Formerly Utilized Sites Remedial Action Program (FUSRAP)

Maywood Chemical Company Superfund Site

ADMINISTRATIVE RECORD

Document Number

MISS-012.

Bechtel National, Inc.

Systems Engineers — Constructors

Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Meil Address: P.O. Bex 350. Ook Ridge, TN 37831-0350 Telex: 3785873

SEP 2 9 1989

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin

Technical Services Division

Subject:

Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722

Publication of Radiological Characterization Report for seventeen residential properties, four municipal properties, and seven commercial properties in

properties, and seven commercial properties in

Lodi and Maywood, New Jersey

Code: 7315/WBS: 138

Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerated manner. His efforts have allowed us to publish these reports of schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,

R. C. Robertson

Project Manager - FUSRAP

RCR:wfs:1756x Enclosure: As stated

CC: J. D. Berger, ORAU (w/e)
N. J. Beskid, ANL (w/e)

CONCURRENCE S 144-

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE COMMERCIAL PROPERTY AT 80 HANCOCK STREET LODI, NEW JERSEY

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY

OAK RIDGE OPERATIONS OFFICE

Under Contract No. DE-AC05-810R20722

Ву

N. C. Ring, D. J. Whiting, and W. F. Stanley

Bechtel National, Inc.

Oak Ridge, Tennessee

Bechtel Job No. 14501

TABLE OF CONTENTS

			<u>Page</u>
List	of F	igures	iv
List	of T	ables	iv
Abbı	eviat	ions	v
1.0	Tntr	oduction and Summary	1
2.0		Introduction	1
		Purpose	3
		Summary	3
		Conclusions	6
2.0	Site	History	8
	2.1	Previous Radiological Surveys	9
	2.2	Remedial Action Guidelines	10
3.0	Heal	th and Safety Plan	13
	3.1	Subcontractor Training	13
	3.2	Safety Requirements	13
4.0	Char	acterization Procedures	15
	4.1	Field Radiological Characterization	15
		4.1.1 Measurements Taken and Methods Used	15
		4.1.2 Sample Collection and Analysis	18
	4.2	Building Radiological Characterization	20
5.0	Char	acterization Results	23
	5.1	Field Radiological Characterization	23
	5.2	-	28
Refe	rence	s	46
Appe	ndix .	A - Geologic Drill Logs for 80 Hancock Street	A-1

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	Page
1-1	Location of Lodi Vicinity Properties	2
1-2	Location of 80 Hancock Street	4
4-1	Borehole Locations at 80 Hancock Street	17
4-2	Surface and Subsurface Soil Sampling Locations at 80 Hancock Street	19
4-3	Gamma Exposure Rate Measurement Locations at 80 Hancock Street	22
5-1	Areas of Surface Contamination at 80 Hancock Street	24
5-2	Areas of Subsurface Contamination at 80 Hancock Street	27

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
2-1	Summary of Residual Contamination Guidelines for the Lodi Vicinity Properties	11
5-1	Surface and Subsurface Radionuclide Concentrations in Soil for 80 Hancock Street	30
5-2	Downhole Gamma Logging Results for 80 Hancock Street	36
5-3	Gamma Radiation Exposure Rates for 80 Hancock Street	43

ABBREVIATIONS

centimeter Cm cm^2 square centimeter counts per minute cpm disintegrations per minute dpm ft foot h hour in. inch km^2 square kilometer L liter liters per minute L/min meter m m² square meter million electron volts MeV μR/h microroentgens per hour mi mile mi² square mile min minute mrad/h millirad per hour millirem mrem mrem/yr millirem per year pCi/g picocuries per gram picocuries per liter pCi/L WL working level yd yard yd^3

cubic yard

1.0 INTRODUCTION AND SUMMARY

This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 INTRODUCTION

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

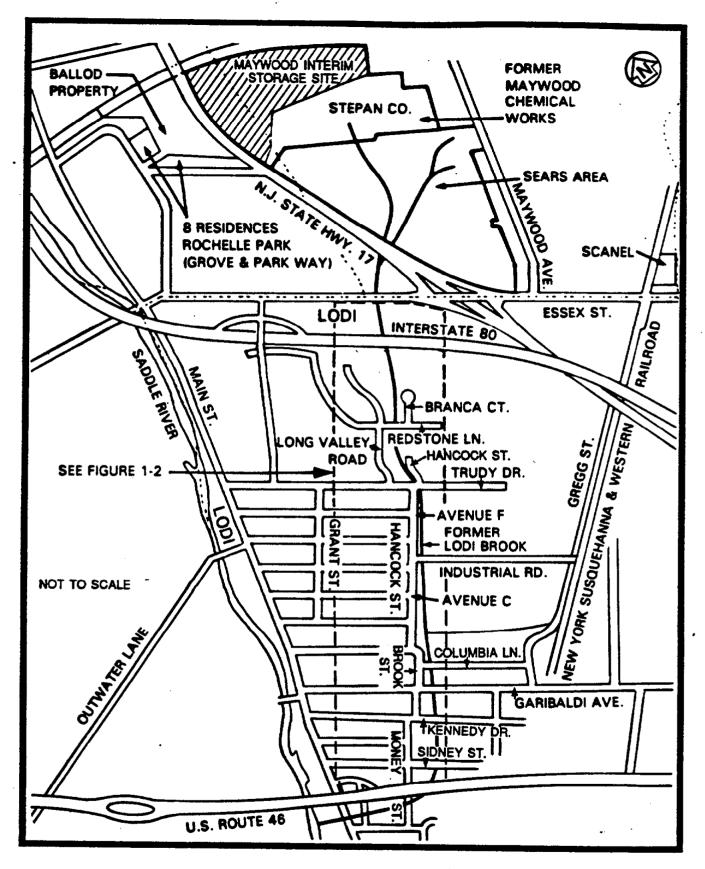


FIGURE 1-1 LOCATION OF LODI VICINITY PROPERTIES

1.2 PURPOSE

The purpose of the 1987 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.

1.3 <u>SUMMARY</u>

This report details the procedures and results of the radiological characterization of the property at 80 Hancock Street (Figure 1-2) in Lodi, New Jersey, which was conducted in December 1987. Additional data were obtained in September and December 1988 to complete characterization of the property.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

The property located at 80 Hancock Street is a commercial property used primarily for the filling and distribution of liquid gas cylinders. It consists of a concrete block structure, with an office area in the front and a work area (including loading docks) in the rear. The structure is bordered on three sides by an asphalt-paved parking/shipping area. The property is situated on the corner of Hancock Street and Industrial Road in a densely populated residential neighborhood. It is bordered on three sides by other commercial properties, with residences located across from it on Hancock Street. Because of the significant safety hazards presented by the type of business operated on this property, indoor characterization activities were severely limited and had to be confined to the office area of the building.

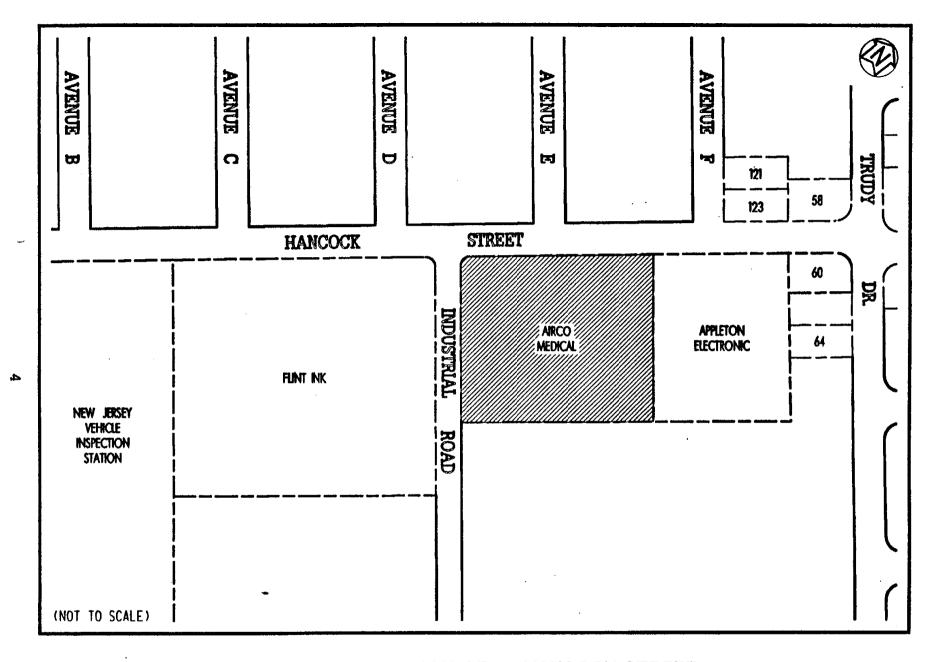


FIGURE 1-2 LOCATION OF 80 HANCOCK STREET

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 80 Hancock Street showed maximum concentrations of thorium-232 and radium-226 to be less than 8.6 and less than 1.4 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 7.7 pCi/g.

Subsurface soil sample concentrations ranged from 0.4 to 34.8 pCi/g for thorium-232 and from 0.3 to 4.0 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. concentrations of uranium-238 in subsurface soil samples ranged from 0.5 to 31.8 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE believes that these guidelines are conservative for considering potential adverse health effects that might occur in the future from any residual contamination. dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property indicated surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 1.83 m (6.0 ft).

Exterior gamma radiation exposure rates ranged from 4 to 9 μ R/h, including background. The indoor measurement showed a rate of 13 μ R/h, including background.

The radon-222 measurement inside the office area indicated a concentration of 1.1 pCi/L, which is within the DOE guideline of 3.0 pCi/L.

The measurement for radon daughters was 0.001 working level (WL), and the measurement for thoron daughters was 0.001 WL.

All data tables for this property appear at the end of this report.

1.4 CONCLUSIONS

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 80 Hancock Street. This contamination is primarily subsurface contamination ranging from a depth of 0.30 m (1.0 ft) to 1.83 m (6.0 ft) with an isolated area of surface contamination in front of the building. In addition, the subsurface contamination appears to extend beneath the building, and there is a high probability that the contamination extends beneath the streets (Hancock Street and Industrial Road) adjacent to the property. The total affected area is estimated to be approximately 70 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

From review of aerial photographs of the area, it has been determined that the former channel of Lodi Brook was realigned and buried in concrete conduit parallel to Hancock Street on this property. Prior to this realignment, it is suspected that the former channel flowed across the property in a southwesterly direction in the area where the building now stands. Confirmation of this suspicion could not be obtained because of severe access limitations to the interior of the building other than the office area. Indoor boreholes could not be drilled to confirm the presence of contamination beneath the building because of the significant safety hazards associated with drilling in areas where gas cylinders are filled, stored, and handled.

2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

I

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are typically found in monazite sands, which also contain

thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

January 1981--The Nuclear Regulatory Commission directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a 10.3-km² (4-mi²) aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984 -- In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its

"scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

<u>September 1986</u>—At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

2.2 REMEDIAL ACTION GUIDELINES

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

TABLE 2-1 SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL GUIDELINES

Radionuciide	Soft Concentration (pCl/g) Above Background ^{e,b,c}			
Radium-226	5 pCi/g when averaged over the first 15 cm of soil below			
Radium-228	the surface; 15 pCi/g when averaged over any 15-cm-thick			
Thorium-230	soil layer below the surface layer.			
Thorium-232				
Other Radionuclides	Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.			

STRUCTURE GUIDELINES

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 µR/h.

Indoor/Outdoor Structure Surface Contamination

Allowable Surface Residual Contamination® (dpm/100 cm²)

Radionuclide [†]	Average ^{g,h}	Maximum ^{h,i}	Removable ^{h,j}
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	100	300	20
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-126, I-131, I-133	1,000	3,000	200
U-Natural, U-235, U-238, and associated decay products	5,000 α	15,000 α	1,000 α
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 B - y	15,000 8 - y	1,000 B - Y

TABLE 2-1 (CONTINUED)

These guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").

These guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.

CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.

^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.

As used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

⁹Measurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.

^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

The maximum contamination level applies to an area of not more than 100 cm².

The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 SUBCONTRACTOR TRAINING

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 SAFETY REQUIREMENTS

Subcontractor personnel complied with the following BNI requirements:

- o Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- o Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- O Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- o Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

o Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

4.1 FIELD RADIOLOGICAL CHARACTERIZATION

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this property.

