Formerly Utilized Sites Remedial Action Program (FUSRAP)

Maywood Chemical Company Superfund Site

ADMINISTRATIVE RECORD

Document Number

MISS-026.

US Army Corps of Engineers®

Bechtel National, Inc.

Engineers — Constructors

Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Mail Address: P.O. Box 350, Oak Ridge, TN 37831-0350 Telex: 3785873

AUG \$ 1987

U.S. Department of Energy Oak Ridge Operations Post Office Box E Oak Ridge, Tennessee 37831

Attention: S. W. Ahrends, Director Technical Services Division

Subject: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of the <u>Radiological and Limited Chemical</u> <u>Characterization Report for the Hunter Douglas</u> <u>Property in Maywood, New Jersey and Radiological and</u> <u>Limited Chemical Characterization Report for the</u> <u>Sunoco Station Property in Maywood, New Jersey</u>

Code: 7310/WBS: 138

Dear Mr. Ahrends:

The following is the response to comments in Steve Oldham's letter (87-388) dated June 22 (our CCN 045685) and additional information exchanged during telephone conversations between Steve Oldham and Tom Dravecky on July 21 and 23. Enclosed are 25 copies of each of the subject reports that incorporates these comments.

Please contact Sherry Livesay (6-0454) if you need additional copies.

Very truly yours,

J. R. Kannard Project Manager - FUSRAP

JRK/skl

Enclosures: As stated

cc: J. F. Wing, w/o
R. G. Atkin, w/o
S. K. Oldham, w/o
B. A. Hughlett, w/o
J. D. Berger (ORAU), w/e
G. K. Hovey, w/o

1032x

bcc: N. C. Ring (2) R. M. Howard C. P. Leichtweis R. C. Robertson W. C. Borden J. A. Blanke (2) S. G. Wilkinson L. A. Johnson (2) S. K. Livesay TRG (6) PDCC

Marmarum Print

.

un la service

interesting in the second

This distribution closes out CCN 045685.

DOE/OR/20722-152

RADIOLOGICAL AND LIMITED CHEMICAL CHARACTERIZATION REPORT FOR THE HUNTER DOUGLAS PROPERTY MAYWOOD, NEW JERSEY

JULY 1987

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring and S. K. Livesay Bechtel National, Inc. Oak Ridge, Tennessee

Bechtel Job No. 14501

TABLE OF CONTENTS

ليستعد

-

		Page
Abbro	eviations	v
1.0	Introduction and Summary	1
	1.1 Introduction	1
	1.2 Purpose and Objectives	1
	1.3 Summary	2
	1.3.1 Radiological Summary	2
	1.3.2 Chemical Summary	2
2.0	Site Description and Background	4
3.0	Radiological Characterization	6
	3.1 Remedial Action Guidelines	6
	3.2 Surface Characterization	6
	3.3 Subsurface Characterization	9
4.0	Chemical Characterization	24
Refe	erences	27
Appe	endix A Geologic Drill Logs for the Maywood Interim Storage Site - Hunter Douglas	A-1

LIST OF FIGURES

-

-

المحمد معمود والم

·····

A REPORT

L

Figure	Title	Page
2-1	Location of the Hunter Douglas Property	5
3-1	Sampling Locations at the Hunter Douglas Property	8
3-2	Areas of Surface Contamination at the Hunter Douglas Property	10
3-3	Area of Subsurface Contamination at the Hunter Douglas Property	12

LIST OF TABLES

<u>Table</u>	Title	Page
3-1	Summary of Residual Contamination Guidelines for the Maywood Site	14
3-2	Sediment Sampling Results for the Hunter Douglas Property	16
3-3	Downhole Gamma Logging Results for the Hunter Douglas Property	17

- **-**

ABBREVIATIONS

hit-stankint

The Maintena

}

And the second second

And and the second second

CM	centimeter
cm^2	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h	hour
in.	inch
1	liter
m	meter
m ²	square meter
µR/h	microroentgens per hour
mi	mile
mi ²	square mile
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
min	minute
ppb	parts per billion
ppm	parts per million
pCi/g	picocuries per gram
pCi/l	picocuries per liter
WL	working level

v

1.0 INTRODUCTION AND SUMMARY

642073

1.1 INTRODUCTION

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The act was reauthorized in 1985. DOE has constructed the Maywood Interim Storage Site (MISS) on 11.7 acres of land west of the Stepan Company property. The Hunter Douglas property is included as one of the MISS vicinity properties. The work is being administered by the Formerly Utilized Sites Remedial Action Program (FUSRAP), one of two remedial action programs under the direction of the DOE Division of Facility and Site Decommissioning Projects.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated DOE to remedy (Ref. 1).

FUSRAP is currently being managed by the DOE Oak Ridge Operations (ORO). As the Project Management Contractor (PMC) for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

1.2 PURPOSE AND OBJECTIVES

A radiological characterization of the Hunter Douglas property has been conducted to establish the horizontal and vertical limits of radioactive contamination and to determine ranges of radionuclide concentrations. The information obtained from this characterization work will be used in planning any required remedial action. The

results will also be used to satisfy an important secondary objective, which is to provide data to aid in the identification and evaluation of pathways by which contamination might have migrated from the property. A limited chemical characterization was also performed to provide the information necessary for development of appropriate employee health protection measures to be implemented during any remedial action at the Hunter Douglas property.

1.3 SUMMARY

This report summarizes the procedures and results of the radiological and limited chemical characterization of the Hunter Douglas property conducted in August and September 1986.

1.3.1 Radiological Summary

The radiological characterization confirmed that thorium-232 is the primary radioactive contaminant. The sediment sample results showed the maximum concentration of thorium-232 to be 33.4 pCi/g, which is in excess of the DOE guideline of 5.0 pCi/g plus background for surface soil. The maximum concentration for radium-226 was 4.8 pCi/g, which does not exceed the guideline. No uranium-238 concentration above the laboratory detection limit was identified.

The results of downhole gamma logging indicate no subsurface contamination.

1.3.2 Chemical Summary

Results of volatile organic analyses (VOA) performed, from the limited chemical characterization of this property, indicated that none were present in the sample. However, only a general evaluation of the data is possible because the analytical laboratory contracted for this work exceeded the holding times for these analyses.

642570

Analyses for base neutral/acid extractables (BNAE) (semi-volatiles) indicated the presence of semi-volatile organics, but all those identified had concentrations below the laboratory's specified detection limit and were not required to be reported. Priority pollutant metals analysis results indicated the presence of one hazardous constituent, cadmium, with a concentration above background level.

640070

Results of the analyses for pesticides and PCBs showed no detectable levels of these constituents. In addition, the sample did not exhibit the hazardous waste characteristics of corrosivity, reactivity, or ignitability. Analysis results for extraction procedure (EP) toxicity indicated trace-level concentrations.

2.0 SITE DESCRIPTION AND BACKGROUND

The Hunter Douglas property is in a highly developed area of the Borough of Maywood, County of Bergen, New Jersey. The population density of the area is approximately 10,000 people per square mile. It is located approximately 12 mi north-northwest of downtown Manhattan (New York City) and 13 mi northeast of Newark, New Jersey. The property is bounded by New Jersey Route 17 on the west and by other commercial properties on the north, east, and south. Figure 2-1 shows the location of the property.

The Hunter Douglas property was shown to be radioactively contaminated during a radiological survey conducted in July 1983 by the NUS Corporation at the request of the U.S. Environmental Protection Agency (EPA) (Ref. 2). The contamination probably originated from the processing of monazite sand (thorium ore) by the Maywood Chemical Works from 1916 through 1956. During this time, slurry containing process wastes from the thorium operations was pumped to diked areas west of the plant. The area west of the plant was generally low and swampy at that time. In 1932, New Jersey Route 17 was built through this disposal area. Some of these process wastes were removed from the Maywood Chemical Works for use as mulch and fill on nearby properties, thereby contaminating them with radioactive thorium (Ref. 3). Additional waste apparently migrated off-site via the natural drainage provided by the former Lodi Brook.

In 1954, the Atomic Energy Commission (AEC) issued License R-103 to the Maywood Chemical Works allowing it to continue to ship, receive, possess, and process radioactive materials under the authority of the Atomic Energy Act of 1954. The Maywood Chemical Works stopped processing thorium in 1956 after approximately 40 years of production. The Maywood Chemical Works was sold to the Stepan Company in 1959 (Ref. 3).

FIGURE 2-1 LOCATION OF THE HUNTER DOUGLAS PROPERTY

S

 $\mathbf{C}^{(1)}$

3.0 RADIOLOGICAL CHARACTERIZATION

To provide sufficiently detailed information regarding the limits of radioactive contamination and to provide data for the development of cost-effective measures for any potential remedial action, both surface and subsurface investigations were performed.

