were not validated, so that data is not discussed within this report.

The QCSR is organized into seven sections as follows:

- Section 1.0, Introduction
- Section 2.0, Data Collection
- Section 3.0, Data Analysis and Validation
- Section 4.0, Data Summaries
- Section 5.0, System Audits
- Section 6.0, Analytical and Quality Assurance / Quality Control (QA/QC) Problems Encountered
- Section 7.0, References
- Attachment A, Data Validation Reports
- Attachment B, Data Packages
- Attachment C, Site Remediation Program Electronic Data Interchange Manual

2.0 DATA COLLECTION

GWRI Addendum data collection procedures were evaluated for any deviations / modifications that may have occurred in the areas of sample handling and custody, equipment calibration and maintenance, and analytical methods.

2.1 SAMPLE HANDLING AND CUSTODY

There were no sample handling discrepancies noted by the off-site laboratory. All chain of custody forms (COCs) received by the off-site laboratory were properly signed and dated. The sample receipt checklist indicated that custody seals were present and unbroken for each cooler except for the volatile organic compound (VOC) sample cooler for Sample Delivery Group (SDG) 203763. No data qualification was required. Custody seals were not present on individual sample bottles. Internal custodies were submitted for all batches except for the two VOC SDGs submitted by Paragon Analytics, Inc. of Fort Collins, CO (Paragon). Submittal of internal custodies is not a SDG deliverable requirement. The following other exceptions are noted:

- For VOC SDG 201523, the COC lists a sample as 12b-0216663. The sample was reported as 12b-021663. It appears that an extra digit was added to the COC sample identity.
- For wet chemistry parameters SDG 201523, the analyses originally indicated for sample 12b-024721 were crossed out. Sample 12b-024721 was not analyzed for wet chemistry parameters. It appeared that these analyses were also crossed out for rinseate blank sample 12b-021657, however these analytes were reported for sample 12b-021657.
- In SDG 203763, the temperature of sample 23b-021741 was 6.7°C upon arrival at the laboratory, which exceeded the 6°C QC limit. Since the sample was a field rinsate blank, no action was taken.
- In SDG 203763, sample 23b-021743, the trip blank, was reported by the lab as having "headspace". Since this was the trip blank, no data qualification action was taken.
- In SDG 202237, the laboratory improperly identified sample 12b-021279 as 12b-011729. They were asked to correct this error.
- In data package 0302099 for VOCs, the sample cooler temperature was 9.2°C. The acceptance criteria is 2° to 6°C. All sample results for the one sample in this data package, 23b-021730, were qualified as estimated (J for detects and UJ for non-detects). There is potential for greater loss of VOCs and therefore a low bias.

2.2 EQUIPMENT CALIBRATION AND MAINTENANCE

For the chemical analysis, off-site laboratory calibration QC exceedances are described in Section 6.2.1 of this QCSR. There were no on-site laboratory or field equipment calibration QC concerns.

2.3 ANALYTICAL METHODS

A total of three laboratories were employed for chemical analysis.

Severn Trent Laboratories, Inc. in Shelton, CT (STL-CT) and Paragon analyzed groundwater samples. STL-CT and Paragon analyzed for the parameters (except for Total Heterotrophs and BTEX Degrader Heterotrophs) in **Table 2-1** using the indicated methods. New Jersey Analytical analyzed for Total Heterotrophs and BTEX Degrader Heterotrophs.

Parameter	Method
VOCs	SW-846 8260B
Iron and manganese, total and dissolved	SW-846 6010B
Methane	SW-846 8015A modified
Nitrate	MCA 300
Sulfate	MCA 300
Phosphorus	MCA 365.2
Ammonia	MCA 350.1
Sulfide	MCA 376.1
Total organic carbon	MCA 415.1
BOD	MCA 405.1
COD	MCA 410.4
BTEX Degrader Heterotrophs	SM9215M
Total Heterotrophs	SM9215B

Table 2-1 GWRI Addendum Analytical Test Parameters and Methods

Notes:

SW-846: EPA's Test Methods for Evaluating Solid Waste Physical / Chemical Methods

MCA: EPA's Methods for Chemical Analysis of Water and Wastes

SM: Standard Methods for the Examination of Water and Wastewater

There were no deviations / modifications in analytical methods from those specified in the *GWRI* Addendum - Proposed Source and Plume Delineation Work Plan (USACE, 2002).