4.1.1 Measurements Taken and Methods Used

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling 16 boreholes (Figure 4-1), using either a 7.6-cm- (3-in.-) or 15.2-cm- (6-in.-) diameter auger bit, and gamma logging the boreholes. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

ı.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration

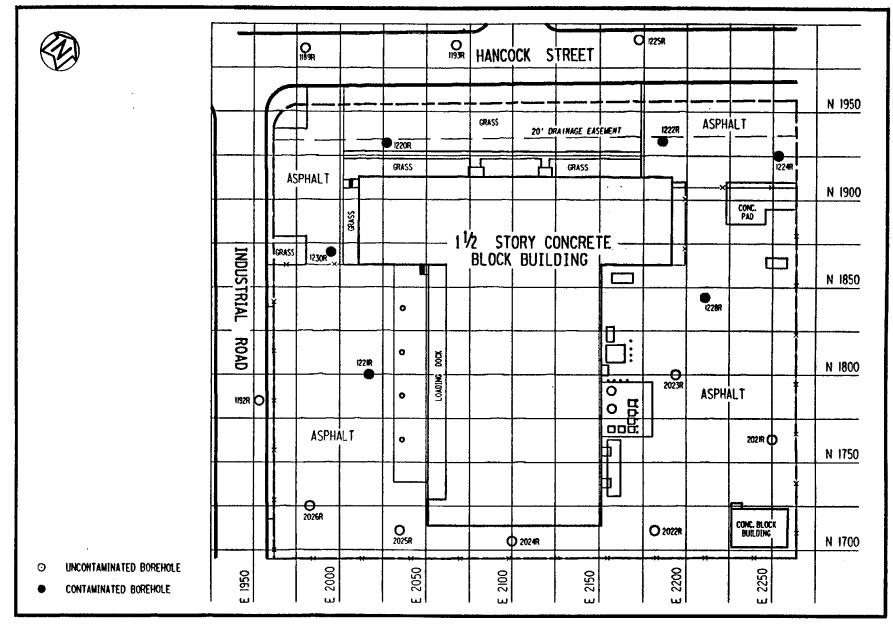


FIGURE 4-1 BOREHOLE LOCATIONS AT 80 HANCOCK STREET

of the contamination. The gamma-logging data were reviewed to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 Sample Collection and Analysis

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and 8), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at ten locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from 15 locations (Figure 4-2) using a 7.6-cm (3.0-in.) outside diameter (0.D.) split-spoon sampler mounted on a tripod or attached to a truck-mounted auger stem. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

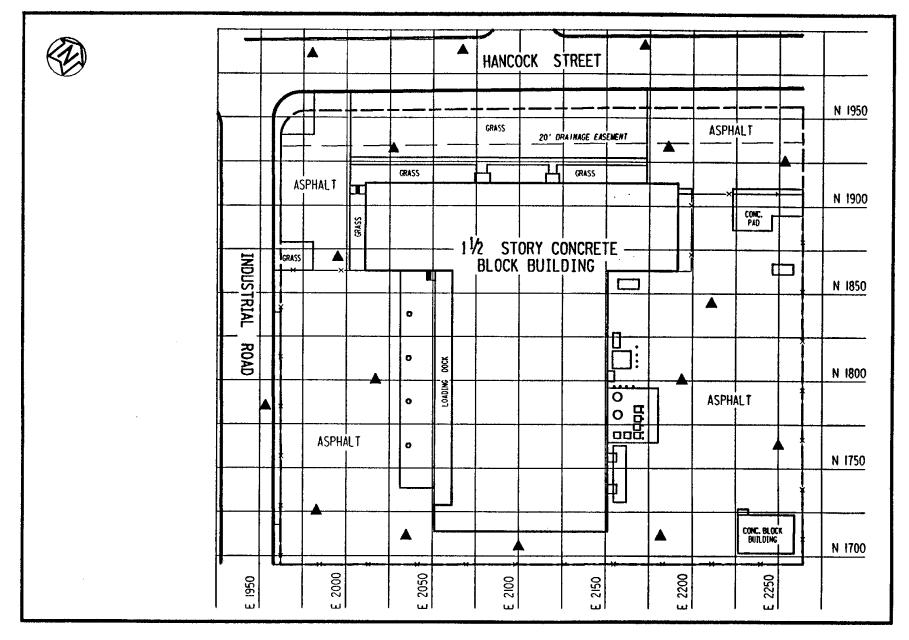


FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS AT 80 HANCOCK STREET

4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the building. A radon measurement was obtained to verify the presence of contaminated material under the building and to estimate potential occupational exposures during future remedial actions.

An indoor radon measurement was made using the Tedlar bag method. Samples were collected by pumping air into a Tedlar bag at a rate of approximately 2 L/min. The air sample was transferred directly into a scintillation cell with an interior coating of zinc sulfide and an end window for viewing the scintillations. Analysis of the sample was simplified by allowing the radon decay products to build up over time. This method allowed all the radon decay products to come into secular equilibrium with the radon. The scintillation cell was placed in contact with a photomultiplier tube, and the scintillations were counted using standard nuclear counting instrumentation.

Indoor air samples were also collected to determine a WL for radon and thoron daughters. To measure radon daughters, an air sample was collected for exactly 5 min through a 0.45-micron membrane filter at a rate of 11 L/min for a total sample volume of 55 L. Alpha particle activity on the filter paper was counted 40 to 90 min after sampling. An alpha scintillation detector coupled to a count-rate meter or a digital scaler was used. Measurements for thoron daughters were made using the same method as for radon daughters with the exception of the time between collection of the air sample and counting of the alpha particle activity. In the case of thoron daughters, the sample was allowed to age for

at least 5 h after sampling before alpha activity was counted. This elapsed time allowed radon daughters, which may have been present with the thoron daughters, to decay sufficiently so as not to interfere in calculating the WL for thoron daughters.

Exterior gamma exposure rate measurements were made at seven locations throughout the property grid system and at one location inside the office area of the building. To obtain these measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. A conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property. Interior measurements are generally obtained with the gamma scintillation instrument rather than the PIC because of its smaller size and the desire to minimize the technician's time inside the building.

Š

3

1

ì

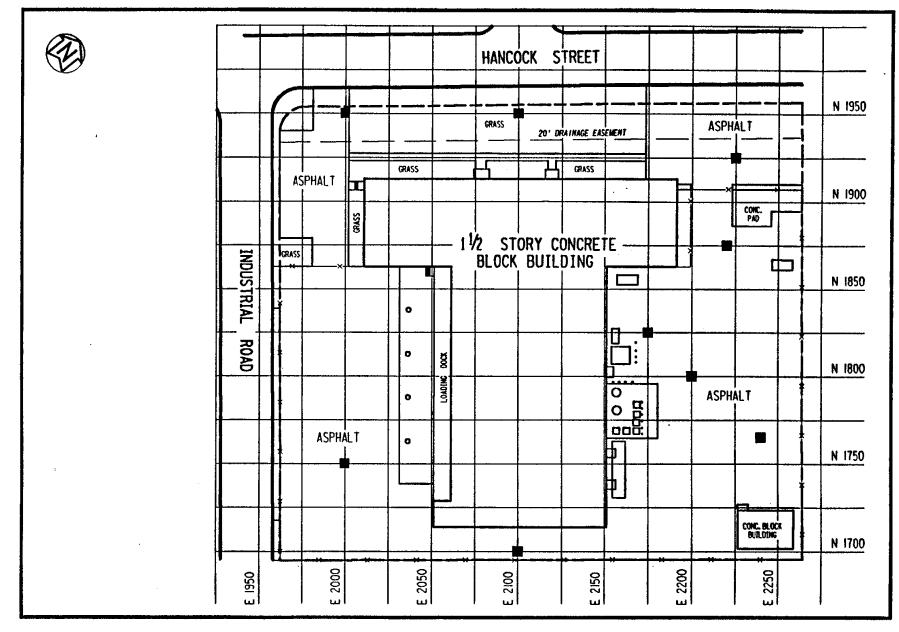


FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 80 HANCOCK STREET

5.0 CHARACTERIZATION RESULTS

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

Near-surface gamma radiation measurements on the property ranged from 5,000 cpm to approximately 13,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. Areas of surface contamination are shown in Figure 5-1.

Surface soil samples [depths from 0.0 to 15.2 cm (6.0 in.)] were taken at six locations on the property and four locations in the streets (Hancock Street and Industrial Road) adjacent to the property (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from 1.9 to less than 7.7 pCi/g for uranium-238, from less than 1.0 to 8.6 pCi/g for thorium-232, and from less than 0.6 to less than 1.4 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 in one soil sample exceeded DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of 8.6 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in

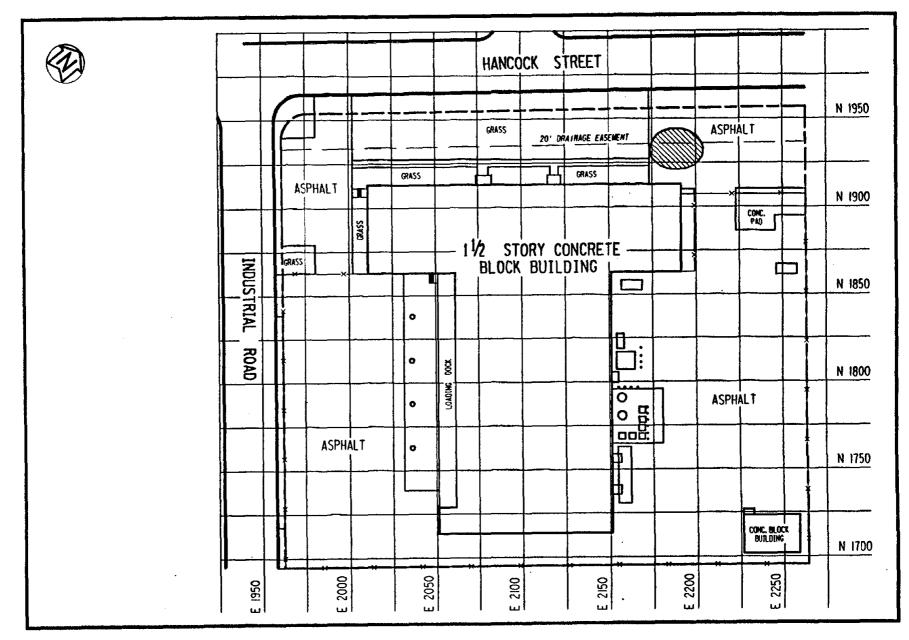


FIGURE 5-1 AREAS OF SURFACE CONTAMINATION AT 80 HANCOCK STREET

concentrations that are quantitative with the instruments and techniques used. The "less than" value represents the lower bound of the quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (+), which represents the amount by which the actual concentration can be expected to differ from the value given in the table. uncertainty term has an associated confidence level of 95 percent.

SALE STATE

Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE guideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower quideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its guideline level. Parameters selected for the thorium-232 analyses also provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below quidelines. However, because of the

relatively low gamma photon abundance of uranium-238, many of the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these concentrations are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 5,000 cpm to 184,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples indicated uranium-238 concentrations ranging from 0.5 to 31.8 pCi/g, thorium-232 concentrations ranging from 0.4 to 34.8 pCi/g, and radium-226 concentrations ranging from 0.3 to 4.0 pCi/g.

1

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist primarily of subsurface contamination at depths ranging from 0.30 m (1.0 ft) to 1.83 m (6.0 ft). The areas of subsurface contamination are shown in Figure 5-2. The subsurface contamination appears to extend beneath the building and the streets (Hancock Street and Industrial Road) adjacent to the property.

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain.

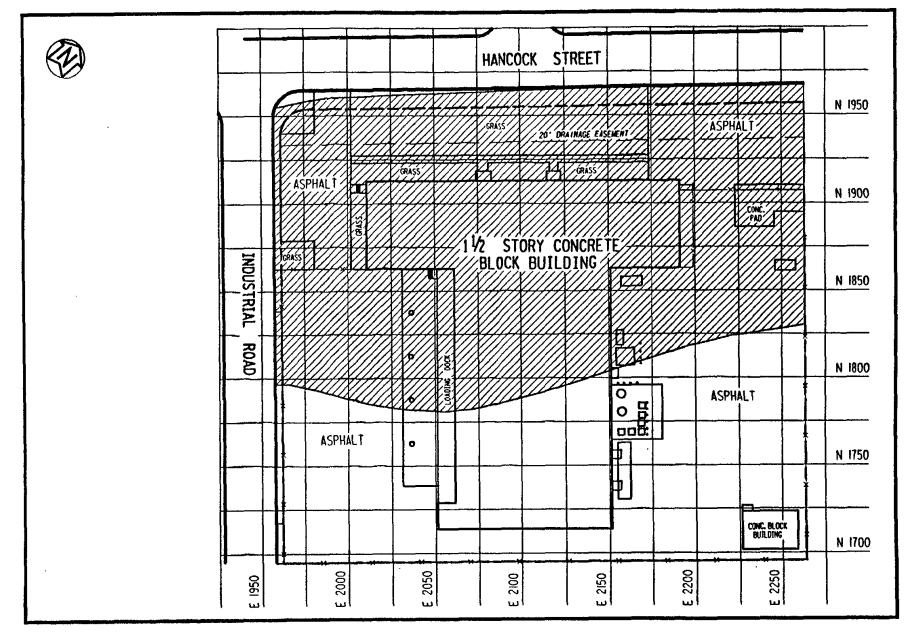


FIGURE 5-2 AREAS OF SUBSURFACE CONTAMINATION AT 80 HANCOCK STREET

The contamination is similar to contamination found on two commercial properties in close proximity to this property. It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 80 Hancock Street. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

Results of an indoor radon measurement using the Tedlar bag method indicated a concentration of 1.1 pCi/L. This measurement was substantially less than the applicable DOE guideline of 3.0 pCi/L above background (Ref. 10).

Results of a measurement for radon daughters was 0.001 WL. This result was substantially less than the applicable generic guideline detailed in the Code of Federal Regulations, 40 CFR 192 (Ref. 10), which states that an annual average (or equivalent) radon decay product concentration not exceed 0.02 WL.

Results of a measurement for thoron daughters was 0.001 WL. The generic guideline is more restrictive for radon-222 (radon) than for radon-220 (thoron) according to the National

Council on Radiological Protection [see NCRP Report No. 50 (Ref. 11), which was used as the guideline for thoron daughter measurements].

Exterior gamma radiation exposure rate measurements ranged from 4 to 9 μ R/h, including background. These results can be found in Table 5-3. The average exterior exposure rate of 6 μ R/h does not exceed the average background level of 9 μ R/h (Ref. 12). Therefore, no dose in excess of average background would be received as a result of contamination present on the property by employees spending time outside the building.

Indoor exposure rate measurement was 13 μ R/h, including background (Table 5-3). For comparison, the DOE guideline for indoor exposure rate is 20 μ R/h. Assuming an employee spends 40 hours per week for 50 weeks per year (2,000 hours or 8 hours per day for 5 days per week) inside the building, and assuming the average indoor exposure rate is 13 μ R/h, a yearly dose of 8 mrem could be expected (after subtracting average background of 9 μ R/h; Ref.12).

Based on the above information, the exposure rates and doses at this property are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the United States and are significantly higher than average background for this area.