To facilitate the collection of data in a systematic manner, a 50-ft grid was established over the area to be characterized. This grid was correlated with the New Jersey state grid system to ensure that it could be reestablished if remedial action is undertaken. All data correspond to coordinates on the characterization grid.

3.1 REMEDIAL ACTION GUIDELINES

Information collected during the radiological survey conducted by the NUS Corporation (Ref. 2) indicated that the radioactive contamination at the Hunter Douglas property consists primarily of thorium-232, with typically much lower levels of radium-226 and uranium-238. Thorium is also known to be the primary contaminant at the Stepan property (Ref. 3). Table 3-1 (at the end of Section 3.0) lists the DOE residual contamination guidelines governing the release of formerly contaminated property for unrestricted use (Ref. 4).

3.2 SURFACE CHARACTERIZATION

Surface characterization was conducted with a shielded gamma scintillation detector. Near-surface gamma radiation measurements were taken 12 in. from the ground at the grid line intersections spaced 10 ft apart. The shielded detector was used to ensure that radiation detected by the probe originated from the ground directly beneath the unit. By shielding against lateral gamma flux, the shielded detector minimizes possible sources of error in the measurements. Furthermore, this detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to

provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). On the basis of this relationship, locations with measurements of more than 11,000 cpm were noted as exceeding the DOE guideline of 5 pCi/g plus background for thorium-232 in surface soil/sediments. To better define the limits of contamination, sediment sample locations were chosen by evaluating locations with measurements of more than 11,000 cpm, locations with measurements at or near 11,000 cpm, and the potential for lateral gamma flux.

Near-surface gamma levels measured on the property ranged from the background level of 5,000 cpm to 19,264 cpm. To identify surface areas where the level of contamination exceeds the DOE guideline for thorium-232, areas having readings in excess of 11,000 cpm were plotted on a grid. In addition, near-surface gamma measurements indicate that contamination extends onto several properties contiguous with the Hunter Douglas property.

The majority of the eastern section of the Hunter Douglas property is asphalt. The calibration correlation of 11,000 cpm for 5 pCi/g was developed for instruments taking readings above contaminated soil; therefore, the same correlation may not be applicable for readings taken above asphalt.

Sediment from the drainage ditch along the eastern boundary of the property (Figure 3-1) was sampled and analyzed for uranium-238, thorium-232, and radium-226. The data in Table 3-2 (at the end of Section 3.0) show the concentrations of thorium-232 in the surface sediment samples. Concentrations ranged from 3.2 to 33.4 pCi/g. Use of the "less than" (<) notation indicates that the radionuclide was not present in measurable concentrations. The value following the less than notation is the minimum detectable amount (MDA). The MDA is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time, and the background count rate. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration

L

L

1

FIGURE 3-1 SAMPLING LOCATIONS AT THE HUNTER DOUGLAS PROPERTY

cannot be precisely established; therefore, the exact concentration of the radionuclide cannot be determined. As such, each value that is equal to or greater than the MDA has an associated uncertainty term (+), which represents the maximum amount by which the actual value can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.

The maximum concentration for radium-226 was 4.8 pCi/g, which does not exceed the guideline. No uranium-238 concentration above the laboratory MDA was identified.

Since the thorium-232 concentration of one of the three sediment samples exceeds the DOE guideline of 5 pCi/g above background for surface soil/sediments, thorium-232 has been demonstrated to be the site's primary radioactive contaminant. The sampling locations are shown in Figure 3-1. Figure 3-2 shows the areas of surface contamination.

3.3 SUBSURFACE CHARACTERIZATION

After surface characterization was completed, a subsurface investigation was conducted to determine the depth of previously identified surface contamination and to locate subsurface contamination with no surface manifestation. The subsurface investigation was conducted using downhole gamma logging of the drill holes. This technique is significantly more cost-effective than soil sampling, because the procedure can be completed more quickly and eliminates the need for laboratory analysis.

A 2-in. by 2-in. sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC, where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g guideline for thorium-232 in subsurface soil. This relationship has been corroborated in results from previous characterizations where thorium-232 was found (Ref. 5).

FIGURE 3-2 AREAS OF SURFACE CONTAMINATION AT THE HUNTER DOUGLAS PROPERTY

During the course of the subsurface investigation, 14 radiological boreholes were drilled and gamma logged to determine the depths and concentrations of radioactive contamination. The borehole logs were reviewed to identify trends, regardless of whether concentrations exceeded the guideline. Borehole locations are shown in Figure 3-1. Detailed gamma logging data are presented in Table 3-2 (at the end of Section 3.0). On the basis of the evaluation of the vertical gamma logging data, no instrument readings indicated a concentration of soil contamination in excess of 15 pCi/g.

The ditch located along the eastern boundary of the property was found to contain stream sediments with contamination in excess of the guideline for surface soil. The ditch appears to be a barrier to the contamination. Heavy undergrowth throughout the ditch prohibited drilling in this area. Information obtained during characterization of the adjacent property to the north and east indicates the presence of subsurface contamination to depths of 5 ft immediately adjacent to this ditch (Figure 3-3).

On the basis of geological information gained as a result of this characterization, it was determined that the site is relatively flat (total measured relief of 3.2 ft) with the lowest elevation in the northeast section (43.2 ft m.s.l.) increasing gradually to the south (maximum elevation of 46.4 ft m.s.l.). The site topography generally slopes from the southeast to the north and west. The site is underlain by two types of soil, fill, and the Brunswick sandstone. In the west, as much as 2 ft of black organic silt (cumulous soil) cover decomposed sandstone at depths of 5 to 6 ft. In the far eastern section of the property, the depth to the sandstone decreases as the land elevation increases from a low at the western drainage basin. In this eastern area, a brown residual soil (silty sand) rests atop the parent Brunswick Formation material.

ີ ເຈົ້າ ເປັນ 🕴 ປ

040 V

FIGURE 3-3 AREA OF SUBSURFACE CONTAMINATION AT THE HUNTER DOUGLAS PROPERTY

A man-made drainage ditch along the eastern property boundary intercepts southward moving groundwater from the property adjoining the Hunter Douglas property at its southeasternmost corner. Groundwater levels are shallowest adjacent to this drainage ditch but drop off rapidly to the west and south.

0 - 2 - 2 - 7 0 - 2 0 - 2 0

TABLE 3-1

SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES FOR THE MAYWOOD SITE

Page I of 2

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL (LAND) GUIDELINES (MAXIMUM LIMITS FOR UNRESTRICTED USE)

Radionuclide

Radium-226 Radium-228 Thorium-230 Thorium-232 Soil Concentration (pCi/g) above background^{a,b,c}

5 pCI/g, averaged over the first 15 cm of soil below the surface; 15 pCI/g when averaged over any 15-cmthick soil layer below the surface layer.

Other radionuclides

Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

STRUCTURE GUIDELINES (MAXIMUM LIMITS FOR UNRESTRICTED USE)

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that are intended for unrestricted use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: in any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL.^d In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site to be released for unrestricted use shall not exceed the background level by more than 20 μ R/h.

Indoor/Outdoor Structure Surface Contamination

	Allowable Residual Surface Contamination ^e (dpm/100 cm ²)		
Radionuclide	Average ^{g,h}	Maximum ^{h, I}	Removable ^{h, J}
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, 1-125, 1-129	100	300	20
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224	1,000	3,000	200

TABLE 3-1

(continued)

Page 2 of 2

	Allowable Re:	sidua) Surface Con (dpm/100 cm ²)	tamination ^e
Radionuclide ^f	Average ^{g, h}	Maximum ^h ,1	Removable ^{h, J}
U-Natural, U-235, U-238, and associated decay products	5,000 α	15,000 a	Ι,000 α
Beta-gamma emitters (radionuclides with decay modes_ether than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 β-γ	15 ,00 0 β-γ	ι,000 β- γ

^aThese guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that the dose for the mixtures will not exceed the basic dose limit.

^bThese guidelines represent unrestricted-use residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.

^cLocalized concentrations in excess of these limits are allowable provided that the average concentration over a $100-m^2$ area does not exceed these limits.

^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 10⁵ MeV of potential alpha energy.

^eAs used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

^fWhere surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

9Measurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.

^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

¹The maximum contamination level applies to an area of not more than 100 ${\rm cm}^2$.

JThe amount of removable radioactive material per 100 cm^2 of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm^2 is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

TABLE	3-2	,
-------	-----	---

SEDIMENT SAMPLING RESULTS FOR THE HUNTER DOUGLAS PROPERTY

Coordinates		Concent	gma)	
East	North	Uranium-238	Radium-226	Thorium-232
11475	8415	<21.4	4.8 + - 0.7 1.1 + - 0.4	33.4 + - 3.4 5.4 + - 1.2
11710	8425 8430	<25.2	0.7 + - 0.2	3.2 +/- 0.4

.

.

κ.