2.4 MODIFICATIONS TO THE WORK PLAN

There were no modifications to the measurement techniques described in the *GWRI Addendum* - *Proposed Source and Plume Delineation Work Plan*.

3.0 DATA ANALYSIS AND VALIDATION

Kestrel Environmental Technologies, Inc. (Kestrel) and Validata Chemical Services, Inc. (Validata) performed data evaluation of all data. They evaluated 100% of the off-site GWRI sample results. Data was evaluated using the USACE's CENWK-EC-EF *Data Quality Evaluation Guidance* for chemical results, as presented in the *Chemical Data Quality Management Plan* (CDQMP) *Quality Assurance Project Plan* (QAPP), Appendix F (USACE 1999, USACE 2000). The data validation reports for the off-site laboratory chemical results are provided as Attachment A. The data packages themselves are presented on CD-ROM as Attachment B to this QCSR. Electronic deliverables were submitted in accordance with the New Jersey Department of Environmental Protection (NJDEP) required Site Remediation Program Electronic Data Interchange Manual (NJDEP 1999 and Attachment C). Within this manual, Option 2, Database Format, is used. Treatment of outliers was performed as per Section 3.1.3 of the *CDQMP QAPP* (USACE 2000).

4.0 DATA SUMMARIES

Data summaries for the laboratory data can be found on the Attachment B Data Packages CD-ROM.

5.0 SYSTEM AUDITS

The off-site laboratories utilized for testing of GWRI samples, STL-CT, New Jersey Analytical Laboratory, and Paragon have not been audited by Shaw.

6.0 ANALYTICAL AND QUALITY ASSURANCE / QUALITY CONTROL (QA/QC) PROBLEMS ENCOUNTERED AT OFF-SITE LABORATORIES

The off-site laboratories used for testing of GWRI samples for chemical parameters were STL-CT, New Jersey Analytical Laboratory, and Paragon. Twelve (12) GWRI chemical data package results were evaluated for this QCSR. All of the data packages, with the exception of that for SDG 203763, were validated by Kestrel. Validata validated the data package for SDG 203763.

6.1 CALIBRATION

Qualifications based upon calibration criteria exceedances were required only for VOCs. All other calibration results for other parameters were acceptable. For data packages with VOCs, calibration responses for all system performance check compounds (SPCCs) and continuing calibration compounds (CCCs) were within method acceptance criteria.

For VOC initial and continuing calibrations, if a relative response factor (RRF) was < 0.05, the percent relative standard deviation (%RSD) for initial calibrations exceeded 15%, and/or the percent difference (%D) between the average RRF of the initial calibration and the RRF of the continuing calibration exceeded 20%, results were estimated J for positive results and UJ for non-detects. Note that if the RRF < 0.05 for a given compound and the LCS for that compound was outside acceptance criteria, non-detect results for that compound were rejected. The following samples were qualified as noted for the specified parameters. As indicated in **Table 6-1**, benzene data was not affected by calibration issues.

Table 6-1Calibration Qualifiers

SDG	Parameter	Qualifier	Reason for Qualification	Samples Affected
0302099	Acetone	J	RRF < 0.05, %RSD > 15%, and %D > 20%	23b-021730
0303084	Acetone	UJ	RRF < 0.05, %RSD > 15%, and %D > 20%	20a-021738 and 20a-021739
	2-butanone	UJ	%RSD > 15%	
203211	Bromomethane	UJ	%RSD > 15% and %D > 20%	20a-021731, -021732, and -021733; 23b-021734, -021735, and -021736
	Acetone	J (021733), UJ (021732 and 021736) R (021731 and 021734)	%RSD > 15% and %D > 20%	20a-021731, -021732, and -021733; 23b-021734, -021735, and -021736
	2-butanone	R for 021731, 34, and 35; UJ for 021732, 33, and 36	%RSD > 15% and %D > 20%	20a-021731, -021732, and -021733; 23b-021734, -021735, and -021736
	Methylene chloride	UJ	%RSD > 15%	20a-021731, -021732, and -021733; 23b-021734, -021735, and -021736
	Bromoform	UJ	%RSD > 15%	20a-021731, -021732, and -021733; 23b-021734, -021735, and -021736
	2-Hexanone	UJ	%RSD > 15% and %D > 20%	20a-021731, -021732, and -021733; 23b-021734, -021735, and -021736
	4-methyl-2-pentanone	UJ	%D > 20%	20a-021732 and 021733; 23b-021736
	1,1,2,2-tetrachloroethane	UJ	%D > 20%	20a-021732 and 021733; 23b-021736
203588	Acetone	R	RRF < 0.05	23b-021740
	2-butanone	UJ	%RSD > 15% and %D > 20%	
	Methylene chloride	UJ	%RSD > 15% and %D > 20%	
-	2-hexanone	UJ	%D > 20%	
	1,1,2,2-tetrachloroethane	UJ	%RSD > 15%	
	Chlorobenzene	UJ	%RSD > 15%	
202204	Acetone	All R except 12b-021721 and -021724 which were J	Contin. Cal RRF < 0.05	All samples
	2-butanone	All UJ except 12b-021720 and -021724 which were J	%RSD > 15% and %D > 20%	
	Methylene chloride	UJ	%RSD > 15% and %D > 20%	
	4-methyl-2-pentanone	All UJ except 12b-021723, which was J	%RSD > 15%	
	Chloromethane	UJ	%RSD > 15%	
	Bromomethane	UJ	%RSD > 15%	
	Chloroethane	UJ	%RSD > 15%	
	Cis-1,3-dichloropropene	UJ	%D > 20%	
201924	Acetone	R for TRIP BLANK, and J for 12b-021715 and -021717	RRF < 0.05	All samples
	2-butanone	R	RRF < 0.05	All samples