TABLE 5-1

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 80 HANCOCK STREET

Page 1 of 6

<u>Coordinates</u> Depth		pth	Concentration (pCi/q ± 2 sigma)						
East	North		(ft)	Ura	nium-238		dium-226		ium-232
1953	1785	0.0	- 0.5	<	3.4	<	0.6	<	1.3
1953	1785	0.0	- 2.0	<	3.0	<	0.6	<	1.0
1953	1785	0.5	- 2.0	<	3.7	<	0.9	<	1.4
1953	1785	2.0	- 4.0	<	3.4	<	0.6	<	1.3
1953	1785	6.0	- 7.0	<	3.7	<	0.8	<	1.2
1953	1785	8.0	- 10.0	<	2.0	<	0.5	<	0.7
1953	1785	8.0	- 10.0	<	2.6	<	0.5	<	0.9
1953	1785	10.0	- 11.0	<	3.4	<	0.7	<	1.1
1953	1785	11.0	- 12.0	<	3.6	<	8.0	<	1.5
1980	1986	0.0	- 0.5	<	3.2	<	0.8	<	1.1
1980	1986	0.0	- 2.0	<	2.8	<	0.6	<	0.9
1980	1986	2.0	- 4.0	<	2.7	<	0.6	<	0.9
1980	1986	6.0	- 8.0	<	2.6	<	0.5	<	0.8
1980	1986	8.0	- 9.0	<	4.4	<	1.0	<	1.7
1980	1986	9.0	- 10.0	<	4.9	<	0.9	<	1.5
1980	1986	10.0	- 11.0	<	4.9	<	1.0	<	1.6
1980	1986	11.0	- 12.0	<	5.7	<	1.4	<	2.2
1995	1870	0.5	- 2.0	<	4.3	<	1.1	<	1.6
1995	1870	4.0	- 6.0	<	6.6	<	1.4	<	2.0
1995	1870	9.0	- 10.0	<	5.4	<	1.2	<	1.5
2017	1800	0.0	- 0.5	<	5.1	<	0.9	<	1.6
2017	1800	2.5	- 4.0	<	4.7	<	0.8	2.2	± 0.
2017	1800	6.0	- 7.5	<	3.8	<	0.9	<	1.4

TABLE 5-1 (continued)

Page	9	of	6
FUY	- 4	U.L	···

Coord	linates ^a	Depth	Con	centration	(pCi/g ± 2	siama	1)
East	North	(Īt)	Uranium-2	38 Rad	lium-226		ium-232
2027	1932	0.0 - 0.5	< 5.8	<	1.0		2.3
2027	1932	3.0 - 4.0	< 5.8	<	1.3	<	1.7
2027	1932	4.0 - 6.0	< 7.7	<	1.0	<	3.0
2027	1932	8.0 - 9.0	< 4.7	<	1.0	<	1.6
2027	1932	9.0 - 10.0	< 6.7	<	1.4	<	1.8
2035	1711	1.0 - 1.5	< 2.0	<	1.0	1.0	± 0.1
2035	1711	1.5 - 2.0	< 2.0	0.8	± 0.1	0.8	± 0.5
2035	1711	2.0 - 2.5	< 2.0	<	1.0	<	1.0
2035	1711	2.5 - 3.0	< 2.0	0.4	± 0.1	0.9	± 0.5
2035	1711	3.0 - 3.5	< 2.0	0.5	± 0.2	<	1.0
2035	1711	3.5 - 4.0	< 2.0	<	1.0	<	1.0
2035	1711	4.0 - 4.5	< 1.0	0.5	± 0.2	1.0	± 0.1
2035	1711	4.5 - 5.0	< 2.0	0.5	± 0.2	0.8	± 0.2
2035	1711	5.0 - 5.5	< 1.0	<	1.0	0.6	± 0.3
2035	1711	5.5 - 6.0	< 2.0	0.5	± 0.1	<	1.0
2035	1711	6.0 - 6.5	0.5 ±	0.3 0.3	± 0.1	0.4	± 0.1
2035	1711	6.5 - 7.0	< 2.0	0.4	± 0.2	0.7	± 0.3
2035	1711	7.0 - 7.5	< 2.0	0.5	± 0.1	<	1.0
2035	1711	7.5 - 8.0	< 2.0	<	1.0	<	1.0
2035	1711	8.0 - 8.5	< 1.0	0.4	± 0.1	<	1.0
2035	1711	8.5 - 9.0	< 2.0	0.4	± 0.2	0.7	± 0.3
2035	1711	9.0 - 9.5	< 2.0	0.6	± 0.1	1.1	± 0.4
2035	1711	9.5 - 10.0	1.5 ±	1.5 0.6	± 0.1	0.8	± 0.1

TABLE 5-1 (continued)

*	~	_#	_
Page	.5	OI	0

Coord	<u>linates^a</u>	Depth	_	Concent	ration_	$(pCi/q \pm 2)$	sigma	<u> </u>
East	North	(ft)	Uran	ium-238	Rad	lium-226	Thor	ium-232
2067	1988	0.5 - 2.0	<	3.7	<	0.9	<	1.4
2067	1988	2.0 - 4.0	<	3.4	<	0.6	<	1.3
2067	1988	6.0 - 7.0	<	3.7	<	0.8	<	1.2
2067	1988	8.0 - 10.0	<	2.6	<	0.5	. <	0.9
2100	1705	0.5 - 1.0	<	2.0	0.6	± 0.1	<	1.0
2100	1705	1.0 - 1.5	<	2.0	0.9	± 0.3	<	1.0
2100	1705	1.5 - 2.0	<	2.0	0.6	± 0.1	0.8	± 0.
2100	1705	3.0 - 3.5	<	2.0	<	1.0	<	1.0
2100	1705	3.5 - 4.0	<	2.0	0.5	± 0.3	1.0	± 0.
2100	1705	4.0 - 4.5	<	1.0	<	1.0	<	1.0
2100	1705	4.5 - 5.0	<	2.0	0.5	± 0.3	0.8	± 0.
2100	1705	5.0 - 5.5	<	2.0	0.6	± 0.2	0.7	± 0.
2100	1705	5.5 - 6.0	<	1.0	< -	1.0	<	1.0
2100	1705	6.0 - 6.5	<	2.0	0.5	± 0.2	<	1.0
2100	1705	6.5 - 7.0	<	1.0	0.3	± 0.1	<	1.0
2100	1705	7.0 - 7.5	<	2.0	<	1.0	<	1.0
2100	1705	7.5 - 8.0	<	1.0	0.5	± 0.2	0.7	± 0.
2100	1705	8.0 - 8.5	<	2.0	<	1.0	<	1.0
2100	1705	8.5 - 9.0	<	2.0	0.7	± 0.2	1.2	± 0.
2100	1705	9.0 - 9.5	<	2.0	<	1.0	<	1.0
2100	1705	9.5 - 10.0	<	2.0	0.5	± 0.1	8.0	± 0.
2172	1991	0.0 - 0.5	<	4.8	<	1.1	<	1.6
2172	1991	4.0 - 5.0	<	5.2	<	1.0	<	1.7
2172	1991	6.0 - 7.0	<	4.9	<	1.0	<	1.2
2172	1991	7.0 - 8.0	<	4.5	<	1.0	<	1.5

	_	_	
Page	4	Of	_6
raue	~	OT.	·

Coord	inatesa	Depth	Concentr	ation (pCi/g ± 2	sicma)
East	North	(Ît)	Uranium-238	Radium-226	Thorium-232
2177	1811	0.0 - 0.5	1.9 ± 1.7	0.9 ± 0.3	1.6 ± 0.9
2177	1811	1.0 - 1.5	1.6 ± 1.5	< 1.0	< 1.0
2177	1811	1.5 ~ 2.0	< 3.0	0.8 ± 0.1	< 1.0
2177	1811	2.0 - 2.5	< 2.0	< 1.0	< 1.0
2177	1811	2.5 - 3.0	< 3.0	0.8 ± 0.1	1.6 ± 0.4
2182	1711	0.5 - 1.0	1.9 ± 1.6	0.9 ± 0.1	1.2 ± 0.2
2182	1711	1.0 - 1.5	2.1 ± 0.4	0.6 ± 0.1	1.0 ± 0.5
2182	1711	1.5 - 2.0	< 2.0	0.8 ± 0.3	1.3 ± 0.2
2182	1711	4.0 - 4.5	< 2.0	0.4 ± 0.2	0.5 ± 0.3
2182	1711	4.5 - 5.0	< 2.0	< 1.0	< 1.0
2182	1711	5.0 - 5.0	< 2.0	0.6 ± 0.3	< 1.0
2182	1711	5.5 - 6.0	< 2.0	0.4 ± 0.1	0.6 ± 0.2
2182	1711	6.0 - 6.5	< 2.0	0.7 ± 0.2	0.8 ± 0.2
2182	1711	6.5 - 7.0	< 2.0	< 1.0	< 1.0
2182	1711	7.0 - 7.5	< 2.0	0.4 ± 0.1	< 1.0
2182	1711	7.5 - 8.0	2.4 ± 1.7	0.7 ± 0.6	< 1.0
2182	1711	8.0 - 8.5	< 2.0	< 1.0	< 1.0
2182	1711	8.5 - 9.0	< 2.0	< 1.0	< 1.0
2182	1711	9.0 - 9.5	< 2.0	0.6 ± 0.2	1.1 ± 0.7
2182	1711	9.5 - 10.0	< 2.0	< 1.0	< 1.0
2186	1933	0.0 - 0.5	< 6.9	< 1.0	8.6 ± 0.8
2186	1933	0.0 - 1.0	< 4.7	< 0.9	< 1.9
2186	1933	3.0 - 4.0	< 4.0	< 0.9	< 1.7
2186	1933	4.0 - 5.0	< 3.7	< 0.7	< 1.5
2186	1933	5.0 - 6.0	< 13.6	4.0 ± 0.3	34.8 ± 1.0
2186	1933	6.0 - 7.0	< 7.7	< 1.0	12.4 ± 0.8
2186	1933	7.0 - 8.0	< 4.5	< 1.0	< 1.4

TABLE 5-1 (continued)

Page 5 of 6

Coord	linates ^a	Depth		Concent		$(pCi/q \pm 2)$	sigma	ປ
East	North	(ft)	Ura	nium-238		lium-226		ium-232
2211	1844	0.0 - 0	.5 <	7.7	<	1.4	5.3	± 0.7
2211	1844	0.5 - 2	.0 <	4.3	<	0.8	<	1.6
2211	1844	2.0 - 4	.0 <	5.0	<	1.1	<	1.8
2211	1844	4.0 - 6	.0 <	3.4	<	0.7	<	1.5
2211	1844	6.0 - 7	.0 <	5.8	<	1.4	<	2.0
2211	1844	7.0 - 8	.0 <	5.7	<	1.1	<	2.1
2211	1844	8.0 - 9	.0 <	3.3	<	0.6	<	1.1
2211	1844	9.0 - 10	.0 <	3.3	<	0.7	<	1.2
2250	1763	0.0 - 0	.5 <	2.0	<	1.0	<	1.0
2250	1763	0.5 - 1	.0 <	3.0	<	1.0	<	1.0
2250	1763	1.0 - 1	.5 <	3.0	1.0	± 0.2	<	1.0
2250	1763	1.5 - 2	.0 <	2.0	0.6	± 0.2	<	1.0
2250	1763	2.0 - 2.	.5 <	2.0	<	1.0	1.4	± 0.6
2250	1763	2.5 - 3.	.0 <	3.0	0.5	± 0.1	1.1	± 0.6
2250	1763	4.0 - 4.	.5 <	2.0	<	1.0	<	1.0
2250	1763	4.5 - 5.	. 0 <	2.0	0.5	± 0.1	<	1.0
2250	1763	5.0 - 5.	.5 <	2.0	<	1.0	<	1.0
2250	1763	5.5 - 6.	. 0 <	2.0	<	1.0	<	1.0
2250	1763	6.0 - 6.	.5 <	2.0	<	1.0	<	1.0
2250	1763	6.5 - 7.	< 0	2.0	<	1.0	<	1.0
2250	1763	7.0 - 7.	.5 <	2.0	0.5	± 0.2	0.6	± 0.3
2250	1763	7.5 - 8.	. 0 <	2.0	0.6	± 0.1	0.8	± 0.8

TABLE 5-1 (continued)

Page 6 of 6

	.)	ration (pCi/q ± 2 sigma)			Concentra	es ^a Depth <u>Concer</u>		Coordinatesa_ Dep		
232	ium-	Thor	lium-226	Rac	ium-238	Uran	t)	(ft	North	East
	2.9	<	1.2	<	7.5	<	0.5	0.0 -	1925	2253
2.6	±	14.3	1.5	<	9.3	<	2.0	1.0 -	1925	2253
1.1	±	8.4	1.3	<	6.9	<	5.0	4.0 -	1925	2253
2.0	±	14.3	2.0	<	± 5.3	31.8	6.0	5.0 -	1925	2253
	3.0	<	2.1	<	9.4	<	7.0	6.0 -	1925	2253
	2.2	<	1.6	<	6.6	<	8.0	7.0 -	1925	2253
	1.5	<	0.7	<	3.6	<	9.0	8.0 -	1925	2253
	1.6	<	1.3	<	4.9	<	10.0	9.0 -	1925	2253

^aSampling locations are shown in Figure 4-2.