0.40070

TABLE 3-3

DOWNHOLE GAMMA LOGGING RESULTS

FOR THE HUNTER DOUGLAS PROPERTY

Page 1 of 7

<u>Coordinates</u>		Depth (a)	Counts	
East	North	(ft)	per Minute	
11330	8065	0.5	23.000	
11330	8065	1.0	19,000	
11330	8065	1.5	19,000	
11330	8065	2.0	18,000	
11330	8065	2.5	19,000	
11330	8065	3.0	19.000	
11330	8065	3.5	19,000	
11330	8065	4.0	18,000	
11350	8075	0.5	10,000	
11350	8075	1.0	10,000	
11350	8075	1.5	12,000	
11350	8075	2.0	13,000	
11350	8075	2.5	14,000	
11350	8075	3.0	14,000	
11350	8075	3.5	13,000	
11350	8075	4.0	13,000	
11350	8075	4.5	12,000	
11350	8075	5.0	12,000	
11350	8075	5.5	12,000	
11350	8075	6.0	12,000	
11398	8205	0.5	8,000	
11398	8205	1.0	12,000	
11398	8205	1.5	15,000	
11398	8205	2.0	18,000	
11398	8205	2.5	18,000	
11398	8205	3.0	20,000	
11398	8205	3.5	19,000	
11398	8205	4.0	17,000	
11398	8205	4.5	15,000	
11398	8205	5.0	11,000	
11398	8205	5.5	10,000	
11398	8205	6.0	10,000	
11398	8205	6.5	10,000	
11398	8205	7.0	10,000	
11398	8205	7.5	10,000	
11398	8205	8.0	11,000	
11398	8205	8.5	11,000	
11400	8000	0.5	9,000	
11400	8000	1.0	8,000	
11400	8000	1.5	8,000	

- -

TABLE 3-3 (continued)

Page 2 of 7

1

Coordinates		Depth (a	a) Counts
East	North	(ft)	per Minute
11400	8000	2 0	10 000
11400	8000	2.0	12,000
11400	8000	2.5	12,000
11400	8000	3.0	12,000
11400	8000	4 0	12 000
11400	8000	4.0	12,000
11400	8000	5.0	12 000
11400	8000	55	12,000
11400	8000	5.0	12,000
11400	8000	6.0	12,000
11400	8000	7 0	12,000
11400	8000	7 5	12,000
11400	8000	7.0 8 n	12,000
11400	8000	85	11,000
11400	8000	0.0	11,000
11400	8000	9.0	10,000
11400	8000	3.0	10,000
11400	8000	10.0	10,000
11400	8000	10.5	11,000
11400	8000	11.0	11,000
11400	8000	11.5	11,000
11400	8000	12.0	10 000
11400	8000	12.0	10,000
11400	8000	43.0	10,000
11400	8300	0.5	7,000
11400	8300	1.0	11,000
11400	8300	1.5	15, 0 00
11400	8300	2.0	15,000
11400	8300	2.5	14,000
11400	8300	3.0	13,000
11400	8300	3.5	12,000
11400	8300	4.0	12,000
11400	8300	4.5	11,000
11400	8300	5.0	11,000
11400	8300	5.5	10,000
11400	8300	6.0	10,000
11400	8300	6.5	10,000
11400	8300	7.0	11,000
11400	8300	7.5	11,000
11400	8300	8.0	10,000
11400	8300	8.5	11,000
11400	8300	9.0	11,000
11400	8300	9.5	11,000

TABLE 3-3(continued)

Page 3 of 7

Coordi	inates	Depth	(a) Counts
East	North	(ft)	per Minute
			<u></u>
11400	8300	10.0	10,000
11400	8300	10.5	10,000
11400	8300	11.0	9,000
11400	8300	11.5	10,000
11400	8300	12.0	9,000
11400	8300	12.5	9,000
11400	8300	13.0	10,000
11400	8300	13.5	9,000
11500	8395	0.5	9,000
11500	8395	1.0	15,000
11500	8395	1.5	19,000
11500	8395	2.0	19,000
11500	8395	2.5	18,000
11500	8395	3.0	16,000
11500	8395	3.5	14,000
11500	8395	4.0	12,000
11500	8395	4.5	10,000
11500	8395	5.0	9,000
11500	8395	5.5	9,000
11500	8395	6.0	9,000
11500	8395	6.5	9,000
11500	8395	7.0	9,000
11500	8395	7.5	9,000
11500	8395	8.0	10,000
11500	8395	8.5	10,000
11500	8395	9.0	11,000
11500	8395	9.5	11,000
11500	8395	10.0	10,000
11500	8395	10.5	10,000
11500	8395	11.0	11,000
11500	8395	11.5	11,000
11600	8300	0.5	10,000
11600	8300	1.0	11,000
11600	8300	1.5	13,000
11600	8300	2.0	16,000
11600	8300	2.5	16,000
11600	8300	3.0	17,000
11600	8300	3.5	18,000
11600	8300	4.0	17,000
11600	8300	4.5	14,000
11600	8300	5.0	13,000

19

- ----

TABLE 3-3

(continued)

Pa	ge	4	of	7

Coordin	nates	Depth (a)	Counts
East	North	(ft)	per Minute
11600	8300	5 5	13.000
11600	8300	6.0	14,000
11600	8300	6.5	12,000
11600	8300	7.0	12,000
11600	8300	7.5	12,000
11600	8300	8.0	11,000
11600	8300	8.5	12,000
11600	8300	9.0	11,000
11600	8300	9.5	11,000
11600	8390	0.5	8,000
11600	8390	1.0	6,000
11600	8390	1.5	9,000
11600	8390	2.0	13,000
11600	8390	2.5	16,000
11600	8390	3.0	16,000
11600	8390	3.5	16,000
11600	8390	4.0	13,000
11600	8390	4.5	11,000
11600	8390	5.0	10,000
11600	8390	5.5	10,000
11600	8390	5.U	9,000
11600	8390	5.5	9,000
11600	8390	7.0	9,000
11600	8390	7.5	9,000
11600	8390	8.0	9,000
11600	8390	8.0	10,000
11600	8380 8380	9.0	10,000
11600	0330	3.0	9,000
11600	8380	10.0	9,000
11600	8390	11.0	9,000
11600	8390	11.5	9,000
11600	8390	12.0	10,000
11600	8390	12.5	10,000
11600	8390	13.0	10,000
11608	7940	0.5	11,000
11608	7940	1.0	13,000
11608	7940	1.5	13,000
11608	7940	2.0	12,000
11608	7940	2.5	12,000
11608	7940	3.0	13,000

20

-

TABLE 3-3

(continued)

Page 5 of 7

-

Coordi	nates	Depth	(a) Counts					
East	North	(ft)	per Minute					
11608	7940	3 5	13 000					
11608	7940	4 0	12,000					
11608	7940	4.0	12,000					
11608	7940	5.0	12,000					
11608	7940	5.5	12,000					
11608	7940	6.0	12,000					
11608	7940	6.5	12,000					
11608	7940	7.0	11,000					
11608	7940	7.5	10,000					
11608	7940	8.0	10.000					
11608	7940	8.5	9.000					
11608	7940	9.0	10,000					
11608	7940	9.5	10,000					
11608	7940	10.0	11.000					
11608	7940	10.5	12,000					
11608	7940	11.0	13,000					
11608	7940	11.5	11,000					
11608	7940	12.0	11,000					
11608	7940	12.5	11,000					
11608	7940	13.0	10,000					
11608	7940	13.5	11,000					
11608	7940	14.0	11,000					
11608	7940	14.5	11,000					
11608	7940	15.0	11,000					
11700	7900	0.5	6,000					
11700	7900	1.0	9,000					
11700	7900	1.5	12,000					
11700	7900	2.0	12,000					
11700	7900	2.5	12,000					
11700	7900	3.0	12,000					
11700	7900	3.5	11,000					
11700	7900	4.0	10,000					
11700	7900	4.5	10,000					
11700	7900	5.0	8,000					
11700	7900	5.5	20,000					
11700	7900	6.0	10,000					
11700	7900	5.5	11,000					
11700	7900	7.0	10,000					
11700	7900	7.5	11,000					
11700	8300	0.5	5,000					
11700	8300	1.0	8.000					

TABLE 3-3 (continued)