SDG	Parameter	Qualifier	Reason for Qualification	Samples Affected
201523	Acetone	All GWRI samps are J except 23b-021661, UJ	RRF < 0.05, %RSD > 15%, and %D > 20%	All samples
	2-butanone	UJ	%RSD > 15% and %D > 20%	All samples
	Methylene chloride	All GWRI samps are UJ except 12b-021663 is J	%RSD > 15%	All samples
	Chloromethane	UJ	%D > 20%	All samples. Except 23b-021661
	Bromomethane	UJ	%RSD > 15% and %D > 20%	All samples
201638	Acetone	J	RRF < 0.05; RSD > 15%	12b-021708, -021710, -021711, 021714, and -021
		UJ		12b-021664, -021670, -021699, -021700, -021701, -021702, and 23b-021668
	2-butanone	UJ	RRF < 0.05; RSD > 15%; %D > 20%	All samples
	Methylene chloride	J 12b-021702 and -021714; UJ 23b-021668, 12b-021699, -021700, 021701, and -021708	%RSD > 15%	23b-021668, 12b-021702, -021714, -021699, 021700, 021701, and -021708
	Bromomethane	UJ	%RSD > 15%	All samples
201507	Acetone	UJ	RRF < 0.05; %D > 20%	All samples
	Bromomethane	UJ	%RSD > 15% and %D > 20%	All samples
	2-butanone	UJ	%D > 20%	12b-021651 and -021652
	Methylene chloride	UJ	%RSD > 15%	All samples
	Chloromethane	UJ for all except J for 12b-021649	%D > 20%	All samples
203763	Bromomethane	UJ	%D > 20%	All samples
	2-butanone	UJ	%RSD > 15% and %D > 20%	All samples
	Methylene chloride	UJ	%RSD > 15% and %D > 20%	All samples
	2-hexanone	UJ	%D > 20%	All samples

6.2 BLANKS

6.2.1 Wet Chemistry Parameters

Several samples were analyzed for the wet chemistry parameters nitrate, sulfate, sulfate, ammonia, BOD, COD, methane, total organic carbon (TOC), and total phosphorus.

SDG 202237

Based upon the method blank results and equipment blank results, the total phosphorus result for 12b-021729 was reported as non-detected (U) at the reported concentration.

SDG 203211

Due to the method blank and continuing calibration blank (CCB) results (highest value was 0.306 milligrams per liter [mg/L]), the sulfate result for sample 23b-021735 (0.33 mg/L) was qualified as non-detected (U) at the reported concentration.

Due to the phosphorus CCB result of 0.0043 mg/L, the phosphorus result for sample 20a-021733 (0.0166 mg/L) was qualified as non-detected (U) at the reported concentration.

The TOC result for sample 20a-021733 (0.55 mg/L), 23b-021734 (0.78 mg/L), and 23b-021735 (0.80 mg/L), were qualified as non-detected (U) at the reported concentration due to method blank and CCB results.

SDG 201523

The BOD result for sample equipment blank 12b-021657 was reported as non-detected at the reported concentration due to a method blank BOD level of 0.40 mg/L.