TABLE 5-2 DOWNHOLE GAMMA LOGGING RESULTS

FOR 80 HANCOCK STREET

Page 1 c	of 9		
<u>Coordi</u> East	nates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehole	1192R ^d		
1953	1785	0.5	8000
1953	1785	1.0	12000
1953	1785	1.5	14000
1953	1785	2.0	14000
1953	1785	2.5	12000
1953	1785	3.0	12000
1953	1785	3.5	12000
1953	1785	4.0	11000
1953	1785	4.5	11000
1953	1785	5.0	9000
1953	1785	5.5	9000
1953	1785	6.0	7000
1953	1785	6.5	7000
1953	1785	7.0	7000
1953	1785	7.5	7000
1953	1785	8.0	7000
1953	1785	8.5	7000
1953	1785	9.0	6000
1953	1785	9.5	7000
Borehol	e 1189R		
1980	1986	0.5	6000
1980	1986	1.0	6000
1980	1986	1.5	6000
1980	1986	2.0	7000
1980	1986	2.5	9000
1980	1986	3.0	9000
1980	1986	3.5	9000
1980	1986	4.0	8000
1980	1986	4.5	8000
1980	1986	5.0	8000
1980	1986	5.5	8000
1980	1986	6.0	9000
1980	1986	6.5	9000
1980	1986	7.0	10000
1980	1986	7.5	10000
1980	1986	8.0	9000
			

TABLE 5-2 (continued)

Page	2	of	9

Coord	inates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
			(C pm/
Borehole	≥ 2026R ^d		
1983	1725	0.5	6000
1983	1725	1.0	8000
1983	1725	1.5	11000
1983	1725	2.0	11000
1983	1725	2.5	11000
1983	1725	3.0	10000
1983	1725	3.5	10000
1983	1725	4.0	10000
1983	1725	4.5	10000
1983	1725	5.0	10000
1983	1725	5.5	10000
1983	1725	6.0	10000
1983	1725	6.5	11000
1983	1725	7.0	11000
1983	1725	7.5	10000
1983	1725	8.0	9000
1983	1725	8.5	8000
1983	1725	9.0	8000
1983	1725	9.5	8000
Borehole	≥ 1230R ^d		
1995	1870	0.5	8000
1995	1870	1.0	12000
1995	1870	1.5	15000
1995	1870	2.0	14000
1995	1870	2.5	14000
1995	1870	3.0	14000
1995	1870	3.5	15000
1995	1870	4.0	18000
1995	1870	4.5	35000
1995	1870	5.0	59000
1995	1870	5.5	28000
1995	1870	6.0	13000
1995	1870	6.5	11000
1995	1870	7.0	11000
1995	1870	7.5	10000
1995	1870	8.0	11000

TABLE 5-2 (continued)

Pa	qe	3	of	9

Coord	<u>inatesā</u>	Depthb	Count Rate ^C
East	North	(ft)	(cpm)
Borehol	e 1221R ^d		
2017	1800	0.5	7000
2017	1800	1.0	11000
2017	1800	1.5	12000
2017	1800	2.0	14000
2017	1800	2.5	1 5000
2017	1800	3.0	18000
2017	1800	3.5	25000
2017	1800	4.0	19000
2017	1800	4.5	15000
2017	1800	5.0	12000
2017	1800	5.5	11000
2017	1800	6.0	11000
2017	1800	6.5	10000
2017	1800	7.0	11000
Borehol	e 1220R ^d		
2027	1932	0.5	12000
2027	1932	1.0	17000
2027	1932	1.5	19000
2027	1932	2.0	16000
2027	1932	2.5	14000
2027	1932	3.0	22000
2027	1932	3.5	26000
2027	1932	4.0	30000
2027	1932	4.5	47000
2027	1932	5.0	48000
2027	1932	5.5	22000
2027	1932	6.0	13000
2027	1932	6.5	10000
2027	1932	7.0	10000
2027	1932	7.5	11000
2027	1932	8.0	11000
2027	1932	8.5	11000
Borehole	≥ 2025R ^d		
2035	1711	0.5	9000
2035	1711	1.0	10000
2035	1711	1.5	10000
2035	1711	2.0	9000

TABLE 5-2 (continued)

Page 4 c	of 9		
Coordi	inates ^a North	Depthb	Count Rate ^C
East	NOPUN	(ft)	(cpm)
Borehole	2025R (cont	inued)d	
2035	1711	2.5	9000
2035	1711	3.0	9000
2035	1711	3.5	9000
2035	1711	4.0	9000
2035	1711	4.5	8000
2035	1711	5.0	8000
2035	1711	5.5	8000
2035	1711	6.0	7000
2035	1711	6.5	8000
2035	1711	7.0	8000
2035	1711	7.5	8000
2035	1711	8.0	9000
2035	1711	8.5	9000
2035	1711	9.0	9000
2035	1711	9.5	9000
Borehole	<u>1193R</u>		
2067	1988	0.5	7000
2067	1988	1.0	11000
2067	1988	1.5	11000
2067	1988	2.0	10000
2067	1988	2.5	10000
2067	1988	3.0	10000
2067	1988	3.5	11000
2067	1988	4.0	11000
2067	1988	4.5	11000
2067	1988	5.0	10000
2067	1988	5.5	10000
2067	1988	6.0	10000
2067	1988	6.5	9000
2067	1988	7.0	9000
2067	1988	7.5	8000
2067	1988	8.0	8000
2067	1988	8.5	8000
2067	1988	9.0	8000
Borehole	2024R ^d		
2100	1705	0.5	7000
2100	1705	1.0	11000

TABLE 5-2 (continued)

Page 5 c	of 9		
<u>Coordi</u> East	nates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
•		· · · · · · · · · · · · · · · · · · ·	` - '
Borehole	2024R (cont	inued) d	
2100	1705	1.5	12000
2100	1705	2.0	12000
2100	1705	2.5	10000
2100	1705	3.0	9000
2100	1705	3.5	9000
2100	1705	4.0	10000
2100	1705	4.5	10000
2100	1705	5.0	8000
2100	1705	5.5	9000
2100	1705 .	6.0	8000
2100	1705	6.5	8000
2100	1705	7.0	8000
2100	1705	7.5	8000
2100	1705	8.0	8000
2100	1705	8.5	8000
2100	1705	9.0	8000
2100	1705	9.5	8000
Borehole	1225R		
2172	1991	0.5	6000
2172	19 91	1.0	10000
2172	1991	1.5	11000
2172	1991	2.0	11000
2172	1991	2.5	10000
2172	1991	3.0	9000
2172	1991	3.5	9000
2172	1991	4.0	9000
2172	1991	4.5	8000
2172	1991	5.0	8000
2172	1991	5.5	7000
2172	1991	6.0	6000
2172	1991	6.5	5000
2172	1991	7.0	5000
Borehole	2022R ^d		
2182	1711	0.5	7000
2182	1711	1.0	9000
2182	1711	1.5	11000
2182	1711	2.0	11000

TABLE 5-2 (continued)

Page 6	of 9		
<u>Coord</u> East	inates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehol	e 2022R (cont	inued) d	
2182	1711	2.5	11000
2182	1711	3.0	10000
2182	1711	3.5	9000
2182	1711	4.0	8000
2182	1711	4.5	9000
2182	1711	5.0	9000
2182	1711	5.5	9000
2182	1711	6.0	8000
2182	1711	6.5	8000
2182	1711	7.0	9000
2182	1711	7.5	9000
2182	1711	8.0	9000
2182	1711	8.5	8000
2182	1711	9.0	9000
2182	1711	9.5	9000
Borehole	e 1222R ^d		
2186	1933	0.5	16000
2186	1933	1.0	18000
2186	1933	1.5	18000
2186	1933	2.0	17000
2186	1933	2.5	15000
2186	1933	3.0	17000
2186	1933	3.5	28000
2186	1933	4.0	47000
2186	1933	4.5	94000
2186	1933	5.0	184000
2186	1933	5.5	159000
2186	1933	6.0	57000
2186	1933	6.5	24000
2186	1933	7.0	15000
2186	1933	7.5	13000
2186	1933	8.0	12000
Borehole	≥ 2023R ^d		
2194	1800	0.5	7000
2194	1800	1.0	10000
2194	1800	1.5	11000
2194	1800	2.0	11000
2427	1000	2.0	11000

TABLE 5-2 (continued)

Page 7	of 9		···
<u>Coord</u> East	inates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehole	e 2023R (cont	inued)d	
2194	1800	2.5	11000
2194	1800	3.0	11000
2194	1800	3.5	10000
2194	1800	4.0	9000
2194	1800	4.5	9000
2194	1800	5.0	10000
2194	1800	5.5	9000
2194	1800	6.0	9000
2194	1800	6.5	8000
2194	1800	7.0	8000
2194	1800	7.5	9000
2194	1800	8.0	8000
2194	1800	8.5	8000
2194	1800	9.0	8000
2194	1800	9.5	8000
2194	1800	10.0	8000
2194	1800	10.5	8000
2194	1800	11.0	8000
2194	1800	11.5	8000
2194	1800	12.0	8000
2194	1800	12.5	7000
Borehole	≥ 1228R ^d		
2211	1844	0.5	23000
2211	1844	1.0	35000
2211	1844	1.5	35000
2211	1844	2.0	29000
2211	1844	2.5	28000
2211	1844	3.0	29000
2211	1844	3.5	32000
2211	1844	4.0	45000
2211	1844	4.5	68000
2211	1844	5.0	35000
2211	1844	5.5	20000
2211	1844	6.0	19000
2211	1844	6.5	18000
2211	1844	7.0	18000
2211	1844	7.5	17000
2211	1844	8.0	17000

TABLE 5-2 (continued)

Page 8	of 9		
<u>Coord</u> East	inates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehol	e 2021R ^d		
2250	1763	0.5	11000
2250	1763	1.0	13000
2250	1763	1.5	14000
22 50	1763	2.0	14000
2250	1763	2.5	14000
2250	1763	3.0	14000
2250	1763	3.5	14000
2250	1763	4.0	12000
2250	1763	4.5	11000
2250	1763	5.0	11000
2250	1763	5.5	11000
2250	1763	6.0	10000
2250	1763	6.5	9000
2250	1763	7.0	8000
2250	1763	7.5	7000
2250	1763	8.0	6000
2250	1763	8.5	6000
Borehol	<u>e 1224R</u> đ		
2253	1925	0.5	17000
2253	1925	1.0	21000
2253	1925	1.5	30000
2253	1925	2.0	56000
2253	1925	2.5	95000
2253	1925	3.0	54000
2253	1925	3.5	27000
2253	1925	4.0	26000
2253	1925	4.5	40000
2253	1925	5.0	76000
2253	1925	5.5	42000

TABLE 5-2 (continued)

Page 9 of 9

<u>Coordi</u> East	nates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehole	2 1224R (cont	inued)d	
2253	1925	6.0	17000
2253	1925	6.5	12000
2253	1925	7.0	12000
2253	1925	7.5	11000

aBorehole locations are shown in Figure 4-1.

bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

CInstrument used was 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

dBottom of borehole collapsed.

TABLE 5-3

GAMMA RADIATION EXPOSURE RATES

FOR 80 HANCOCK STREET

Coord	inates ^a	Rateb
East	North	(μR/h)
2000	1750	5
2000	1950	7
2100	1700	4
2100	1950	9
2175	1825	5
2220	1875	7
2225	1925	6
Interior	of Building	13

^aMeasurement locations are shown in Figure 4-3.

bMeasurements include background.

REFERENCES

- 1. U.S. Department of Energy. <u>Description of the Formerly Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- 2. Argonne National Laboratory. <u>Action Description</u>
 <u>Memorandum, Interim Remedial Actions at Maywood</u>,
 <u>New Jersey</u>, Argonne, Ill., March 1987.
- 3. Argonne National Laboratory. <u>Action Description</u>

 <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u>

 <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for the Lodi Residential Properties</u>, DOE/OR/20722-89,
 Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u>
 <u>Chemical, Maywood, New Jersey</u>, November 1983.
- 6. EG&G Energy Measurements Group. An Aerial Radiologic Survey of the Stepan Chemical Company and Surrounding Area, Maywood, New Jersey, NRC-8109, Oak Ridge, Tenn., September 1981.
- 7. Oak Ridge National Laboratory. Results of the Mobile Gamma Scanning Activities in Lodi, New Jersey, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- 8. Oak Ridge National Laboratory. Results of the Radiological Survey at 80 Hancock Street (LJ059), Lodi, New Jersey, ORNL/RASA-88/16, Oak Ridge, Tenn., March 1989.

- 9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.
- 10. <u>U.S. Code of Federal Regulations</u>. 40 CFR 192, "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," Washington, D.C., July 1986.
- National Council on Radiation Protection and Measurements. <u>Environmental Radiation Measurements</u>, NCRP Report No. 50, Washington, D.C., December 27, 1986.
- 12. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson.
 "Summary of Natural Environmental Gamma Radiation Using
 a Calibrated Portable Scintillation Counter."

 Radiological Health Data Report 9:679-695 (1968).

