

Soil Screening Level (SSL) Technical Memorandum

Formerly Utilized Sites Remedial Action Program Maywood Superfund Site

Prepared by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

Prepared for:

US Army Corps of Engineers. Contract No. DACW41-99-D-9001

October 2004, Revision 0

SOIL SCREENING LEVEL (SSL) TECHNICAL MEMORANDUM

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. DACW41-99-D-9001 TASK ORDER 0004 WAD 05

Submitted to:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Submitted by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

> October 2004 Revision 00

Issued to:		Date:	
Copy No.	Controlled Uncontrolled		

SOIL SCREENING LEVEL (SSL) TECHNICAL MEMORANDUM

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. DACW41-99-D-9001 TASK ORDER 0004 WAD 05

Submitted to:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Submitted by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

> October 2004 Revision 00

Reviewed / Approved by:

Andy Mills Project Manager

-1

Reviewed / Approved by:

Date:

Date:

13.04

13/04

Edmundo Cintra Contractor Quality Control System Manager

ú

Reviewed / Approved by:

Date: John Enger **Project** Engineer Date:

Reviewed / Approved by:

Robert DeMott, P.G. Project Hydrogeologist

Soil Screening Level Tech Memo - Rev 00, Oct 2004

RECORD OF REVISIONS

Revision No.	Description of Revision	Date
Revision 00	Initial regulator submittal	October 2004

TABLE OF CONTENTS

REC	ORD (OF REVISIONS i
TAB	LE OF	' CONTENTSiii
LIST	OF T	ABLES iv
LIST	OF F	IGURESv
APPI	ENDIC	CES vi
ABB	REVIA	ATIONS, ACRONYMS, FORMULAS AND SYMBOLS vii
1.0	INT	RODUCTION1-1
	1.1	PURPOSE1-1
	1.2	BACKGROUND1-1
	1.3	SAMPLING RATIONALE
2.0	FIEI	LD INVESTIGATION
	2.1	SITE PREPARATION AND MOBILIZATION
	2.2	SOIL BORING ACTIVITIES
	2.3	SAMPLING AND LABORATORY ANALYSIS
3.0	SAM	IPLING RESULTS AND DATA ANALYSIS
	3.1	SUBSURFACE GEOLOGY
	3.2	LABORATORY ANALYSIS RESULTS
	3.3	DETERMINATION OF DILUTION ATTENUATION FACTOR (DAF)
	3.4	DETERMINATION OF SOIL SCREENING LEVELS (SSL)
	3.5	DISCUSSION
4.0	SUM	IMARY, CONCLUSIONS, AND RECOMMENDATIONS
	4.1	SUMMARY AND CONCLUSIONS
	4.2	RECOMMENDATIONS
5.0	REF	ERENCES

iii

LIST OF TABLES

- Table 1Boring Data Summary
- Table 2Analytical Methods and Sample Numbers
- Table 3Summary of SSL Data Analysis

LIST OF FIGURES

Figure 1 SPLP Boring Location Map, FUSRAP Maywood Superfund Site

APPENDICES

Appendix A	DOE, 1992 Section Plan and Cross Sections A-A', B-B', C-C', D-D', & E-E'A-1
Appendix B	Soil Boring LogsB-1
Appendix C	Hydrometer and Grain Size C-1
Appendix D	Summary of Analytical ResultsD-1
Appendix E	Dilution Attenuation Factor (DAF) Calculation Sensitivity AnalysisE-1
Appendix F	NJDEP SPLP-IGWSRS Draft ProcedureF-1
Appendix G	SPLP Chemical PlotsG-1
Appendix H	SSL Work Plan and Responses to USEPA and NJDEP Comments