The TOC results for samples 12b-021657, 20a-021659 and 23b-021661 were reported as non-detected at the reported concentration due to a TOC initial calibration blank result of 0.54 mg/L.

Based upon the nitrate rinseate blank result of 0.031 mg/L, nitrate was reported as non-detected (U) at the reported concentration for sample 23b-021661.

SDG 203763

There was either no blank contamination or sample concentrations were greater than blank action levels so that no qualifications were required based upon blank contamination.

6.2.2 Elements

All initial and continuing calibration blank results for iron and manganese were reported as non-detected for the ICP analyses and all preparation blank results were reported as non-detected (U) for SDGs 202237, 203211, and 203763.

6.2.3 Volatile Organic Compounds

All the field and/or laboratory blanks were non-detect for benzene. The following discussion summarized those compounds present in field and laboratory blanks.

SDG 201507

There was no contamination in the method blanks. Based upon the rinseate and trip blank contamination, the following qualifications were made:

Chloromethane (maximum blank concentration of 0.6 micrograms per liter $[\mu g/L]$ in the rinseate blank) - qualified UJ in 12b-021651 and -021652;

Toluene (maximum blank concentration of 0.2 µg/L in the trip blank) - qualified U in 12b-021652;

Acetone (maximum blank concentration of 19 µg/L in the rinseate blank) - all results qualified UJ;

Methylene chloride (maximum blank concentration of 0.5 µg/L in the trip blank) - all results qualified UJ.

SDG 201638

This SDG contained four method blanks, four trip blanks, and two rinseate blanks There was methylene chloride detected in the method blanks, trip blanks, and rinseate blanks. Acetone and toluene were detected in the trip blanks and rinseate blanks, and chloroform was detected in one trip blank only. Qualifications made based upon the maximum concentration of each parameter in any of the blanks are given in **Table 6-2**.

Table 6-2				
Qualifications Based upon the Maximum Concentration				
of Each Parameter in any of the Blanks				

Parameter	Maximum Blank Concentration	Action Level	Sample Qualifiers
Methylene chloride	5	50	Non-detect U in 12b-021708DL, -021670, -021711, -021702, -021714, and 23b-021668
Acetone	240	2400	Estimated non-detect, UJ, at the reported concentrations for samples 12b-021670, -021701, and -021699.
Toluene	0.2	1.0	No data validation qualifiers *
Chloroform	0.1	1.0	Non-detect U in sample 12b-021664

Notes: *Data is reported as estimated J for results falling between the MDL and reporting limit.

SDG 201924

There was one trip blank and no equipment rinseate. Only methylene chloride was detected in the method and trip blanks at a maximum concentration of $0.5 \ \mu g/L$. The trip blank result was qualified non-detect due to the method blank result of $0.4 \ \mu g/L$. Methylene chloride was not detected in field samples 12b-021715 and -021717 so qualifications were required.

SDG 202204

The results of two equipment rinseates and two trip blanks were evaluated for this SDG. The trip blank and rinseate blank methylene chloride results were qualified non-detect, U, due to the methylene chloride concentration in the method blank. Based upon the methylene chloride method blank results, methylene chloride results in non-blank field samples 12b-021719, -021720, -021723, and -021724 were qualified non-detect, U. These qualifiers were changed to estimated non-detect (UJ) based upon initial and continuing calibration results.

SDG 203588

There were no equipment blanks or trip blanks reported with this SDG. Therefore, only method blank contamination was evaluated. The methylene chloride result for sample 23b-021740 was qualified as non-detected (U) at the reported concentration due to contamination at 0.48 μ g/L in the method blank. This qualifier was changed to estimated non-detect (UJ) based upon initial and continuing calibration results.

SDG 0302099

There were no equipment blanks or trip blanks reported with this SDG. The one reported laboratory method blank showed no contamination. Therefore, no qualifications were required.

SDG 0303084

There were no equipment blanks and one trip blank reported with this SDG. Neither the trip blank nor the one reported laboratory method blank showed any contamination. Therefore, no qualifications were required.

SDG 203211

No equipment rinseate blanks, one trip blank, and one laboratory method blank were reported with this SDG. Methylene chloride results in the trip blanks, as well as in field samples 20a-021733 and 23b-021735 were qualified non-detect U at the reported concentration due to contamination of 0.5 to 0.8 μ g/L in the two method blanks. The methylene chloride results for these samples were later qualified as non-detected estimated (UJ) due to initial calibration %RSD results. Acetone reported in one of the method blanks required qualification of the acetone result in sample 23b-021735 as non-detect. This qualifier was changed to rejected (R) due to acetone LCS/LCD results.