APPENDIX A
GEOLOGIC DRILL LOGS FOR 80 HANCOCK STREET

	(G	EC	LOG	ilC	C D	RIL	L LO	G	PROJEC	CT		.			T NO.	HOLE NO.
SITI		_							COORDIN	ATES			FUSKAP 14	501-138 ANGLE		M HORIZ	1192R BEARING
BEG		30		ncock MPLETE)	<u> </u>				1,785 E 1,953			cal	*****
		-8.	- 1	2-3-8		DKIFF	EK	E.D.	Ι.	Ī			MAKE AND MODEL SIZE OVERBU OBILE B-57 6.5" 1	RDEN R	OCK	(FT.)	TOTAL DEPTH
		CO	WER'	(FT./		CORE	BOXE	SAMPL		P CASI			OUND EL. DEPTH/EL. GROUND WATE		PTH/	EL. TOP	OF ROCK
SAMI	PLE	_	.4/'	70 RWEIGH	1/6	FALL	CAS	ING LE	FT IN HO	F. DI	A 7	LEN	GTH LOGGED BY:			/	'
	1	40	lb	s./ 30	ir				NO				1	Harnish			
PE	31	Ш	<u>:</u>	BLOWS "N" % CORE	J		IATER ESSU				•	П					· · · · · ·
SAND DIAM.	8		E Ü	子、	<u> </u>	1	ESTS	\$	ELEV.	DEPTH	BRAPHICS	SAMPLE	DESCRIPTION AND CLASSI	FICATIO		NOTES	ON: LEVELS,
ė	₽:		진씵	RES OF		O.S.	3. H	TINE TINE		ä	1	H			ł	WATER	RETURN,
Se Se	띯	۲		. E.	2	ع ``	PRES P. S.	£.5			ē	N					CTER OF ING, ETC.
	1.5			8-10-8									0.0 - 6.0 Ft. BILT and GRAVEL F (ML, GP-GM).	PILL		Borehol 0-12 Ft	e advanced . using 6.5 in.
- Fr		1	4 8	P B A									0.0-0.5 Ft. Gravel, broken basa	lt.	- 4	o.d. holl auger.	low-stem
55	2.0	1	1.7	5-7-9-	6								0.5-1.2 Ft. Silt, reddish brown	with		Radiolo sampled	and
SS	1.0	1	1.1	3-4	-			,		-			pieces of decomposed Brunswick and soft pebbles of yellow and of silt.	sandstone live gray		TMA-E	logged by berline, Inc. No sample;
	-	+			1					5_			1.2-2.0 Ft. Silt, mixed light gra	y and	İ	roadbed	l.
SS	2.0	+	1.1	11-17			ı		-	-	::		dark gray.	•			Rock blocks
			i	19-26						-	1		2.0-2.7 Ft. Silt, mixed brown as brown.	nd reddish		sampler Ft.	. Auger to 6.0
SS	2.0	1	0.6	19-22 15-15						-			2.7-3.1 Ft. Silty gravel, broken pieces 0.5-2 in. in diameter.	basalt,			
										10_			3.1-5.0 Ft. Gravelly silt, reddisl				
SS	2.0	T	1.6	11-12 18-14						••-			with minor black, grayish green yellowish brown silt mixed in, so	and	. []		
		1			_				_]]			gravel.				
													5.0-6.0 Ft. Rock, basalt?				
													6.0 - 12.0 Ft. <u>SAND</u> (SP). Brown (7.5YR4/2), very fine-grained, s	saturated,			
												$\ \cdot\ $	soft. 10.0-12.0 Ft. Sand and silt, inte	erbedded			
					ŀ								10.0-12.0 Ft. Sand and silt, into beds 3-10 mm thick.		╛╽		
													Bottom of borehole at 12.0 Ft.				
													Borehole backfilled with spoils, 12/	3/87.			
											ĺ						
		1															
													,		ł		
															:		
															İ	Descript	
			i												İ	classific	visual
									•							examina	ition.
				SPOON					ITE		ደበ	l L	lancock St. (LODI)		1	HOLE NO	i92R
	VER	rt i	30N)	P=P	416	nek;	U - U	INEK			U	, 1	IGHLUCK St. (LUDI)			1.	1321

	G	FC	LOG	ור ח	RII	110	ıc.	PROJE	ĊŦ		l l	1	ET NO. HOLE NO.
SIT				<u></u>	1/17		COORDINA	ATES			FUSRAP 14:	01-138 1	OF 1 1189R OM HORIZBEARING
		Han	cock S	t. (LC	DI)					N	1,986 E 1,980	Ver	ì
BEG	UN	CC	MPLETED	DRILL					DRI		IAKE AND MODEL SIZE OVERBU	EDEN ROCI	(FT.) TOTAL DEPT
			2-2-8			E.D.						2.0	12.0
COR		0VER		CORE	BOXE	SISAMPL 6	ESEL. TO	P CAS	ING	Gi	OUND EL. DEPTH/EL. GROUND WATE	R DEPIH	/EL. TOP OF ROCK
SAM			WEIGHT	/FALL	CAS		FT IN HO	LE: DI	A./	LEN	GTH LOGGED BY:		
			s./ 30		_		NO	NE			D.	Harnish	
SAMP. TYPE	MP. ADV.	IPLE REC.	SAMPLE BLOWS "N" % CORE PECOVERY	LOSS IN B.P.M.d.d	PRESS. 1.8.4	RE	ELEV.	DEPTH	BRAPHICS	SAMPLE	DESCRIPTION AND CLASSI	FICATION	NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF
	S -	ğ ö	<u> </u>	7 6	0.0	ΕΣ			a				DRILLING, ETC.
	2.0	1.2	11-14		•						0.0 - 5.3 Ft. GRAVEL and SILT F (GP, ML). 0.0-2.0 Ft. Gravel, broken basa cobbies on top, some silt.		Borehole advanced 0-12 Ft, using 6.5 in o.d. hollow-stem auger. Radiologically
SS	2.0	1.5	10-11 4-3-9 20					5_			2.0-5.3 Ft. Silt, dark grayish br (2.5Y4/2) with pieces of yellowis gray, black and grayish green sil green tint.	own h brown, t, overall	sampled and gamma-logged by TMA-Eberline, Inc.
SS	2.0	0.0	16-20 22-24				-				5.3 - 8.0 Ft. SILT and SAND (ML Brown (10 YR5/3), sand is very fine-grained, finely interbedded,	damp.	0-2 Ft. Grab sample from auger flights. 6-8 Ft. Grab sample
SS	2.0	1.1	8-12 14-21				-				6.0-8.0 Ft. Saturated liquefied. 8.0 - 12.0 Ft. SILT (ML). Yellowie brown (10YR5/4), laminated.	h	from auger flights. Sampler pushing a rock.
SS	2.0	1.5	8-10 12-8				_	10_			10.2-10.8 Ft. Weak red. 10.8-10.9 Ft. Brownish yellow.		
											10.9-11.1 Ft. Dark brown.		
				}							Bottom of borehole at 12.0 Ft. Borehole backfilled with spoils, 12/	2/87.	
													Booming the second
													Description and classification of soils by visual examination.
			POON; \$1; P = P)			,,,	ITE	<u> </u>	<u></u>	Щ На	ncock St. (LODI)		HOLE NO. 1189R

			100	C D			_	PROJEC	T		i-		T NO.	HOLE NO.
SITE	U	EU	LOG	C D	KILI	r ro	ICOORD I NA	TEC		FUSRAP	145	01-138 1 MANGLE FRO		2026R
SILE	20	Ha	ncock	St. (T	iao.	`	COOKUIRA	1123	N	1,725 E 1,983	3	Vert	1	
BEGUI			MPLETED			/	<u> </u>	F			SIZE OVERBUR	DEN ROCK	(FT.)	TOTAL DEPTH
			-27-88				SOILS			CME 45B		0.0	(E) TOD	10.0 OF ROCK
CORE		.5/9) CORE	BOXE	S SAMPL	ESEL. TO	P CASI	NG GR	OUND EL. DEPTH/	EL. GROUND WATER / 9/27/88	DEFIN	/ LL. 10P	or Rock
SAMPI			WEIGHT	/FALL	CAS		FT IN HOL	E: DI	A./LEN	GTH LOGGED BY:				
	30	0 ІЬ	s./ 24	in.			NO	NE	ارسونان الس		J.	Lord		<u> </u>
SAMP. TYPE	SAMP. ADV. LEN CORE	CORE REC.	SAMPLE BLOWS "N" X CORE RECOVERY	Loss IN G.P.M	PRESS. I.S. P	RE	ELEU.	DEPTH	GRAPHICS SAMPLE	DESCRIPTION	and classif	FICATION	WATER	ON: LEUELS, RETURN, CTER OF ING, ETC.
SS		1.0	4-5-4				-			0.0 - 0.5 Ft. ASP	HALT & GRAVE	<u>L</u>		e advanced
SS	2.0	2.0	2-2-2-3				-	5		0.5 - 3.4 Ft. Silty (SM-SG). Moc dusky red (5R3 brick, gravel wi soft, crumbles e 3.4 - 6.5 Ft. Silty (N6) to light bl loose, adhesive, fines componen	gravelly SAND. Serate brown (5YI/4) mixed organic th a sandy silt loressily. No cohesio	ht gray). Wet,	0-10 Ft o.d. hol augers. Radiolo sample	using 12 in. low-stem
S S			8-10-15					10.		rubbery. 6.5 - 10.0 Ft. Silt yellowish orang coarse-grained sorted with 209 moisture. No sheldspar and quithread, rubbery	y SAND (SM). Do not continue to the continue t	Park lium- to r, poorly liue to the xed mpact, no	Descriclassifi	Top of prize soil. ption and cation of y visual nation of
			SPOON; S			VUC.	SITE			Managala Co	(100)		HOLE	ю. 2026R
₩ #	DENI	M120	; P = P	I I CHER	, U *	DIREK			90	Hancock St.	. (100)			

	(EC	LOG	IC D	RIL	L LO	G	PROJE	CT		FUSRAP		JOB NO. 14501-		ET NO.	HOLE NO. 1230R
IT				C. (T			COORDINA	TES						IGLE FR	OM HORIZ	
EG			MPLETED)				_	1,870 E 1,99 KE AND MODEL	SIZE	IOVERBURDEN	Kert Roci	tical K (FT.)	TOTAL DEP
			2-6-87			E.D.		Ì)	10	BILE B-57	6.5"	10.0			10.0
OR		5.5/) CORE	BOXE	SISAMPL 5	ESEL. TO	P CAS	ING	GRO	IND EL. DEPTH	/EL. GROU	ND WATER	DEPTH	/EL. TOP	OF ROCK
MA	LE P	AMME	R WEIGHT	-	CAS		FT IN HO	LE: DI	A./L	ENGI	H LOGGED BY:					
	14	O Ib	s./ 30	in.	JATE		NO	NE		7			D. Harn	ish	7	
SAMP. TYPE AND DIAM.	SAMP. ADU.	SAMPLE REC	SAMPLE BLOWS "N" % CORE RECOVERY	LOSS IN IN G.P.M. d	ESSU	RE .	ELEV.	ОЕРТН	GRAPHICS	1	DESCRIPTION	-			WATER CHARAC DRILLI	LEVELS, RETURN, TER OF NG, ETC
	1.5	.1	8-7-16							'	0.0 - 4.7 Ft. Silt Gravelly SILT	FILL (GX	i, ML, GM-M	L).	0-10 Ft.	advanced using 6.5 i ow-stem
SS	1.0	0.9	8-20				·				0.0-0.5 Ft. Silgravel. 0.5-2.5 Ft. Sil				auger. Gamma- TMA-Ei	logged by berline, Inc Grab samp
SS	2.0	1.0	5-15-4-4			-	_	5.			2.5-4.7 Ft. G:	·	•		from aug	Grad samper flights.
SS	2.0	0.9	7-27 22-25				-				brown (2.5YR; sandstone grav silt and sand a formation.	3/4), some	Brunswick granite gravel:	. 1	_	
SS	2.0	1.5	12-24 26-29								4.7 - 6.0 Ft. San Greenish gray mottling, very	with mino	r iron-oxide			
							-	10 .			undisturbed se 5.0 - 10.0 Ft. SII (7.5YR4/2) wi 6.9-8.0 Ft. Ye	diments. LT (ML). th olive st	Brown sin on top.			reads 100 a. into 10 f e.
											clayey. Bottom of boreho Borehole backfille	le at 10.0 led with spo	Ft. ils, 12/6/87.			
				,												
			·												Descripti classifica soils by v examinat	tion of risual
			POON; ST ; P = PI				ITE		80	Ha	ncock St.	(LOD	1)		HOLE NO. 12	30R

SITE BEGU 12-	8 0	Ha	ncock	St. (I	ODI		COORDIN		DRIL	Li	FUSRAP 1,800 E 2,017 IAKE AND MODEL SIZE DBILE B-57 6.5"	14501-138 ANGLE F	EET NO. HOLE NO. 1 OF 1 1221F ROM HORIZBEARING rtical CK (FT.) TOTAL DEF
	REC		Y (FT./%		BOXE			P CAS			OUND EL. DEPTH/EL. GROU	1	H/EL. TOP OF ROCK
AMP	LE K	AMMEI	R WEIGHT	•	CAS		FY IN HO		A./L	.EN	GTH LOGGED BY:		
	SAMP. ADU.	SAMPLE REC. CORE REC.	SAMPLE SAMPLE X CORE X CORE PECOUERY		PATER ESSU ESTS SU SU SU SU SU SU SU SU SU SU SU SU SU	RE	NO	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION AND C		WATER RETURN, CHARACTER OF DRILLING, ETC Borehole advanced
SS SS SS	2.0 1.5 2.0	1.5 1.1 2.0	7-24 15-13 7-7-7					5			GRAVEL (GP, GM). 0.0-0.5 Ft. Gravel, brok 0.5-4.2 Ft. Silty gravel, Brunswick sandstone in decomposed Brunsick for gray sandstone gravel. 4.2-5.3 Ft. SILT (ML). (7.5YR3/0) with some ir clayey, soft. 5.1-5.3 Ft. Clayey sand 5.3-6.7 Ft. SILT (ML). L gray (2.5Y6/2) becomind downward (10YR5/2), d stiff. 6.0-6.6 Ft. Grayish brow 6.6-6.7 Ft. Grayish gree 6.7-7.5 Ft. SAND (SP). fine-grained, clean. Bottom of borehole at 7.5 ft Borehole backfilled with specific spec	dusky red, a matrix of rmation, minor olive ferry dark gray on-oxide mottling, gray (7.5YR5/0). Sight brownish grayish brown ry on top, medium wn, clayey, damp.	0-7.5 Ft. using 6.5 in. o.d. hollow-ster auger. Gamma-logged by TMA-Eberline, Inc
			POON; ST			,,,,	ITE	-	80	ŀ	lancock St. (LOE)i)	HOLE NO. 1221R