Page 6 of 7

Coordi	nates	Depth (a)	Counts
East	North	(ft)	per Minute
•			
11700	8300	1.5	11.000
11700	8300	2.0	12.000
11700	8300	2.5	14,000
11700	8300	3.0	14,000
11700	8300	3.5	11.000
11700	8300	4.0	11.000
11700	8300	4.5	10,000
11700	8300	5.0	10,000
11700	8300	5.5	10,000
11500	8200	0 5	F 000
11700	8390	0.5	7,000
11700	8390	1.0	9,000
11700	8390	1.5	11,000
11700	8390	2.0	13,000
11700	8390	2.5	13,000
11700	8390	3.0	13,000
11700	8390	3.5	13,000
11700	8390	4.0	13,000
11700	8390	4.5	11,000
11700	8390	5.0	11,000
11700	8390	5.5	11,000
11700	8390	6.0	11,000
11700	8390	6.5	11,000
11700	8390	7.0	12,000
11700	8390	7.5	11,000
11700	8390	8.0	11,000
11700	8390	8.5	11,000
11700	8390	9.0	11,000
11700	8390	9.5	11,000
11705	8303	0.5	9,000
11705	8303	1.0	11.000
11705	8303	1.5	12.000
11705	8303	2.0	13.000
11705	8303	2.5	15,000
11705	8303	3.0	12.000
11705	8303	3.5	12,000
11705	8303	4.0	11.000
11705	8303	4.5	11,000
11705	8303	5.0	11,000
11705	8303	5.5	11,000
11705	8303	6.0	12,000
11705	8303	6.5	11,000
		-	······································

TABLE 3-3 (continued)

Page 7 of 7

Coordi	nates	Depth	(a) Counts
East	North	(ft)	per Minute
11705	8303	7.0	11,000
11715	8005	0.5	7,000
11715	800 5	1.0	11,000
11715	8005	1.5	12,000
11715	8005	2.0	12,000
11715	8005	2.5	11,000
11715	8005	3.0	12,000
11715	8005	3.5	13,000
11715	8005	4.0	12,000
11715	8005	4.5	12,000
11715	8005	5.0	12,000
11715	8005	5.5	12,000
11715	80 05	6.0	11,000
11715	8005	6.5	10,000
11715	8005	7.0	11,000
11715	8005	7.5	12,000
11715	8005	8.0	12,000
11715	8005	8.5	11,000
11715	8005	9.0	10,000
11715	8005	9.5	11,000
11720	8210	0.5	7,000
11720	8210	1.0	10,000
11720	8210	1.5	12,000
11720	8210	2.0	17,000
11720	8210	2.5	15,000
11720	8210	3.0	15,000
11720	8210	3.5	15,000
11720	8210	4.0	14,000
11720	8210	4.5	14,000
11720	8210	5.0	13,000

(a) The variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

- -

4.0 CHEMICAL CHARACTERIZATION

Limited chemical characterization of the Hunter Douglas property was performed to determine whether hazardous waste is mixed with the radioactive waste and to provide the information needed to design an employee health protection program appropriate to the nature of the materials encountered during future remedial action activities. To identify hazardous chemicals on-site, a soil sample was collected from one borehole [Coordinates N8303, Ell705 (Figure 3-1)] by continuous split-spoon methodology, i.e., driving a split-spoon sampler in advance of the auger at one drillhole location. The spoon had a 1.4-in. inside diameter and was 2 ft long. Before the sample was taken, the samplers were decontaminated pursuant to EPA methods using methylene chloride, acetone, and steam washes. Split-spoon samplers were driven in 2-ft increments.

Since the purpose of this investigation was to perform a limited chemical characterization, the sample was composited to a maximum drillhole depth of 16 ft. A sample for VOA was placed on ice in the field to minimize volatilization of chemicals in the sample during compositing. The sample was analyzed for VOA, BNAE, priority pollutant metals, pesticides and PCBs, and EPA-specified hazardous waste characteristics [i.e., extraction procedure (EP) toxicity, corrosivity, reactivity, and ignitability]. These parameters were selected to provide a representative cross section of the hazardous constituents listed in the RCRA [40 CFR 261, Appendix VIII (Ref. 6)]. This characterization was planned and implemented in accordance with methods described by the EPA (Ref. 7). The sampling plan was reviewed by the EPA.

VOA indicated that no volatile organics were present in the sample. Only a general evaluation of the data can be given as the holding time for the VOA was exceeded by the laboratory.

The sample showed the presence of BNAE (semi-volatile) organics. All of the semi-volatiles identified had concentrations below the

laboratory's specified detection limit. According to the EPA Contractor Laboratory Program statement of work for organic analyses (May 1984), only analytical results greater than or equal to the laboratory's specified detection limit are required to be reported.

040070

The following semi-volatiles were identified in the sample taken from the borehole adjacent to the Hunter Douglas building: naphthalene, 80 ppb; 2-methylnaphthalene, 88 ppb; and bis (2-ethylhexyl) phthalate, 30 ppb. Naphthalene and bis (2-ethylhexyl) phthalate are listed as hazardous constituents under the New Jersey Administrative Code.

Bis (2-ethylhexyl) phthalate was identified in the sample. This substance, a component of most plastic materials used in laboratory operations, is a common laboratory contaminant.

The sample was analyzed for priority pollutant pesticides and PCBs. No PCBs or pesticides were found in the sample.

The sample was analyzed for priority pollutant metals. These analysis results were compared to the range of concentrations present in soil samples typical of background soil concentration ranges for the specified priority pollutant metal.

The maximum concentration observed for each priority pollutant metal was compared with the EP toxicity concentration for that metal. All of the EP toxicity concentrations were below the criteria level (40 CFR 261.24) (Ref. 8). This may be an indication that these metals are not readily leachable from the soil or are not present in concentrations high enough to produce leachate that exceeds the EPA criteria for hazardous waste according to EP toxicity characteristics. Trace levels of the metal barium were well below the maximum concentration specified under 40 CFR 261.24 (Ref. 8).

The sample was also analyzed for EP toxicity pesticides and as mentioned for the hazardous waste characteristics of corrosivity,

reactivity, and ignitability. The EP toxicity analysis results indicated that no detectable quantities of pesticides were present. In addition, the sample exhibited no corrosivity, reactivity, or ignitability hazardous waste characteristics.

045373

Complete results of the chemical characterization are on file with DOE (Ref. 9).

REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly Utilized</u> <u>Sites Remedial Action Program</u>, ORO-777, Oak Ridge, TN, September 1980 (as modified by DOE in October 1983).
- NUS Corporation, <u>Radiological Study of Maywood Chemical</u>, Maywood, <u>New Jersey</u>, R-584-11-83-1, November 1983.
- Morton, Henry W., <u>Natural Thorium in Maywood, New Jersey</u>, Nuclear Safety Associates, Inc., Potomac, MD, September 29, 1982.
- 4. U.S. Department of Energy. "U.S. Department of Energy Guidelines for Residual Radioactivity at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites," Rev. 1, July 1985.
- Trip Report, C. P. Leichtweis, Bechtel National, Inc., to File.
 "Calibration and Functional Checks of Eberline Instrumentation," CCN 35677, March 25, 1986.
- U.S. Code of Federal Regulations. 40 CFR 261, Appendix VIII, "Hazardous Constituents," Washington, DC, July 1986.
- U.S. Environmental Protection Agency. <u>Test Methods for</u> <u>Evaluating Solid Waste, Physical/Chemical Methods</u>, SW-846, 2nd edition, Washington, DC, 1982.
- U.S. Code of Federal Regulations. 40 CFR 261.24,
 "Characteristic of EP Toxicity," Washington, DC, July 1986.
- 9. Memorandum, C.P. Leichtweis, Bechtel National, Inc., to T.M. Dravecky, Bechtel National, Inc. "Sears and Vicinity Property Characterization Results (Chemical Data)," CCN 042662, January 16, 1987.

APPENDIX A

1

GEOLOGIC DRILL LOGS FOR THE

MAYWOOD INTERIM STORAGE SITE - HUNTER DOUGLAS

																			lum a m
	C	EOL	OGIC	DRI		.0G		FR.8C	r		FUS	RAP			14501	-138		F 1	NISS-112R
ALE .	MAY	U COC	ITERIM S	TORAG	E SITE-		CONTRACT	.			N	1005,E1	1715				90 ⁰		N/A
11	/86	5.	n.end /18/86		n Envir	NORE TI	RENCH N. SERVI	œs		NOB	ARD ILE	8-33		S	6. 0	د ري ا			10.0
ØÆ	iccovi N	78 /A	n		NOIES VA	SAUPLI N/A	S 8. 10	p er ca N/A	5808	CRO	47.	1'	EPTH/E	5.0'/	њя 41.1 ⁴			6. 0' /	/41.1
-	E MM	60 16 //			CASI	E LIFT	N/A	. 1.96 7	1	•••••			h	P	. YEN				
	The MUS	RUCONCHI CONCHI	L R PIL	. P	BATER RESSURE TESTS		ELEVA TH	Ē	8				DESCRIPT		BFEATIN *				NE ON For Levels, No Retain, Nature Se
				불표권		Ĭz	47.1	0		8									L.M. ETC.
THROUGHOUT.							46.1 45.1	L0 2.0				0.0-L0: 10-2.0: 57R2/2 2.0-6.0 SLTY, S NON-PL 2.0-4.0	ASPHAL SET 6 SAND SAND LIGHTLY ASTIC, M PALE	TE GRAYISH LE DUSKY T 1. SLIGHTLY CSC-SME FW PLASTIC XST. YELLOWISH	BLACK OZ BROWN CLAYEY, DI E-GRAINED, 10 BROWN	κ		SITE CI RADIOA CONTAL EBERLI ANALYT CORPORT	IECCED FOR CTIVE INATION BY IECAL RATION
5- AUGEN							41.1	5 64				001766/ 4.0-6.0 CLAYEY 6.D-10.0 (10R3/4 FINE-GF	2), (; GREEN), SOFT (AINED, 1)	ISH GRAY (TONE DARK TO MODER/ SILTY, WEAT	SGY6/18, REDDISH B NTELY HARD HERED, SAT	ROWN	D.		6/20/86. Tical Ration Baed Gamma
	Į						37.1	1										LÖCCI	6.
									**** **** *****************************			HOLE B GROUT,	Gr HU ACTFELL 6/20/18			ONITE		•DESCI CLASS VISIAL EXAMO CUTTIP	REPTION AND FICATION OF GSS.
Γ	22 4	SPLIT CENER	57000 ST-		R . Mi t		STTE.	MA	YNOOL	D IN HL	ITE	rin sto R doug	RAGE S	ITE-					N155-112R
Sec.	-										_	-							

A-1

La construction de la constructi

furcesso

1

لم بعد الم

· · · · ·

i L .