SDG 201523

There were two equipment rinseate blanks, two trip blanks, and four laboratory method blanks associated with this SDG. Only toluene was detected in the method blanks at $0.12 \mu g/L$, and that concentration represented the maximum toluene concentration in any of the blanks. All samples associated with that blank were non-detect for toluene so qualifiers were required. Acetone and methylene chloride were detected in both the rinseate and trip blanks at maximum levels of 7 and $0.6 \mu g/L$, respectively. All positive acetone results and the methylene chloride result in sample 23b-021661 were qualified estimated non-detect (UJ) due to rinseate blank contamination and initial and continuing calibration results.

SDG 203763

Methylene chloride was detected in the trip and rinseate blanks, but these results were qualified non-detect due to methylene chloride contamination (maximum level of $0.64 \ \mu g/L$) in the method blanks. The non-blank field sample result for methylene chloride in this SDG sample was non-detect, so no qualification was required. Acetone was detected in both the trip and rinseate blanks so the acetone result in 23b-021742 was qualified undetected (U) at the reported concentration. Chloroform was detected in the rinseate blank at $0.2 \ \mu g/L$ but was non-detect in the non-blank field sample so no qualification was required.

TOC was reported at 2.1 mg/L in field rinsate blank 23b-021741. The positive result for TOC in the only non-blank SDG sample 23b-021742, which was less than 5X the blank amount, was flagged as undetected (U).

6.3 MATRIX SPIKE (MS) AND MATRIX SPIKE / MATRIX SPIKE DUPLICATE (MS/MSD)

In SDGs 201523, 203211, 203763, and 202237, only non-Maywood samples were used as matrix spikes for iron and manganese. Iron and manganese met acceptance criteria of 75 to 125% spike recovery in those SDGs.

For wet chemistry parameters, all spike recoveries were within acceptance limits for SDG 201523, 202237, and 203763. In SDG 203211, all MS results met laboratory acceptance criteria for percent recovery, except one of the four COD MS. The non-compliant MS result was analyzed using a non-Maywood sample that had an inherently high COD result. The Maywood samples were all reported by the laboratory as non-detected (U) for COD. The Maywood sample results for COD were therefore evaluated against the other three COD MS, some of which were analyzed using samples with lower native COD values. No Maywood COD values were qualified due to MS results.

For VOCs, no MS/MSD sample pair was submitted for SDGs 203211, 203588, and 201924. Accuracy could not be evaluated in the sample matrix but was evaluated for the method from the LCS and LCSD. Non-Maywood samples were analyzed as MS/MSD pairs in SDGs 202204, 201638, and 201507. MS/MSD recoveries were within limits for all spike compounds. For SDGs 203763, 0303084, and 201523, Maywood samples were used to generate MS/MSD QC samples. All spike recovery acceptance criteria were met for MS/MSD results in these SDGs. In SDG 0303084, spike compound 1,1-dichloroethene was substituted for cis-1,2-dichloroethene and trans-1,2-dichloroethene. Shaw was notified of this discrepancy at the time of analysis and instructed the laboratory to continue with the analysis. No qualifications were made to cis-1,2-dichloroethene and trans-1,2-dichloroethene results based upon this substitution.

6.4 LABORATORY CONTROL SAMPLE / LABORATORY CONTROL SAMPLE DUPLICATE (LCS/LCSD)

All LCS/LCSD percent recoveries (%Rs) and relative percent differences (RPDs) between %Rs were within acceptance criteria except for the following:

In VOC SDG 203211, the RPDs between LCS and LCSD %Rs were 31, 30, and 63%, for 1,1-dichloroethene, acetone, and 2-butanone, respectively. The maximum acceptable RPD is 20%. USACE guidance states that the sample results associated with these outside of criteria LCSs are to be rejected; so, the 1,1-dichloroethene, acetone, and 2-butanone results were rejected in samples 20a-021731, 23b-021734, and 23b-021735.

In VOC SDG 203588, the acetone LCS and LCSD recoveries were 146 and 182%, respectively, and the RPD between these recoveries was 22%. The acetone result for sample 23b-021740, the lone sample comprising this SDG, was rejected as per USACE guidance.