	G	EC	LOG	IC D	RII	110	G	PROJE	T			T NO. HOLE NO.
SITE							COORDINA	TES			FUSRAP 14501-138 1	OF 1 1220R ON HORIZBEARING
			ncock)					1,932 E 2,027 Vert	
BEGL 17.		1	MPLETED	1	LER	E.D.	T	ľ			AKE AND MODEL SIZE OVERBURDEN ROCK OBILE B-57 6.5" 10.0	(FT.) TOTAL DEPTH
					E BOXE		ESEL. TO	P CAS				EL. TOP OF ROCK
		.3/			- 10.4	5				L	<u> </u>	
SAM			R WEIGHT	•	CAS	SING LE	ion ni 14. N O l		A./L	.EN	GTH LOGGED BY: D. Harnish	
'n.					WATE				5	П		
SATT DIA	SAMP. AD	SAMPLE REC	BLOWS "N" X CORE	LOSS IN G.P.M	TEST		ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION AND CLASSIFICATION	NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC.
SS	2.0	1.7	1-4-8-7								0.0 - 4.6 Ft. Gravelly SILT and SILT FILL (GM-ML, ML).	Borehole advanced 0-10 Ft. using 6.5 in
SS	2.0	1.8	5-7-5-7				·				0.0-2.5 Ft. Gravelly silt; dusky red and reddish brown. Gravel is Brunswick sandstone.	o.d. hollow-stem auger. Gamma-logged by TMA-Eberline, Inc.
SS	2.0	0.9	7-7-8-1				-	5_			2.5-4.0 Ft. Silt; dark gray to black, organic, plant fragments, minor gravel of Brunswick sandstone.	4.0-6.6 Ft. Radiologically elevated, as detected
SS	2.0	1.9	6-30-45 3 6				-		Ш		4.0-4.3 Ft. Sand; grayish brown (2.5Y5/2) with greenish gray silt pieces, minor gravel.	with hand "pancake" probe.
SS	2.0	0.0	16-21 20-21								4.5-4.6 Ft. Silt; interlayered dark reddish brown and greyish green. 4.6 - 6.6 Ft. SILT (ML). Very dark gray (2.5Y3/0), soft.	
							-		11-1-1		(2.5Y3/0), soft. 6.6 - 7.3 Ft. SAND (SP). Greenish gray to gray (10YR5/3) becoming brown downward, very fine-grained.	
											7.3 - 10.0 Ft. SILT (ML). Brownish vellow (10YR6/6) becoming reddish brown	
											with depth (5YR5/4), dry, stiff, crumbly. Bottom of borehole at 10.0 ft. Borehole backfilled with spoils, 12/7/87.	
											bosenore backlined with spons, 22, 1,01.	
											-	
					į							Description and classification of soils by visual examination.
												were map a con o A dis T A W d A >
			POON; ST			,,,	ITE		80	∐ 1	fancock St. (LODI)	HOLE NO. 1220R

SOURCE S		(3E	OL	.OG	ilC	D	RIL	L LC	G	PROJE	CT		FUSRAP	JOB NO. 14501-13		T NO.	HOLE NO. 2025R
DESCRIPTION AND CLASSIFICATION SAPEL RAWES DEIGNITIAL SOUND 10.7-8-12 SS 20 20 20 3-3-11 SS 20 30 3-3-3-12 SS 30 3-	SIT	_	0 14	(an	cack	S	+ /1	מת	,	COORDII	IATES		- N		ANGL	E FRO	OH HORIZ	
COME RECOVERY (FI.7A) DOE BOXESIAMPLESEL. TOP CASING GROUND EL. 9.0/100 SAMPLE ABMER REIGHT/FALL ASING LEFT IN MOLE: DIA./LENGTH LOGGED BT: 3.00 lbs./ 24 in. BLUE ST. ASING LEFT IN MOLE: DIA./LENGTH LOGGED BT: DESCRIPTION AND CLASSIFICATION NOTES ON: LEEU. LOGGED BT: DESCRIPTION AND CLASSIFICATION NOTES ON: LOGGED BT: DESCRIPTION AND CLASSIFICATION NOTES ON: LOGGED BT: DESCRIPTION AND CLASSIFICATION NOTES ON: LOGGED BT: DESCRIPTION AND CLASSIFICATION NOTES ON: LOGGED BT: LOGGED BT: DESCRIPTION AND CLASSIFICATION NOTES ON: LOGGED BT: LOGGED BT: J. Lord NOTES ON: LOGGED BT: LOGGED BT: J. Lord NOTES ON: LOGGED BT: J. Lord NOTES ON: LOGGED BT: LOGGED BT:		JN		COM	LETE	7		.ER	ı	ــــــــــــــــــــــــــــــــــــــ		DRI						TOTAL DEPT
SAMPLE AMMER REIGHT/FAIL 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 300 lbs./ 24 in. ASING LEFT IN NOLE: DIA./LENGTH LOGGED BT: 400 lbs./ 400 lb							LUBE					INC	Je.				. <u>.</u>	10.0
NONE J. Lord Description and CLASSIFICATION NOTES ON:		_ 5	0.0/	10	0		1		5	_			۱	¥ 8.0/ 9/23		EP1H/	EL. 10P /	OF ROCK
Second S	SAMI							CAS	ING LE			IA./	LEN	GTH LOGGED BY:			<i>L</i>	
Do. 1.0 7.6	삕.	الد	, <u>c</u> i		<u> </u>	T	Ļ			NO	NE		П		J. Lord			
SS 1.0 1.0 7-5	Serie or The	SAMP. AD!	SAMPLE RE	SAMPLE	N" SWO "	1 099		EST	3	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION AND	CLASSIFICATI	ON	WATER WATER CHARA	LEVELS, RETURN, CTER OF
SS 2.0 2.0 5-8-11 15 SS 2.0 2.0 5-7-8-12 SS 2.0 2.0 13-13 SS 2.0 2.0 13-13 SS 2.0 2.0 13-16 SS 2.0 2.0 13-16 SS 2.0 2.0 13-16 SS 2.0 2.0 13-16 SS 2.0 2.0 13-18	SS	1.0	1.	0	7-5	-								AIRCO driveway. 1.0 - 2.8 Ft. Silty gravell (SM-SG) Moderate b	y SAND.		0-10 Ft o.d. hol	using 12 in
SS 2.0 2.0 13-13 SS 2.0 2.0 13-13 SS 2.0 2.0 13-13 SS 2.0 2.0 13-13 SS 2.0 2.0 13-13 SS 2.0 2.0 13-13 SS 2.0 2.0 13-13 SS 2.0 2.0 13-13 Description and classification of sorbole backfilled with clean spoils, Description and classification of souls yet such a solid yet solid yet	SS	2.0	2.0	0 9				,		•				soft, crumbles easily.	No cohesion. FILL.		Radiolo	and
15-16 10 15-16 10 10 10 10 10 10 10 10 10	SS	2.0	2.0	0 5-	7-8-1												0.07	
8.0-8.2 Ft. A 'runny' saturated interval. 9.0 - 10.0 Ft. Sandy SUT (ML). Light brown (SYR5/6). Very slightly moist. Stiff, well sorted, slightly cohesive, but crumbles easily. Denies easily. Denies easily. Denies easily. Denies easily. Stiff, well sorted at 10.0 Ft. Borehole backfilled with clean spoils, 9/23/88. Description and classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.	\$S	2.0	2.0			-					┨ .			_ feldspar and quarts mi	iear strength. Mixe nerals. Compact. r	ea I	observed	d. Top of
Description and classification of samples. Description and classification of samples. STE NOLE NO.										•	10.			9.0 - 10.0 Ft. Sandy SIL	r (ML) Light	_[
Description and classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.														Stiff, well sorted, slight crumbles easily. Dense	tly cohesive, but			
classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.														Borehole backfilled with c	0 Ft. lean spoils,			
classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																		
classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.														,				
classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																		
classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.					•													
classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																		
classification of soils by visual examination of samples. S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																		
LUATE UA:																	classifica soils by examina	ition of visual tion of
* DENNISON; P = PITCHER; O = OTHER 80 Hancock St. (LODI) 2025R									,	TE		R 0		lancack St. (I O	רוט	<u> </u>		

									PROJE	CT			JOB NO.	ieus	ET NO.	HOLE NO.
		iE(COC	ilC	. D	RIL	L LC)G				FUSRAP	14501-1	1		1193R
SIT	_	**		• •			,	COORDIN	ATES						ON HORIZ	BEARING
BEGI			COCK S									1,988 E 2,067		Vert	ical	
			2-3-8	,	KILL.	EK	E.D.	τ .		ı			OVERBURDEN	ROCI	(FT.)	TOTAL DEPTH
					CORE	BOXE	S SAMPI	ESFL. TO	YP TAS	INC	M	OBILE B-57 6.5"	10.0	DEDT!	/CI 200	10.0
ĺ		5.7/					5		n unu		"	Y	NO MATER	DEP! K	/EL. TOP	OF ROCK
SAMI			R WEIGH	-	-	CAS		FT IN HO	LE: D	[A./	LEN	GTH LOGGED BY:		<u> </u>	/	
			s./ 30				We make the con-	NO	NE				D. Harnis	sh		
OIAM.	5 m		SAMPLE BLOWS "N" % CORE	-		ESSU				60	Π					
ΥŒ	E		P. B.	<u> </u>		EST		ELEV.	E	ΙË	H	BEAGETTEEN A			NOTES	
J. 0	iz	# #	£305	ရှိ ရွ	Σ.	53.	₩-;	ELEV.	DEPTH	BRAPHICS	SAMPLE	DESCRIPTION AND CL	_assificat	ION		LEVELS, RETURN,
SAMP	E	製品	N H	رة او	N. C.	7.0 0.0	ENE ENE	•	<u> </u>	l K	ñ				CHARAC	TER OF
			1	_}	-4	00			ļ	_	┵	CO. 40 Ft GRAVEL C-	valle SIT T and			NG, ETC.
SS	1.5	1.0	12-20-1	5					į .		į	81LT FILL (GP, GM-MI	, OL).	1	0-10 Ft.	advanced using 6.5 in.
SS	2.0	0.2	5-7-8	-	1				.			0.0-0.5 Ft. Gravel, broke	en basalt.		auger.	ow-stem
			11				[] .			0.5-2.3 Ft. Gravelly silt, Gravel of decomposed and	gray and brow	n.	Radiolog sampled	and
SS	2.0	1.4	7-12-16	5	1		·				į.	Brunswick sandstone.	u proken	,-	TMA-E	logged by berline, Inc.
-			20				·		5_			2.3-4.0 Ft. Silt, dark gra	yish brown		0-0.5 Ft roadbed	. No sample:
SS	2.0	1 2	8-6-10	-] .	4111		(2.5Y4/2).				
			10					_] .			4.0 - 6.3 Ft. SILT (ML). Li (2.56/0) with abundant y	ight gray ellowish brown	Γ	2-4 Ft. Supplim	entary grab
SS	20	1.3	6-8-10	4								iron-oxide mottling.			sample f	rom auger.
55	2.0	1.3	10									6.3 - 10.0 Ft. SUT and SAI Dark yellowish brown (10 fine-grained, interbedded	ND (ML, SP). YR4/4), very on scale of 1 c	m.		
												8-10 Ft. Sand, very fine-			Hole cav	ed in to 9.0
												Bottom of borehole at 10.0 F Borehole backfilled with spoi	`t. ils, 12/3/87.			
					Ì											
	•												•			
						·										
- 1						ł		-			Ш					
							1				П					
						1	ļ									
		j					1	}								
-				•												
						Ì										
		Ì												ŀ		
		- 1														
		- 1														*
							1	1			١					
l			•				1	ļ	ļ							
		- }					1			Ì				ŀ		
						1	{		ĺ					1		
	ļ															
		-				1	1	İ						1	Descripti	on and
	- [ĺ					.						- 1	classificat soils by v	isual
- 1									Į	1				-	examinat	ion.
										1						
-]		ļ						
 S =	SPL1	T SP	DON; ST	= S	HELR	Y TUR	E: SI	TE .	1						HOLE NO.	
			P = PI							Н	a	ncock St. (LODI)		ľ		93R

	G	EC	LOG	IC D	RIL	L LO	G	PROJE	CT		FUSRAP		JOB NO. 14501-		ET NO.	HOLE NO. 2024R
SITI		H	ncock	St (ומח ו	1	COORDINA	TES				٠		NGLE FR	OM HORIZ	
BEG	Ж	C	MPLETED	DRIL	LER					L MAX	,705 E 2,10 E AND HODEL	SIZE	OVERBURDEN	Vert	ical	TOTAL DEPT
			-23-8				SOILS ESEL. TO	P CAS	INC	C	ME 45B	12" /EL. GROU	10.0	DED.	/F: 200	10.0
	1	B.4/	88	1		5					₹ 8.	4/ 9/23/8		DEPTH	/EL. 10P /	OF ROCK
SAMF			R WEIGHT		CAS	ING LE	FT IN HOL NO!		A./L	ENGT	LOGGED BY:		7.7.			
Ņ.	30	ان	2.	111.	WATER		NOI	VE.	T	П			J. Lo	ď	1	
SAMP. TYPE AND DIAM.	SAMP. ADU	SAMPLE REC	SAMPLE BLOWS "N" % CORE RECOVERY	LOSS IN G.P.M	LESTS.		ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION	H AND C	Lassifica	HOIT	WATER	ON: LEVELS, RETURN, CTER OF ING, ETC
	1.5		10-10-8	3			-			70	.0 - 0.5 Ft. ASP AIRCO drivew	HALT &	GRAVEL.	Г		ie advanced
SS	2.0	1.2	3-2-2-5					•		ام	.5 - 3.0 Ft. Silty (SM-SG). Mo dusky red (5R.	derate bro	SAND. wn (5YR3/4) l organic flec			using 12 in low-stem gically
SS	2.0	2.0	11-7-12 17				·	5_			soft, crumbles	easily. No	cohesion. F.		gamma TMA-E	l and -logged by berline, Inc
SS	2.0	2.0	8-10 14-20				-			h	yellowish oranglight gray (N6) (5B7/1). Wet, stiff. Slight fin	, loose, adl ies compor	/6) then grad duish gray nesive, slightly nent, slightly	iing to		•
SS	2.0	2.0	5-8-9-1:				7	·			elastic or rubbe 4 - 9.0 Ft. Silty yellowish brow sand. Subangu	SAND (S	M). Modera (4) coarse silt	;e y	observe 6.4 Ft.	
\dashv						:	_	10 .			sand. Subangu silt. Adhesive shear strength. minerals. Com	due to the Mixed fe	moisture. N ldspar and oi	arte F]	
										9	Crumbles easily	у.				
											0 - 10.0 Ft. Sar brown (5YR5/ Stiff, well sorte crumbles easily	6). Very sl ed, slightly v. Dense.	ightly moist. cohesive, bu	: }		
	٠									B	ottom of borehole forehole backfille 9/23/88.	le at 10.0 l d with cles	Ft. an spoils,	············		
											*/ &S/ CC.					
			:													
				. ,												
			:	•				•							Descript classifies soils by examins samples	stion of visual ition of
= 1	SPL:	IT SP	OON; ST P = PI	= SHEL	BY TU	/	TE		80	Ha	ncock St.	(LOD	el)		HOLE NO	