	G	EOL	.OGIC	D	RIL	LL	00		1	A.C.T		F	FUS	RAP				14501	-138		nc. Fi	NDLE NAL NISS-113R
SITE	AYNO	OD I HL	NTERIN NTER DO	STO NG	RACE	SITE	-	COM	EDEMATES.	<u> </u>			N	1210,E1	1720				MILLE	FILM H	DRE.	N/A
		000	ALTED	ľ			NORET	REN			WELL 1			8-33		HRLE SHE 5"	-	5. C	eta r	NOCK (гт.) 0.9'	TOTAL OUPTH 5. 0'
CLINE.	ECON		/10/00		CIPE I	A A	Saul L	ES SL_TOP OF CAUSE OROUND EL. NEPTINEL STOLAD SATER NEPTINE N/A 43.2' 3.0'/40.2' 3.0'/40.2'										FEL. THP OF NICK N/A				
5.0071	E MAN		MAT /TALL	#-		CAS	E LEFT	97 20	N/A	BCN					Th:		P.YE	N		_	-	
EE		- ARM		Γ	1	ATUR Estable Estable							Ţ	.								es on The levels,
	DATEN CO		Linut Linut		- 4		¥=	E.				2			DESCRIPTI	in and cli	sift.	A THEN ¥			CIN Dia	NACTER OF LLAR, ETC.
	ᅰ크	2 71				an c	m ř		3.2				╉	0.0-L5'	ASPHAL	AND C	15 /E	D ROCK	;			
FILLING									11.7	LS .			ŀ	15-5.0" BROWN HON-PL	SAND C (IORS/ O ASTIC, N	SC-SLD DA	NED SATU	EDDESH SLITY, VATEDA			<u>ک</u> د	/20/36.
Ē								,		5	训											
														HOLE B GROUT,	GF HO	D WITH C		T-BENT	ONITE		AUGER S.O. FT SEVER INS SEVER SADION CONTA ANALY CONTO EBERL CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL ANALY CONTO EBERL CONTO EBERL CONTO	REFLISAL AT POSSIBLE PPE AT LEVATION HECKED FOR CTIVE MINATION BY ME RATION REFLATION REFLATION BY MATION OF MSS.
			<u> </u>]					176-					HILE	<u> </u>
	25 P		SPOON ST	SIE) Elt	LIN TL DHOTTLE	86. R				MAY	1000	IN HU	TE	R DOUG	las							NISS-113R

|--|

Land Frence

1

Ĺ

(_____

.

.

	G	EOL	.OGIC)RI	LI	JO .		•			FL	ISRAP			1	4501-	138	SHEET J (nn. Fi	HELE HEL HISS-114R
SIE	AYYO	00 J HL	NTERIN INTER D	ST	ORAG	E SIT	E-		CONTES			1	8300, E	11700			ľ	NIBLE	FILDEL H 90 ⁴		BEANDIG N/A
6/11	/16	6	ALTE				NORET	REN	HERVIC	εs	NL WHE WE HOBILI		6 2006. E 8-33		HELT SEE 5"	OVENILANDI #73		ι	NOCK C	71) 1. 9 1	TUTAL DEPTH 5. 0"
COPE	RECON	XIVET. /A	/3		CORE N	nones /A	SAUFLI NVI	2	E. TAP OF CASHE SHOWE D. HEPTH/E. CHOUND SATER SEPTE/E										1.0',	MCX (40.4'	
	ana 1 N			,	L	643				.96TH			LIND	Wi Wi	P	.YEM			L.,,		
		s.		Τ						Τ		Π	<u> </u>								
	NOV 1	NOT I			T	TESTS.		ar	VA THEM	E	1 H	ž		DESCRIPTI	en and class	efica the	N •				
ļį	35			5	-3	E	¥=5	4	4.4	0	8									18.	LINE, ETC.
.15				╏				4	3.4		8001		0.0-1.0	ASPHA	I; GRAYISH	BLACK	023.				
NOUGH													BROWN NON-PL	NOR3/41 ASTIC, M	FINE-GRAM	ED, SIL TURATI	ÎŶ. ED.				/20/86
ER TH									0.4	4.0			/10-50 GY5/2		ONE LIGHT	OL NE	GRAY	HE -	-		
9 Y G				╀					9.4	5			BOTTO	A SIL II, A OF HO	LE AT 5.0	FT.				AUCER S.O. FT.	EFUSAL AT
													GROUT,	6/20/8				01C		SITE CH	ECKED FOR
																				CONTAN EBERLIN	NATION BY
																				CORPOR	ÁTIÓN.
								l												ANAL YI	ČAL Ation
											1									LOGGINE	
																			•	GASOL GROUND THE EX	E ABOVE Exceeding Plosme
																				POSSE ABANDX STATIO REPORT PERSON	l site of Ned fuel 1, As Ed by 5, From
											1									ADJACE	an L
																				OESC CLASS VISUAL DXAME	PTION AND Fication by Ation of SS
											1									r F	
											1										
											1										
											1										
							1	ĺ			1										
┝─		l Pur s	l Notas ST-1		er 14		1 1	l Mit	. <u> </u>	MAYN	1 X00 Ji	NTER	IN STOP	AGE SI	TE-					HALL HA	
1	9-01			h 🕈	-						HL	NTE	r Dougl	AS						L	H122-114K

A-3

- -...

B

لمبرجد

L

Ľ

L

Γ	G	EOL	OGIC	DRI	LL	.0C		FRO		FI	ISRAP			14501	-138	J (₩A. XF 1	HOLE HR. HISS-115R
SITE	AYWO	OD I H	NTERIN NTER DO	STORAG	E SIT	E-	COMMENTE	\$	•	1	18395, E1	1500			ANNEL	FINCINE H	CH2.	N/A
96/11	/36	5	ALTINO /18/86			HORET	RENCH AL SERVI	ŒS	NILL M		e min. E 8-33		100.2 SEE 5°	OVERBLAREN B. O	673 1		ru 3.5'	TETAL BEPTS 11.5
CARE	NCC N	X161.	1		annes /A	SAUFLI N/A	5 E. T#	N/A 44.8' SPINE MAN ATER SPIN										7 NACK /36.81
-	E MAR		MIT / AL		240	5 UPT	N/A	AIDETH	I		LONG I	n.	!	YEN		.		
		r.	ad ha						Τ		1							
E	Cont.				TESTS		ELEVATION	Ē		Ĭ		NESCHPT	an and clai					NR LEVELS.
39				B Z		2=5	44.8		8									LING. ETC.
E							43.8	10	1		0.0-10	ASPHA	T; GRAYISH	BLACK NZ	•			
DED0								Γ.			SETY PLASTX	UNET A	STIC TO SU	LIGHTLY ATED.	_		∇	/20/86.
										• • •	10-50 50-60	I DAFK F 1: GREEN	EDDISH BR Ish gray (Sh gray)	0001 00R3/4 566/8. 000977/40.			SITE CI	ECKED FOR
AUG								5		•	•••••						CONTA	ANATION BY
5										; ;							CORPOR	ATEN.
							36.8	8.0			E.O-L.5' BROWN	SANDS DORA/S	ICEL NOOL	RATE REDU	SH		EBERLI ANALY CORPO	E TEAL UATTEN
								10			SETY, I Satura	EATHER TED.	ED, NON-PL	ASTIC,			PERFOR	GALMAA
L	ļ					<u> </u>	33.3	11.5		2	BOTTON	F OF HO	LE AT LS	FI.			OESO CLASS VISUU	FICATION BY -
]		HOLE B	ACKFILL 6/20/1	ed with ce A	MENT-BENT	WITE			ATION OF ES.
									3									
]									
									4									
									1									
									1									
									1									
									1									
									4	1								
																	:	
									1									
									1									
							1		1									
									1									
							1		1									
F	35.r		PODIA STIT	MELIT R			ÚNE .	MAY		INTE	RIN STOP	ANDE SI	ITE-					NESS-115R