In SDG 203763, the 2-hexanone LCS %R was 22%, slightly higher than the 20% maximum criterion. The validator did not qualify the 2-hexanone results since 2-hexanone is not a usual spike compound and only the RPD exceeded limits.

The impacts of the rejected data to the investigation is inconsequential since benzene data was not impacted due to poor LCS/LCSD data.

6.5 SURROGATE RECOVERIES

All surrogate recoveries for the VOC analyses were within acceptance criteria with the following exceptions:

In SDG 203763, the %R of toluene-d8 was 214% for sample 23b-021742, which exceeded the 70-127% QC limits. The Case Narrative states that these sample results exhibited "suppression of internal standard areas, a surrogate recovery out of criteria and high TIC peaks." This sample was reanalyzed at a 2 times dilution with acceptable surrogate recoveries. For SDG 201638, the toluene-d8 recovery in sample 12b-021708 was 50% (acceptance criteria 70-127%). No corrective action was taken; therefore, all VOC results in sample 12b-021708, a rinseate blank, were rejected.

6.6 FIELD AND LABORATORY DUPLICATES

In SDG 201924 for VOCs, samples 12b-021715 and 12b-021717 were a field duplicate pair. All precision criteria were met for the two sample results. No other field duplicate pairs were submitted for VOCs. The project-required field duplicate collection percentage is 5%. One VOC field duplicate was collected for 18 non-blank field samples, a percentage of 5.5%; therefore the duplicate percentage requirement was met.

There were no field duplicates submitted with any of the 11 non-blank field samples for iron and manganese and wet chemistry parameters; therefore the duplicate percentage requirement was not met for these parameters.

Laboratory duplicates were analyzed with every batch for iron and manganese and wet chemistry parameter batches. All precision criteria were met.

6.7 ICP INTERFERENCE CHECK SAMPLE AND SERIAL DILUTION RESULTS (ELEMENTS ONLY)

All ICP interference check sample criteria were met. In SDG 202237 for iron and manganese total and dissolved analyses, sample 12b-021729 was analyzed as the ICP serial dilution sample. The iron and manganese ICP serial dilution results differed by 11.6 and 15.3% from the original analysis for iron and manganese, respectively (acceptance criterion maximum is 10%). The iron and manganese results for sample 12b-021729, total and dissolved, were reported as estimated (J).

6.8 HOLDING TIMES

All sample analyses holding time requirements were met.

7.0 **REFERENCES**

NJDEP 1999, New Jersey Department of Environmental Protection (NJDEP). *Site Remediation Program Electronic Data Interchange Manual*. April 1999.

USACE 1999, U.S. Army Corps of Engineers. *CENWK-EC-EF Data Quality Evaluation Guidance*. July 26, 1999.

USACE 2000, U.S. Army Corps of Engineers. *Chemical Data Quality Management Plan*. Prepared for the USACE by Stone & Webster, Inc. February 2000 (presently under revision).

USACE 2002, U.S. Army Corps of Engineers. *PDI Stepan Building Characterization Survey QCSR*. Prepared for the USACE by Stone & Webster, Inc. April 2002

USACE 2003a, U.S. Army Corps of Engineers. *Draft Groundwater Remedial Investigation Report*. Prepared for the USACE by Stone & Webster, Inc. June 2003.

USACE 2003b, U.S. Army Corps of Engineers. *Draft Final – Annual Environmental Monitoring Report, 2002.* Prepared for the USACE by Stone & Webster, Inc. June 2003.

USACE 2003c, U.S. Army Corps of Engineers. USACE Radionuclide Data Quality Evaluation Guidance for Alpha and Gamma Spectroscopy Modified for the Maywood Project. Prepared for the USACE by Shaw Environmental, Inc. July 2003.

USACE 2003d, U.S. Army Corps of Engineers. *Draft Groundwater Remedial Investigation (GWRI) Addendum Report.* Prepared for the USACE by Shaw Environmental, Inc. Scheduled for issue August 2003

ATTACHMENT A* DATA VALIDATION REPORTS

Note: *Due to its size, Attachment A is presented electronically on a CD-ROM.

ATTACHMENT B* DATA PACKAGES

Note: *Due to its size, Attachment B is presented electronically on a CD-ROM

ATTACHMENT C** SITE REMEDIATION PROGRAM ELECTRONIC DATA INTERCHANGE MANUAL AND HAZSITE DELIVERABLE

Note: ******Due to regulatory requirements, the HAZSITE Deliverable portion of Attachment C is presented electronically on a CD-ROM