	C.	FC	LOG	ור ח	PII	- 10	G	PROJEC	CT				JOB NO		SHEET NO.	HOLE NO.
SIT			LUG				COORDINA	TEC			FUSRAP				1 OF 1	12221
7	_	Hon	cock S	+ (1.0	ומנ		COOKUIN	(163		N	1,991 E 2,17	2			ertical	DEAKING
BEG			MPLETED					-			IAKE AND MODEL		OVERBURDEN		OCK (FT.)	TOTAL DEPTH
			2-8-81			E.D.					BILE B-57	6.5"	8.0			8.0
COR				() CORE	BOXE	i .	ESEL. TO	P CASI	ING	GR	OUND EL. DEPTH	/EL. GROU	ND WATER	DΕ	PTH/EL. TO	P OF ROCK
CAM		1/(54 WEIGHT	/FALL	- Icai	4	ST IN HO	E. 01	A /I	EN	GTH LOGGED BY:					/
Sec.			s/ 30			MO CE	NO		A./L	·EN	TOUGED BI:		D. Har	nish		
W.					JATE		1	\ <u></u>		П			2			
₽ ₹		REC.	SAMPLE BLOWS "N" X CORE RECOVERY	PR	ESSU	RE		Ŧ	BRAPHICS	Н					NOTE	ON:
ä,	.0	ᄪᄣ	표하음을	S E	йн	ш	ELEV.	DEPTH	[SAMPLE	DESCRIPTION	I AND C	LASSIFIC	ATIC	, , , ,	R LEVELS, R RETURN,
誤	뒬교	MPIC	& DIX	LOSS IN G.P.M	PRES P.S.	HAR.		5	ğ.	6					CHÁR	ACTER OF
® d	8	80	82 4	7 6	<u>ā</u> a			<u> </u>		Ц	00.9954 CB	UPY	OH CDAY	/ET		ING, ETC.
SS	1.5	1.3	7-14-20	!		}					0.0 - 2.8 Ft. GR. FILL (GP, G)	i).	SHLY GILA		0-8 Ft	. using 6.5 in. ollow-stem
68	2.0	0.2	20-10)		•					0.0-0.7 Ft. Gi	svel, asph	alt and brol	ten		logically
33	2.0	0.2	9-7		l					-	basalt gravel.		D		- sample	ed and
-	<u> </u>		14 88]		· '					0.7-2.8 Ft. Sil Brunswick san	ty gravei. dstone wit	h dusky red	silt.	TMA-	a-logged by Eberline, Inc.
33	2.0	1.8	14-22 30-41			'	_	5_	Ш		2.8 - 5.1 Ft. Silts FILL (?) (SM,	SAND at	d Gravelly	SILT	from a	. Grab sample uger flights.
100		1.0	15.15]	1		· -				1	•			Д	D. 371
33	2.0	1.8	15-15 25-25	<u> </u>	l						2.8-4.0 Ft. Sil with greenish t	int, soft, d	Jark gray (: lamp.	14/1	roadbe	Ft. No sample; ed.
<u> </u>	ļ	_					_				4.0-4.9 Ft. Gr with round Br	avelly silt.	Greenish	ray		
											4.9-5.1 Ft. Sil					
					1	} ;			1		5.1 - 5.4 Ft. SIL				ENME	T reads 100
									l		(5YR5/2), oliv	e stain on	top.	741		t top of 6 Ft.
			,	ļ						$\ \ $	5.4 - 8.0 Ft. SAN medium-grain subangular gra	D (SP). I	ine- to	ava!	_ Inoie.	
										П	subangular gra	ins.	ie, minor gr	BY €1,		
	l				1				l	$\ \ $	5.4-6.0 Ft. W	eak red (2.	5YR4/2).		- {	
	İ									$\ \ $	6.0-8.0 Ft. Regravel, wet.	ddish bro	wn (5YR4/3). Mi	nor	
					İ					Ш	3 .4.4., 4.6				-	
	1)	ł] 1)			Bottom of boreho Borehole backfille	le at 8.0 F	t. : - 19/8/97		}	
					ĺ					$\ \ $	Dolenole Dackline	u with spe	1118, 12/0/07	•		
	}								1						}	
					ĺ	•			l	11					ł	
						•			l							
					ĺ										j	
					1										İ	-
						ļ .					•					
					İ				1						1	
					ĺ					$\ \ $						
						,				11						
					1											
						[l						<u> </u> _	
					1					$\ \ $					classifi	ption and leation of
															soils b	y visual nation.
]							
										$\ \ $						
								L	_	\coprod						
			POON; ST			,,,,	ITE		L	<u>-</u>	ncock St. (ו טטו)			HOLE N	io. 225R
~ -	REMU	. JUN }	P = PI	· unekj	- - t	" HEK				•	HUUUR DE. (•		[4	. -

L .	DRILL LOG	PROJECT FUSRAP	JOB NO. SHEET NO. HOLE NO. 14501-138 1 OF 1 2022R
SITE 80 Hancock St.	COORD		ANGLE FROM HORIZBEARING
BEGUN COMPLETED D		N 1,711 E 2,1 DRILL MAKE AND MODEL	SIZE Vertical SIZE OVERBURDEN ROCK (FT.) TOTAL DEP
9-22-88 9-22-88	EMPIRE SOIL		12" 10.0 10.0
CORE RECOVERY (FT./%) + 7.3/77	CORE BOXES SAMPLES EL.	TOP CASING GROUND EL. DEPT	H/EL. GROUND WATER DEPTH/EL. TOP OF ROCK
SAMPLE HAMMER WEIGHT/FA	ALL CASING LEFT IN I	IOLE: DIA./LENGTH LOGGED BY:	
300 lbs./ 24 in.		ONE	J. Lord
SAMP. TYPE SAMP. ADV. LEN CORE SAMPLE REC. CORE REC. CORE RCORE RCORE RCORE RCORE RCORE RCORE	WATER PRESSURE TESTS ELEV ELEV ELEV ELEV	ORAPHICS DESCRIPTION OF THE PARTICE	NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC
SS 1.5 1.5 10-15-22		0.0 - 0.5 Ft. AS	SPHALT & GRAVEL
SS 2.0 0.0 5-6-6-7		0.5 - 4.0 Ft. Sa brown (5YR3 Mixed organi	ndy SILT FILL. Moderate using 6 1/4 in. i.d. hollow stem augers 5/4 to dusky red (5R3/4). Sampled and c flecks, brick, gravel with a gamma-logged to 1
SS 2.0 2.03-6-8-12		easily. No co 4.0 - 7.7 Ft. Sil gray (N6) to	m. Dry, soft, crumbles by TMA-Eberline, obesion. iv SAND (SM). Light olive brown (5Y4/4). Wet, re, slightly stiff. Slight
SS 2.0 1.8 10-10 16-12		fines compon	
SS 2.0 2.0 10-12 10-5		Adhesive due strength. Mi minerals. Co	ilty SAND (SM). lowish brown (10YR5/4) coarse-grained sand. Wet, boorly sorted with 20% silt. to the moisture. No shear xed feldspar and quartz mpact, no thread, rubbery.
SS = SPLIT SPOON; ST = S D = DENNISON; P = PITCH		80 Hancock St	(LODI) HOLE NO. 2022R

	(GE(DLO	G	וכ ח	RII	L LC)G	PROJE	CT				JOB NO.	- 1	EET NO.	HOLE NO.
SI								COORDIN	ATES			FUSRAP		14501-			1222R
L	8	0 H	RIICO	ck	St. (I	LODI	()				ħ	N 1,933 E 2,18	6	ľ		ROM HORIZ tical	BEARING
BE	SUN	C	OMPLET	TED	DRIL	LER		_		DRII	LL	MAKE AND MODEL	SIZE	OVERBURDEN		K (FT.)	TOTAL DEPTH
			12-7-			E BOYE	E.D	.I.			M	OBILE B-57 ROUND EL. DEPTH	6.5"	10.0			10.0
		6.3/		•/ 🌤	, cox	: DUNE	5	LESEL. IC	P CAS	ING	6	ROUND EL. DEPTH,	EL. GROU	ND WATER	DEPTH	I/EL. TOP	OF ROCK
SN	IPLE I	IAMME	R WEI			CA		FT IN HO	LE: DI	A./	LEI	NGTH LOGGED BY:			٠		
-			os./ 3					NO:	NE					D. Harr	ish		
SAMP. TYPE		S C	SAMPLE BLOWS "N"	ړ.	PR	JATE!	RE			97				14004			~ · · · · · · · · · · · · · · · · · · ·
1-2			F 6		_ω Σ	TEST:	T	ELEV.	DEPTH	BRAPHICS	SAMPLE	DESCRIPTION	AND CI	_ASSIFICA	TION	NOTES	
<u> </u>	밀교	투	ga,	, EC	LOSS IN B. P. P	PRESS. P.S.I.	HAN.	•		₹						WATER	LEVELS, RETURN,
	S	g c	6	ř	7 6	9.0	E.E			8						_	TER OF NG, ETC.
SS	2.0	1.0	1-1-6	-14							İ	0.0 - 4.6 Ft. Grav SILT PILL (G)	elly SILT	GRAVEL.	nd	Borehole	advanced
-									'			0.0-2.4 Ft. Gr	•	•		o.d. holle	using 6.5 in. ow-stem
35	2.0	1.7	15-1 14-1									brown (5YR3/2 topsoil and Bru	i mixed a	ith dark brov	WD.	Gamma-	logged by berline, Inc.
00	<u> </u>											giass at base.		•		1-2 Ft.	Grab sample er flights.
35	2.0	2.0	7-2-2	2-5				_	5_			2.4-3.0 Ft. Grassian sandstone.	evel, dusk	red, Brunsv	rick F	13.5~4.0 E	t. ck SS erratic.
60												3.0-3.3 Ft. Silt	. mixed di	uk grav, dari	. [Di diiswii	CA DD GIIBNIC.
33	2.0	1.6	3-21- 19					_	_	Ш		reddish brown,	brownish	yellow, some	black	_	
22	2.0		5-9-1	\sqcup					_			3.3-4.6 Ft. Gr	vel, dusky	red, Brunsw	ick		
	2.0		D-9-1.	-					-			sandstone; dead (pre-fill surface	i biants an	d grass at ba	se,		
\vdash	┨	-	!	\dashv				4	10 _	Ш		4.6 - 6.9 Ft. SILT	(ML).		/_	_	
					İ						П	4.6-4.9 Ft. Rec	ldish gray	organic.	l l		
												4.9-5.4 Ft. San	dy, gray (10YR5/1).	1		
					ĺ						П	5.4-6.8 Ft. Ver	y dark gra	y (7.5YR3/0).		
												6.8-6.9 Ft. San			Ì		
												6.8 - 10.0 Ft. <u>SU.'</u> (7.5YR6/4) and (7.5YR5/4) and	r (ML). I	ight brown			
												(7.5YR5/4) and	damp do	vnward.			
					1	Į		ļ	ĺ			Bottom of borehole	at 100 F	t .			
							ŀ					Borehole backfilled	with spoi	is, 12/7/87.			
							ļ										
						l	i										
		l															
		ļ			1	1			ļ	ĺ							
									İ								
															İ		
								Ì									
								1	i								
							1		ľ	Ì							
	1					l	ŀ										
		İ				1					ı						
								Ì								Description	
	ı								1	- 1						classificat	sual
															1	examinati	on.
		}								-							
Ш]							
\$\$ =	SPLI	T SP	DON; S	T =	SHELE	Y TUB	E; SI	TE		10		l	(1 A = -			HOLE NO.	
* * !	PENNI	SUN;	PEP	110	HER; C) = OT	HER			<u>U</u>	Н	lancock St.	(LODI)	1	123	22R