Di	
	•

Ļ

L

N/A TUTAL BEPTS 15.0' P OF BECK .0'/34.6'
Terral BOPTS 15.0" P of Mack .0"/34.6"
• of Mac. . 0' /34. 6'
• ₩ / 47+ ₩
NUTTER CON INTER LEVELS, INTER RETURN, CONNECTER OF
MALING, ETC.
- 6/20/86.
CHECKED FOR IDACTIVE TAMBATION BY RENE LYTEAL PORATION. RUNE LYTEAL PORATEN FORMED CANDA GON:
ESCHETTON AND ASSETCATION BY SUM AND TON OF ATTINES
I MA. HISS-116R

1

1

ĺ

L

L

L

1 1-----

		GE	OL	OGI		DRIL	L L	0G		1			FU	SRAP				01-138	100 1	110. XF 1	HELE HA. HISS-117R
SITE		DAG	MAT	1000	IN	ERIN		s	COM	TES			N	8390,E1	1700			ANNE	Filoni H 90 ⁴		N/A
	a ree						NORE T	RENCH	ENV.	. SERV		L MA	E AN Bili	E B-33	<u>.</u>	198.1 SHE 6*	0100.00	in 973 - 0°	NOCK (гы 1.5'	7814. BEPTH 9.5'
	S/ OI			70			MINES.	S.MPL	8	0 T#P (er cuen		45	д. .2'	1577N/1	3.5'/	1100 141. T		an ir	19 THP (801	/37.2 ⁴
5.000			A 57. 46		il.			E UDT		E DAA					<u> </u> R	P	. YEN		J		
	1								<u> </u>				Π	L		<u></u>					
Ĕ						M 	TESTA				Ē		ž		SESCRET	1011 AND CLAS	' Infication	•			
						}=₹	न	¥=				5	3								LINK, ETC.
Ľ		9	1 °					30 7		5.2 4.7	0			0.0-0.5	ASPNA	LT, GRAYISI	1				
	5								'	- 1 . I		· · · · • · · ·		DEACKO	21. : SAND	isc-sia fi	E-GRANE	D,			
														SETY, N 0.5-3.0	ON-PLA DUSKY	STIC, NOIST. RED (SYRC	/0.			V	6/20/86
ļ														30-40	: GRATE	sh khoma (Ish gray (51163/21. 56116/8,			SIL	CHECKED FOR
											5			(4-5),M	T ULAT DIST.	£1.				CONT	ANNATION AND CANANA LOCATI
																				BY E	BERLINE
									1 :	57.2	8.0			80-9.5	T SANCE	STOLE, DUS	TA SE TY			CORP	ORATION
F		_							╀╌	<u>35.7</u>	95 -		2	WEATHE	RED, S	TURATED.	FT.			AUGE	REFLISAL AT
							ł					1		HOLE B	ACKFEL	ED WITH CE	NENT-BE	NTONTE			1.
															W 207 1						
]								1	
											15 -	1									
												4									
						3					· ·]									
												1									
											20	4									
												1									
												1									
											-	4									
				1		1]		i -							
							ĺ					1	ł								
												3									
								ł			30	-									
									ł			1									
												4								QA	SSECATION BY
]								EXA	INATION.
ŀ											<u> </u>		1	ERIM ST	ORAGE	SITE-				INU	10.
		5		9700H	514 1106	101101 10 0-01							H.N	ER DOLK	LAS						NJ55-1178

ļ

Ļ

L

L

1

									_									-		lune r
	G	EOL	.OGIC	D	RIL	LL	.0G	I.e.	[FUSR	NP		1450	1-138			NISS-118R
JUL		NATI	idod sto Huieter	DQL	ge s Kalas	ITE-		COMMO	ATE			HB3	00	E116	00			90		N/A
6-1	3-86	6	-19-06			n Envir	HORE!	RENCH TAL SE	RVI	ES	ul wi	ee an Dorl	E B-33		HOLE SHE	5. 0°	ст ч	4.	6 6	9.0
COME	ACCONE		/28			DONES.	SHIPL N/A	13 1	. 16 1 1	er cula VA	•) 8. 4. 0'	HEP'TH/	2. 9049 94 3. 0/	1750 (41.9*		HEPTIN	1. THP 0 5. 0	/ MCK /33. 8'
-			MARAL				E UPT	1 11 11 11 11		DET:				1 Wh			, YEI	l <u> </u>		
	tel a	N	/A	Г	1					T	[TT	1			,				
ĔĘ	NAME OF	CONC.			1 1 1	TESTS.	r	BEM		Ē	3	Z		NEXCUP!	ntan Anih Slad					NUR LEVELS, FUR NETHIN,
32				3	-2		¥=5					₽								ANCTER OF LUBB, ETC.
	215	310		ſ		<u>E.</u>		44	.0	<u> </u>		┟╴┨	0-1.0'	: ASPH	ALT GRAYI	SH BLACK	()(2).		·	
			ļ					43.	0	1.0	·•		1.0-3.	0': 08	ISHED ROC	K NEDIUN	DARK		_	
1 St								41.	. 0	3.0			GRAY (14).	NO DESTY	RED (58)	3/4).		¥	6-20-86
B											i : :		FINE-G	RAINEL), SILTY,	NON-PLAS	FIC,		SITE (NECKED FOR
C H J								39	.0	5-			5.0-9.	0' : <u>SA</u>	OSTONE P	ALE YELLO	WISH		TANIN. EBERL	ATION BY INE ANALY-
3	1						1					an a	HARD,	FINE-	GRAINED,	SILTY, WE	ATHER	ED,	TICAL	CORPORATION.
ľ								35	. 0	9.0		MAN	NDIST	70 SA	TURATED.					
			1	t								Π	BOTTO	I OF H	DLE AT 9. WITH CEME	Q'FT. NT-BENTON	ITE		EBERL TICAL	INE ANALY-
											1		GROUT	6-20-	86				PERFO	RNED GANNA
																			£ U9 61	NU 1
											1									
			1								1							!		
											1									
										·	4									
I]									
											1									
											Ξ									
											3									
											1									
I											4									
								1			1									
			I								1									
			1				1				1		1						DESC	RIPTION AND SIFICATION B
								ł			1								VISU TIO	AL EXAMINA-
											1									
	 55 7		99000 57-	-06	1. IV T			SITE				KAYN I	dod sto	RAGE S	ITE- S					MISS-114R

A-7

- -

fund for the second

Ļ

_____]

L

	G	EOI	.06	IC	DRIL	LL	.0G		PREASET		FU	SRAP			14501	-138	1 0	n. F 1	HILE IN. MISS-119R
SIL	MAYN	DOD I HL	NTER	in s Dou	TORAG	E SIT	-	COOPENAT	8		Ņ	1205,E1	1396			NIELE	FIICAL HD	42 .	N/A
	1 1	-	A.E.W				NORET	RENCH		iiill 10 M		E 8-33		1811 SE	6.0	е тэ 1	NDCL F	ນ 1.91	TETAL SEPTE
	NECON		/19/			MARES /A		3 D. T	P OF COS	•	4	E	BEPTH/S	6.0'	1750 (39.6'			6. 0' /	7 MICX /39.6'
5.00	LE IMB		11		.	CAR		N NOLL DO N/A	ADETH	4			W1:	P	. YEN				
LE T	A RUAR	LAND A		REDOVERY	H	TESTS	J.E	ELINAN	. 2	ALME LES	Flows		BESCRIPT		isfication •				RES COM THE LEVELS, THE RETAINS, MACTER OF LUNK, ETC.
32	313	31 ⁸	X I		5-5			45.6	0			0000						डाह ठ	120 431 1 ()
THROUGHOUT								4:1	55				E CHILSHE SAND (FILE - G ASTIC	II ROCK I	EDUM GRAY Sky red Ty;	<u>*</u>		RADIOA CONTAL HOLE G BY EBE ANALYI CORPOR	CTIVE INATION AND AMMA LOGGED FILME TICAL RATION.
6" AUGER								40.6 39.6	5 6.0			SO-GL AND LI WITH R SO-HO. BROWN	Y: PEAT: GHT OLM 00TS- D': SAND 00YRS/ ENT-CRA	DLISKY BIN VE GRAY C STORE: PAL 20, SOFT T NED, SILTY	MAN SYRZ/ 15/23 CLAY	B EY; IY		Ţ	5/20/ 85
								35.6	10		1. DUCK	MOIST	TO SATI	RATED.					
										***************************************		HOLE GROUT	M OF H	ED WITH C	F FI.	CINITE			SUPPTION AND SUFFEATION BY
F		L-SPLA	SPOCE	6 ST=5 MICHE	HELINY 1				MAT	1000	INT	ERIN ST Er doug	ORAGE S LAS	SITE-					#155-119R