		SE()L(OG	IC D	RIL	L LC	G	PROJE	CT		FUSRAP		JOS NO 14501	. sн -138 1	EET NO.	HOLE NO. 2023R
SITE	-	n ee		1.	C4 (1	- O D I		COORDIN	ATES				_		ANGLE FI	ROM HORIZ	
EGL					St. (I)	ــــــــــــــــــــــــــــــــــــــ			N 1,8	ND MODEL	194 SIZE	OVERBURDEN		tical	
		88 9	-25	-88	3	EM:	PIRE	SOILS				E 45B	12"	14.0	KUC	K (FT.)	TOTAL DEPT
ORE				1./%) CORE	BOXE	SSAMPL	ESEL. TO	P CAS	ING	GROUNI	EL. DEP	TH/EL. GRO	UND WATER	DEPTH	I/EL. TOP	
AME		1.9		1 GHT	/FALL	ica:	7	ET 19 40	. F. A.			12	8.2/ 9/25/ <u>/</u>	88			
			os./		-	-	SING TE	NO		IA./L	ENGTH	LOGGED BY:		J. Lo			
W .						JATE		1.0		T.,		<u> </u>	·················	J. Lu	ru		
SAM DIAM.	SAMP. AD	SAMPLE RE	SAMPLE BLOUS "N"	X CORE	LOSS IN G.P.M	ESSTS OF THE STATE		ELEV.	нтаяа	GRAPHICS	3HS			CLASSIFIC	ATION	WATER CHARAC	ON: LEVELS, RETURN, CTER OF ING, ETC
SS			9-1					-			0.0	- 0.5 Ft. A	SPHALT &	GRAVEL.	/	Borehole	advanced
SS	2.0	2.0	10-8	-6-5		•					0.5	- 4.3 Ft. Sil Moderate br (5R3/4) mix with a sandy	ty gravelly own (5YR3 ed organic i	SAND. /4) to dusky : lecks, brick, ; Dry, soft.	red gravel	0-13 Ft. o.d. holl augers.	using 12" ow-stem Split-spoon to 14.0 Ft.
SS	2.0	1.1	2-2-	2-6				-	5_			crumbles eas petroleum oc underground	ily. No cohe lor. Boreho diesel stori	esion. Strong de next to age tank. FII	L.	Sampled	and
ss	2.0	1.8	9-10 1					-	•		\neg	- 6.8 Ft. Sil (N6) to light loose, adhesi fines compor	ve, slightly	M). Light gr (5B7/1). W stiff. Slight elastic or	ay et,	gamma- TMA-E	logged by berline, Inc Groundwat
SS	2.0	2.0	10-8 1			ŀ		Ž	? .		\	rubbery.		(SM). Dark 5/6) medium-		observed	
SS	2.0	2.0	5-5-	8-7					10_			coarse-grain sorted with 1 moisture. No	0% silt. Ac shear stren	ibanguiar, po lhesive due to	orly the		
SS	2.0	2.0	7-10						-			thread, rubb	ery.	•	•		
				_					•	•		13.2-13.3 Ft stiff to 13.5 I 5 -14.0 Ft. §	የቴ. 	to runny, th	•n	1	High ENM
						•						brown (5YR:	3/4) coarse- Saturated, s	grained sand lightly adhesi	with ve,	readings Seal 1-3	; off scale. Ft. interva er. No moi
										į	Bot	tom of boreh chole backfil 9/25/88.	ole at 14.0 led with cle	Ft. an spoils,		mgn read	amgs.
		•															
		٠															
				3 5											. !	Descripti classifica soils by v examinat samples.	tion of risual
					= SHELI			TE		BO	 Han	cock St	. (LOD)i)		HOLE NO.	23R

	G	FO	LOG	ור ח	RII		G .	PROJEC	CT						JOB NO	•	SHEET NO.	HOLE NO.
SIT			200				COORDINA	756				FUSR!	AP		14501		FROM HORIZ	1228R
3		н	ncock	St (I	זמם.	`	COOKDINA	1125		N] 1 Q.	44 E	2 21	1	1		rkon noki. ertical	BEARING
BEG			MPLETED				J	k	DRII			AND HOD		SIZE	OVERBURDEN		OCK (FT.)	TOTAL DEPTH
12	-8-8		2-8-87			E.D.	I.	ĺ				LE B-		6.5"	10.0			10.0
COR				CORE	BOXE	SSAMPL	ESEL. TO	P CASI	NG	GF	ROUND	EL.	DEPTH/	EL. GROU	NO WATER	DEF	TH/EL. TOP	OF ROCK
		.7/				5				L			1			L_		<u>/</u>
SAM			WEIGHT		CAS	ing LE	FT IN HO		۸./	LEN	IGTH	LOGGED	BY:		Th Stan			
111			s./ 30		JATER		NO	YE		П	ليسم		ه د د د د د د د		D. Har	nisn		
SAMP. TYPE	SAMP. ADU.	SAMPLE REC.	SAMPLE BLOWS "N" % CORE RECOVERY	LOSS IN G.P.M	ESSU	RE	ELEV.	DEPTH	GRAPHICS	SAMPLE	ĐI	ESCRIF	PTION	AND C	LASSIFIC	ATIO	WATER CHARA	ON: LEVELS, RETURN, CTER OF ING, ETC.
<u> </u>	1.5		6-10-21								0.0	- 4.0 Ft (GP, MI	GRA	VEL and	SILT PILL		Boreho	le advanced using 6.5 in.
		1.0	0-20-21					-						avel: book	en basalt.	•	o.d. ho	low-stem
SS	2.0	1.2	11-20 12-12					-					Ft. Sil	t; very da	rk gray and	light	Gamma	a-logged by Eberline, Inc. t. No sample.
SS	2.0	0.2	12-3-3 21				_	5_			ה ז		Ft. Gr		y red Bruns	wick	Road b	ed.
SS	2.0	1.5	14-24 22-27				_	-				1.5-1.6 l gravel.	Ft. Da	rk brown	silt with bas	alt		
	0.5							· -			4.0	- 6.1 Ft fine-gra	SANI ined, d	Q (SP). G	ray (5YR5/	1),	1	
33	2.0	1.5	19-35 31-33			}	=	10 -	I		1 1	- 8.3 Ft (7.5YR3 massive.	/4), cr	(ML). Bi umbly, sli	rown ghtly damp,			
							-	10.			8.3		Silty	SAND (S	M). Strong			reads 110 in. into 10 ft.
											8.7	- 10.0 F SM). G	t. SIL rayish d dowr	T and Sill brown (10	by SAND (M Y5/2), silt to y fine- to	IL, secome	11 1 1	
											Bot Bor	tom of i	porehol ckfille	e at 10.0 i d with spo	ft. ils, 12/8/87			
																	:	•
																		į
																		1
								:										į
			POON; ST ; P = PI			,,,	ITE		80) }	Han	cock	St.	(LOD	oi)		HOLE NO	228R

ì

															·,···
	G	EO	LOG	IC D	RIL	L LO	G	PROJE	CT		FUSRAP	JOB NO	. SHEI -138 1	T NO.	HOLE NO. 2021R
SITE		-					COORDIN	ATES			FUSKAP		ANGLE FRO		
<u></u>	80		ncock)				N	1,763 E 2,250		Vert		
BEGUI			MPLETED	•					DRIL	L M	AKE AND MODEL SIZE		ROCK	(FT.)	TOTAL DEPTH
			-25-88				SOILS ESEL. TO			100	CME 45B 12		5		10.0
TORE .		.5/8		LUKE	BUAE	3 SAMPL	ESEL. 10	P CAS	ING	GR	AUND EL. DEPTH/EL. G 図 8.0/ 9/2	GROUND WATER 25/88	DEPTH,	EL. TOP	OF ROCK
SAMP			WEIGHT	/FALL	CAS		FT IN HO	LE: DI	A./L	ENG	TH LOGGED BY:				
			s./ 24				NO					J. Lo	rd		
¥₹ ₽.	굕.	<u>2EC.</u>	m'.™ ₹	PR	JATER ESSU TESTS	RE :			85						
SAMP. TYPE	EN CO	MPLE PRO	SAMPLE "N" 2 CORE RECOVERY	P. H	S. I.	AIN MIN MIN	ELEV.	DEPTH	RAPHICS	SAMPLE	DESCRIPTION AND	D CLASSIFIC	ATION	WATER	LEVELS, RETURN, CTER OF
ÿ⊄	81-	B C	6 4	ی ر	g o	ΕΣ			L					DRILL	ING, ETC.
SS	2.0	1.8	6-5-6-17				-				0.0 - 0.2 Ft. ASPHALT AIRCO Driveway.	T & GRAVEL.	Γ		e advanced
SS	2.0	1.0	5-3-4-3								0.2 - 5.0 Ft. Silty grave (SM-SG). Moderate	elly SAND.			. using 12 in. low-stem
							·				dusky red (5R3/4).	Mixed organic fl	ecks.	Sample	d to 8' and logged to 10'
SS	2.0	1.7	2-2-6-11	[,				brick, gravel with a s soft, crumbles easily. Strong petroleum od	lor. Borehole ne:	ct to	by TM.	A-Eberline,
							_	δ_		1	underground diesel s	storage tank			
SS	2.0	2.0							-		5.0 - 6.8 Ft. Silty SAN gray (N6) to light bluet, loose, adhesive,	luish gray (5B7/1 , slightly stiff.	l).		
			11-15				_	1 .		L	Slight fines compone rubbery.	ent, slightly elast	ic or		Groundwater
				\			•	∮ .			6.8 - 7.6 Ft. Silty SAN	D (SM). Moder	ate		Top of
								٠ ا	•		6.8 - 7.6 Ft. Silty SAN yellowish brown (10) coarse-grained sand. poorly sorted with 20	YR5/4) medium- Wet, subangul:	to ar,	undistu	rbed soil.
				{			-	10 .		H	le to the monture. No	snear strength.	MIXEG	1	
											feldspar and quarts r thread, rubbery.	minerals. Comp	ect, no		
											7.6 - 10.0 Ft. SAND (S brown (5YR3/4) coa some fines. Saturate	SW). Moderate arse-grained sand ed, slightly adhes	with sive.		
								ļ			loose. Mixed minera	logy.			
											Bottom of borehole at 1 Borehole backfilled with 9/25/88.				
								٠.			6) 80) 6 0.				
									1						
							,								
1															
	i			l											
						Ì								-	
]							
									Į					•	
]										
	İ		,												
															tion and ation of
														soils by	visual
								İ						samples	
]	
			POON; ST			,,,	ITE	-	00			OD!)		HOLE NO	
P = 1	ENN	SON;	P = PI	TCHER;	0 = 0	THER			ŌÜ	П	ancock St. (L	(וטט)		2	021R

ITE		EC	LOG	IC I	DRIL	L LC)G	PROJE	CT		FUSRAP	JOB NO. 14501-1	1	ET NO. OF 1	HOLE NO. 1224F
1116		H	ncock	St.	(LOD	T)	COORDIN	ATES		N	1.025 E 2.252	A		OM HORIZ	BEARING
EGL	IN	Q	MPLETE	DRI		<u>., </u>	<u> </u>				1,925 E 2,253 WAKE AND MODEL SIZE	OVERBURDEN	Vert	(FT.)	TOTAL DE
			2-8-8			E.D.	.I.		1	M(OBILE B-57 6.5"	10.0			10.0
······		5.5/		5) [CO	KE BOX	ES SAMPL	ESEL. TO	P CAS	ING	GR	OUND EL. DEPTH/EL. GROL	AND WATER	DEPTH	/EL. TOP	OF ROCK
AMP	LE H	AMME	R WEIGH	-	. CA		FT IN HO	LE: D	IA./L	EN	GTH LOGGED BY:		<u></u>	mb	
	14	0 lb	s./ 30	in.			NO	NE	,	-		D. Harn	sh	47	
DIAM.	읭뿐	S C	BLOWS "N" X CORE	F	WATE RESSI TEST	JRE	1	l _	2					1	
Ö.	18		₹ 5 05 5	on :	E Mil	T	ELEV.	DEPTH	Ħ	SAMPLE	DESCRIPTION AND C	LASSIFICAT	TION	NOTES	ON: LEVELS
经	퉦	五品	82 × 7	ŠÄ,	• 6	一デファ		2	GRAPHICS					WATER	RETURN,
ñ⊄ SS	20	(F) O	7-10-17	, ,	1 2 C	Ε Ξ			0	\coprod				DRILLI	NG, ET
33	2.0	1.1	20	1							0.0 - 4.6 Ft. Gravelly SILT (GM-ML, ML).	and SILT FIL		0-10 Ft.	advanced using 6.5
SS	2.0	0.4	12-9	}			ļ.				0.0-0.7 Ft. Gravelly silt	, dark grayish		o.d. holl	ow-stem
-			5-6			1.	·				brown (10YR4/2), crush sandstone gravel.	ed Brunswick		ITMA-E	logged by berline, Inc
SS	2.0	1.2	3-5-5-1			'			-		0.7-1.2 Ft. Gravelly silt (2.5YR3/2), crushed Bru	, dusky red		from au	Grab sam er flights.
							-	5.	-11	1	gravel.	manie seliciti	[1	
SS	2.0	1.6		{	{		-		-[[]		1.2-4.0 Ft. Gravelly silt (10YR3/1), abundant pl	, very dark gra	у		
			30-45					٠ ا	Π		4.0-4.6 Ft. Silt, weak re	stone gravel.	ſ	1	
SS	2.0	1.6	6-16	1							disturbed (?).	- (, -,,	- 1		
			17-15						1111		4.6 - 6.5 Ft. SILT (FILL?) dark gray (10YR4/1), or	(MH). Very			
\neg				1			_	10.	Ш		\ <u>}</u>			1	
								<u> </u>			6.5 - 10.0 Ft. SILT (ML). (2.5YR5/2), stiff, crumb	Weak red ly and dry,	1		
											downward becomes dark (5YR4/2) and wet.	reddish gray	ł		
				}							8.0-8.2 Ft. Clay, same c	olor.			
											8.2-10.0 Ft. Dark reddis	sh gray, wet.	- 1		
						[]	ļ				Bottom of borehole at 10.0	ſt.			
											Borehole backfilled with spo	oils, 12/8/87.			
				•						1					
ı				ĺ						İ					
				Ì											
						1 1									
														-	
	Ì	i				·							!		
							:								
	-		İ												
	1														
	1				1		j								
		ľ			{										
]]								Descripti	on and
											•		:	classifica	tion of
	Ì													examinat	
]						
*	SPLI	T SP	OON; ST	= \$H	LBY TL	BE; SI	ITE		—— • •					HOLE NO.	
			P = PI						80 X -		ancock St. (LOD	(I)			24R

The same of the sa