L

- Almerica

-

-

L'étérenene

	G	EOL	OGIC	DF	ali		OC			NA. SET		F	LSRAP			14501	-138	Decert 1 C	F 1	NILE NO. NISS-120R
Sett 1	AYNO	ICD 1	NTERIN NTER DO	STOR	AÆ	SITE	-						10075,E1	1350			MILLE	FROM 10 90*	.	N/A
6/15	/16	6	/15/86			DRET	RENCH	ENN.	. sem	r.	illi se	08 N	10 4166. E 8-33		HELL SHE	ONCERLINE 0.7	етэ 5'	MCCX 0	יני 125'	TOTAL BEPTH
CARE	NECOVE N		73	-		NES L	SAPL	3	EL. TOP	er cubi VA		1004	• B. 5. 0'	BEPTM	NABLE TO	TER De termin	E	1	8.75"	NOCE (44. 25'
S.M.F.	E NM					CAS	E UST	1 1 1 1 1 1		DEN				We	P.	YEN		.		
	25		at ha									Π								
E	A NWA	Notes a			n T			an		Ē	J J	Ĭ		DESCRP1	-	efter nen 🔹				R LINES, RETAIN, NOTE: N
łį	Lead I			<u>s</u> x	3		X=	4	5.0		8									
5								44	.25	.75	0:10		0.0-0.7	S'E ASPH	ALT; GRATS	HULACK			SITE CH	ECKED FOR
											1		0.75-7.4 GR3/40	5 <u>5 AND</u> 501 1	STORE DUS	ky red Tely hard;			CONTAN HOLE G	NATION AND Anna Logged
₹ 53											1		FINE-GR	APED; S	al i ti MDIS I.	•			ANALYT	ATION.
N -3										5	1								GROUNE	WATER MEASURED ON
								3	18.0	7.0			007704	AC 110	(F AT 7 A	ET			6/20/1	<u><u> </u></u>
										'	1		BUTION	ur nu	LE AL IJV	r 1.				
	İ										1		HOLE B	ACKFEL 6/20/1	ed with Cei K.	NENT-BENTI	INTE			
										•	7							:		
											1									
											E									
											1									
											-									
					ł						1									
				1															ļ	
											1									
											1									
											1									
											1									
											1									
							1				1								• DES CLASS	FICATION BY
																		•	VISUAL EXAM	ATON OF
						<u> </u>	<u> </u>						RIN STO	RAGE S	ITE-					
	×										Н	UNTE	R DOUGL	AS _		··			<u> </u>	NISS-128R

- -...

Province of the second

. .

	G	EOL	OGIC	DR	ULL	. L	.OC		171	R.SCT		FL	ISRAP			1450	1-138		¥6. ¥ 1	NISS-121R
97 1	AYNO	00 11 HLI	NTERIN NTER DO	STOR	MÆ S	SITE	-	COM	NW TES			1	17300,E	11700			AMALE	Film H 90*		N/A
5/19	/166	6	ALTER /15/85			ORET	RENCH	ENV.	SER	/.	ill. Wi		E 8-33		HOLE SHE	OVERLINE 7.	: #Т.2 1	NOCK 6	ты 1.01	TETAL HEPTH B. O'
	NECONE N		1	-	PE M		SANFU N/J	8	al tap (er cuen VA	•	4) R. j. 4'	SEP IN/	8.0'	(158. 4'		SEPTE/	9. THE O	7 MCR /39.4'
Saur.	Lines					CAR	L UDT			DETH				in .	P	YEN		<u>-</u>	· · · ·	
	75	Ĕ.	at has									Π	4,		<u></u>					
	T ADV.	100		┣	37				. 110 E	Ē	1 H	Ē		BESCHP1	nin and clai	ISIFICATION +			961) 1963 Cite	GR LEVELS. SR HETLER. NACTER OF
19				g=	3	2	¥=5	4	5.4	0	8								-	LIR. EXC.
										0.5			00-0	5' <u>1'5'1'</u> 15'1 <u>'URUS</u>	HED ROCK	EDUN GR	2). Ay		SITE CI	ECKED FOR
noion													0.75-5	0': <u>5</u> 40	(SC-SN); A	ICCERATE LY SIRVER			HOLE G	ANNA LOGCED
CHERCE													(SYR2/	2); FINE-	GRANED: SI	LTY			ANALYI CORPOR	ICAL ATION
AUCER										5 -			5.0-7. 00Y6/	ZA CLAYE	Y; SANDY 1	olive NTH 50%				
2								3	9.4	7.0	Щ			E. Vi <u>sand</u> n. kort.	SIGNE DUS	(Y RED				
	\vdash				+			<u> </u>	0. 7				BOTT	erede no I de ho	ST. LE AT 80		<u></u>		Ť	5/20/86
													HOLE	BACKFILL	ed with C	Ment-Ben	ONTE			
													GROUT	, 6/20/1	K.					
										.	1									
										1.										
											1									
1																				
							}				1									
				ļ							1								• DE	
											1								VSU	LI DIATION OF
	Ì						ł				1								âm	NGS.
F					L 7 7.00 77.002	i t		art		WAYI	1000 H		RIM ST	DRAGE S	ITE-					NISS-121R
L												<u> </u>	10							

S. -----

-

Futures and

Providential and a second

Section 2.

-

.

\square	G	EOL	OGIC	DR		LOG		PHELINET		FU	SRAP			14501	-138	Source J	nnt. DF1	NISS-122R
SITE	MAYNO	NOC II HL	NTERIN NTER DO	STOR	NGE SI S	TE-	COMPANY			N	17940,EI	1686			ANNLE	Film + 90 ⁴	CNE. }	N/A
6/2:	/16	6.	/23/86		HOR	ETRENCI	ENV. SE	RY.	FELL LAN		E D-33		HALE SEE 6ª	045 151.011 0	eta f	NOCE (ria 9. 8'	TELAL BEPTH 15.0'
CON	NECOVI N		*	C	e nine N/A	s sad	15 8. TH	N/A		46	. 3'	8778/0	6.01/4	48. 3'			6. 0'	/ HECK / 40. 3'
SAMPL	s mai				0		IF HELS, DA. N/A	A.BIS'III			10000	ħ	P.	YEN				
					NETU MESSA	t ME		T		Π								EZ 694
							ELEVA THE	Ē		I	1	DESCRIPTI	10 AD CLASS	FEATER :				REALES. RETAINS. NACTOR OF
12	H	F	3 12"	5 Z			46, 3	0	8									LIN, ETC.
							名:3	25			05-03		IL GRATISH	BLACK DE	<u>. </u>		RADIOA	ECKED FUR CTIVE MATION AND
					1		{			11	10-6.01 GR3/4	SAUD C	A MOLERATE	ERCIN			HOLE G By EBE	ANNA LOGGED
 _='											GYM/4 SLTY; N	4.0-6.1 On-Plas	Y's FINE-GRA	JED;			CORPOR	ical Lation
NOHON							40.3	5 -								<u></u>	₽	6/25/86
Ĭ				ĺ	ſ		{		繆		GRG/40 PLASTIC	SOFT F	NE-GRANEL	T PELU Mon Saturated	TA			
9											6.0-5.0	Υ.						:
ف								10 -										
	Ì]									
		{]									
 	 						31.3	15	<u>- </u> -		BUTTON	OF HO	E AT 6.0	F1.				<u></u>
									1				T) 1973 CEN	C)(1_0C)(1)	MITT			
								·			GROUT,	5/25/ X						
	ł		ļ	Į					1									
									-							·		
									Ξ									
]									
									-									
ł																		
							}		1									Printle Parent A suffic
									1									SEFECATION BY
								1	1								EXAN CUTT	MATION OF MES.
-					1.65 ,		an		1	HTE	RIN STOR	ARE ST	TE-	<u> </u>	<u></u>		-	
L	M		h Prhilaith				l		H	INTE	R DOUGL	5					1	M122-155K

Ø	

L

																			HOLE 18.
	G	EOL	OGIC	DR	LL	. L	<u>OG</u>				FI	SRAP			14501	-138		1	NISS-124R
STE	MAYN	000 I H	NTERIN INTER D	STOR	AGE	SIT	-	COMPONITE	3			16308, E	1490				90*		N/A
10	/84		ALE TER			N1D0	DIET	ENCH	CES		NES A	E 8-33		HALL SEE	CHERLINE 7.0	era P	7.		14.0 ⁴
CONE			10 00				SAMPLE	5 B. TO	N/A			5 8. 5 9'	SEP'RV1	5. 0' /	ia 39. 9'		Marine.	. TUP 0	7 MACK /38.9
SING	H Maria I								ADEN		I	Land	<u> </u>	•	.YEN				
<u> </u>	N.			[1				<u> </u>	T		<u> </u>							
E					T	1949 1976		-	=		2			فيد مبرين	NFICATION +				12 UN 13 UN
Z		7		1	-		3 7 2 5				3								ANCTER OF LUNK, ETC.
	319	3 18						45.9	0			0.0-0.		I FUNS	BLACK OK	2		SIIE C	FIRED FOR
								1	6			0.5-7.1 SILIY,	NON-TL	SIL, LOST	E-GRANED,	-			NATION BY
]]		35-6	Y: DUSKY Y: DUSKY	BROWN (51	n2/21			ANALY CORPO	ICAL NATION
												GLAYE	p'i grati T.	sh green o	0675/26				
									5									<u> </u>	5/20/86
B								38.5	0.7	<u>] </u>	Ξij	7.0-#	0.5.11	510 550	FNE-			**	
5]		GRAN	D, SETT	YELLOWSH), SATURAT Brown	ED.		EBERL ANALY	TEAL
									1.0	1		00YR6	/21. 1.0% LIGH	t brown (5	YR6/40,			CORPO PERFO	RATION RMED GAMMA
										1								LUW	
] 									
		1						31.9	HLO										
Γ	Τ			T				ł		4		HOLE	BACIFIL	ED WITH C	ement-ben	IONITE			
										4		GROU	, 6/20/						
									ļ	7									
										1									
										1	Ť								
										3									
								ļ		1									
										1									
										1								1	
										1									
										4									
]									ESCRIPTION AND
			1							1								l g	ASSECATION BY
							ļ			3								l a	
┠	 •	-9-11	52000 S		r R	<u>.</u>	_1	STRE		WO	D IN HL	TERIN S	IORAGE GLAS	SITE-				Int	MISS-124R

-

أيتسريده

Law .

- second

	G	EOL	OGIC	DRI	LLL	.0C		PROJECT		FU	SRAP			1450	1-138	967 1 (nna.)Fi	HELT HE. HISS-125R
SITE	HAYW	XOD 1 HL	NTERIN NTER D	STORA	E SIT	E-	CONTRACT	3		N	10000,E1	1400			ANNULE	Findus H 90 ⁴		N/A
6/23	5/166	6.	1210 /23/86		ENVIR	HORET	RENCH AL SERV		HLL W	e ai 1811	E B-33		HALE SEE 6ª	CVC30.000	: #13 }		ru 1.5'	THTAL HEPTH
C	NECONS N	ANTIJ /A	2	Case	SCHEL VA	SAMPLI N/A	S 61.70	P OF CAR	•	44) EL. 1. 6'	MEPTIVE	4.5'/	(40. 1 ¹		BEPTR.	EL. TOP (1. 0'.	/ NACK /43.6'
1 mer	E MAR		96/141		CAR		AN MALL DA. N/A	A. 34674				¥1	P	. YEN		*		
	75	E	et hu	,		· · · · ·			Ι.,	Π	.	<u>.</u>		<u> </u>				5 6
E		RC01			TESTS			5		Ī		BESCHPTI	in 180 a.A	NFRATIN +			101 101	NR LEVELS, NR ALTIAN, ANTER OF
39	j ŝ	<u>j</u>	3 12"			Ĭ	44.6	0	8									118. ETC.
							13:6	65 19			0.0-0.5		D ROCIG D	I BLACK OF	2.		SITE CI	ECKED FOR
OUCHO]			SANDS SUFT	ONE DUSK	Y RED Tely hard	•		EBERLI	
5- THR]@		FINE-TO SLICHTL SATURA	Y CLAYE TED.	Y, WEATHE	RED. MOIST	TO			6/25/ 36
۲. ۲								5]		10.0-12.	S': SATUR	rated san	dstone.			Ŧ	
13																		
								10]									E
							101										PERF O	GANMA
┝─							10201		-		BOTTO	ACKFELL	E AT 2.5 ED WITH CE	FT. MENT-BENT	ONTE		ALEER	REFUSAL AT
									1		GROUT,	6/25/1	•					••
									1									
									1									
									1									
									1									
									1									
						ļ			1									
		ļ							-									
									1		ł							
									1									
									1									
									1								• DES	
									1									ATLAIKIN DT L MATION OF
									1								an	N63.
	96- 14					_	SR.	M	YYOOD	1) Hun	TERIN ST	ORAGE GLAS	SITE-					NISS-125R

A-13

- -

ſ

L

-

Ĺ

040670

......

GEOLOGIC DRILL LOG									FUSRAP								4501-138		DF 1	HELE HA. NISS-320C	
MAYNOOD INTERIN STORAGE SITE-								0	COMMONATES N8303,E11705								ANNE	5 FROM 1	ch2.	N/A	
							REN		re 1				<u> </u>			LINES FTS	NOCK (FTU 3. 0 ⁴	TOTAL SEPTO - 9.04		
CIPE	COME SECONERNYTY/20 COME DAVES SAMPLE M/A 1						B		CI CUBB	GINA (1010 BL DEPTH/EL (10 44.4'			L. Crows T				6.0'/38.4'				
-	SAUFLE NAMER SEDITION							11 10								P.YEN		<u> </u>			
┝─							Γ		1		Π										
E					TESTS				CYN THIM	Ē	8.3	Į		BENCHPTINK AND SLADDFEATION &							
										44.4		8								LING ETC.	
		+			Į.	1 8	<u>288 f</u>	390.0	1	44.4				0.0-LO		AND CR	15(3)) E.	NOR		SITE C RADIDA	ECKED FOR CTIVE
ss	24	r N.	1	N/A	1					43, 4			1	LO-6.0 SELTY, N	SAND USI, I	SC-SAR FA	E-GRA	VEL.		CONTA	INATION BY Ne Tical
F	╞	╇	\neg]		Η	45-60	GRATIS ': MEDILI	h red car N light gi	a/ZL Ray di	<u>11</u>		CORPO	RATION
											5.0-										TICAL Ration
										38.4	60			60-90	: SANDA				<u></u>	LOCCE	RHED GANNA 15.
ł														WEATHE	ÌÉ.			* 19			ED HOLE OLLOW STEM
 	┢	+			╀			 	+	35.4	90	2.2		BOITO	TOF H	LE AT SL	FT.				
												1		HOLE B	ACIFILI 9/5/06	ED WITH C	enent-	BENTONTE			
												1									
												3									
												-									
											.	7									
												1									
												-									
												1									
												1									
]									
												-									
							1					1									
	ĺ																				
								l				1									STEATED BY
												1									NATION OF
F									1	INTE MAYNEDED INTERIN STORAGE SITE-									A		
	B-GENEROR P-PECIER O-PECIER									HUNTER DOUGLAS											NISS-520C

-

的

- June - Land

أستنسب

ļ

time to any

وتقديني

GEOLOGIC DRILL LOG								FUSRAP								14501-138		T MA. OF 1	HILL IN. MISS-3400	
SITE NAYNOOD INTERIN STORAGE SITE- HUNTER DOUGLAS							E-		123	N0065,E11330						ANNLE FRO			N HONE. BEADDE	
9/1								RENCH	1/1/1										e tu	TOTAL SEPTE
COPE	COME MECONOMINATION COME MECONES						SAMPL							SEP N/D			2. 6" 1691		VQ. THP O	
SAUFLE MARER SERVET/FALL CASES							דינו, א			VA 40. Lõistn			LOBIE I	CD JPh						A
┢──									- <u>-</u>	T T						DINCGRAME			1	
ĔĔ		1000			۳۱ ۲	TESTS	r				961 :	Į							NUTES ON NUTER LEVELS,	
32					= 3	NE NE					Į	3							CHARGETER OF	
┣-	983	-		-	σē	-	30.0	45,9 45.6	0			Н	0.0-0.3	: ASP 111	I.					
1000		-									. .		0.5-50 STRATE			CULCI			SITE CH	ECKED FOR
D					1								CUISOL	0.3-2.5 DATED 1	FT) POO OCSE DR	ily To Moist	•		HOLE G	LANE
R. 6.								40. 9	5				DRY.	MODERAT	te Brown	(5)783/40;			CONFOR	ATI CIL
ş										4			OCCASIONAL PIECES OF R			OUNCED GRAVEL;			REFUSAL AT 5.0 FT.	
										HOLE			of Hold	AT 50 ATELY BU	FT. KOFTLED	FILLED WITH				
]				ENT.		ANU THISH	ΕΨ.			
										-										
										1										
										1										
										1										
									Ì]										
										╡										
										1										
									1	3										
										1										
]										ĺ
	l									3										
									.									1		
																			_	
							l										-			ATION OF
]										NON OF
	Stespe D-CE		NUL STUS			d		WITE NAYWOOD INTERIN STORAGE SITE- HUNTER DOUGLAS										MLE 10.		