ABBREVIATIONS, ACRONYMS, FORMULAS AND SYMBOLS

AHA ATT	Activity Hazard Analysis Advanced Terra Testing
CDQMP CLP COC CST	Chemical Data Quality Management Plan contract laboratory program constituents of concern Chicago Steel Tape MT102 Magnetic Locator
d da DAF DOE	mixing zone depth (m) aquifer thickness (m) dilution attenuation factor Department of Energy
FMSS	FUSRAP Maywood Superfund Site
FUSRAP	Formerly Utilized Sites Remedial Action Program
Geoprobe® GPR GWFS GWQC GWQS GWRI	Denotes a Registered Trademark Noggin 250 MHz Ground Penetrating Radar System groundwater feasibility study Groundwater Quality Criteria Groundwater Quality Standard Draft Groundwater Remedial Investigation
i I IGWSCC IGWSRS	hydraulic gradient (m/m) infiltration rate (m/yr) impact to groundwater soil cleanup criteria Impact to Groundwater Site-Specific Remediation Standards
Κ	aquifer hydraulic conductivity (m/yr)
L	source length parallel to ground water flow (m)
MCL MISS	Maximum Contaminant Levels Maywood Interim Storage Site
NJDEP	New Jersey Department of Environmental Protection
OU1	Operable Unit 1
PET PVC	Polyethylene terephthalate Polyvinyl chloride
QA/QC	Quality Assurance/Quality Control
RD RDSCC	Radio-detection RD400 Magnetic Locator residential direct soil contact criteria
SPLP SSLs STL	Synthetic Precipitation Leaching Procedure soil screening levels Severn Trent Laboratory
TAL TGC TOC	Target Analyte List target groundwater concentration total organic carbon
USACE USEPA	United States Army Corps of Engineers United States Environmental Protection Agency
VOCs	volatile organic constituents
WP	Work Plan

1.0 INTRODUCTION

The United States Army Corps of Engineers (USACE) is conducting a remedial investigation for groundwater at the Formerly Utilized Sites Remedial Action Project (FUSRAP) Maywood Superfund Site. This Technical Memorandum documents the development of site-specific soil screening levels (SSLs) for the protection of groundwater on the FUSRAP Maywood Superfund Site (FMSS) for chemical constituents of concern (COCs) that exceeded Federal or State standards. The New Jersey Department of Environmental Protection (NJDEP) has not developed impact to groundwater soil cleanup criteria (IGWSCC) for inorganic constituents and therefore SSLs are needed for vadose zone soils using site-specific chemical and physical parameters. The inorganic constituents selected for evaluation were detected in site groundwater at concentrations exceeding the Federal/State Maximum Contaminant Levels (MCL), or the lower of the New Jersey Groundwater Quality Standard (GWQS) or New Jersey Groundwater Quality Criteria (GWOC). The COCs for this SSL evaluation include arsenic, barium, beryllium, boron, cadmium, chromium (total), lead, lithium, nickel, selenium, and thallium. Isolated exceedances of the NJDEP residential direct soil contact criteria (RDSCC) for antimony, copper, and mercury were also detected on the Maywood Interim Storage Site (MISS), and so these constituents were also included in the SSL evaluation. This technical memorandum contains the results of field sampling, laboratory analysis, data validation, data analysis, and the determination of SSLs for these selected COCs at the FMSS.

1.1 PURPOSE

The USACE calculated an SSL value for each of the selected inorganic COCs using the methodology described in the *Soil Screening Guidance: Users Guide* (United States Environmental Protection Agency [USEPA] 1996) and the NJDEP Draft Procedure for using Synthetic Precipitation Leaching Procedure (SPLP) results to develop Impact to Groundwater Site-Specific Remediation Standards (IGWSRS, NJDEP 2004). The scope of work included the collection of 22 overburden soil samples on the MISS, and analysis for Target Analyte List (TAL) metals plus lithium and boron, and leachable TAL metals including lithium/boron via SPLP. Additionally, the soil parameters, total organic carbon (TOC), soil pH, grain size distribution and moisture content were analyzed. The site-specific SSLs were determined for each COC based upon the calculated dilution attenuation factor (DAF), total metals concentrations (in soils), and SPLP metal results.

This SSL Technical Memorandum summarizes the results of the field sampling, lab analysis and validation, and data evaluation. The technical memorandum includes boring logs, laboratory data, and calculations supporting the SSL evaluation. The SSL Technical Memorandum is submitted as an Addendum to the *Draft Groundwater Remedial Investigation Report*. The results will support detailed evaluation of alternatives in the forthcoming groundwater feasibility study (GWFS).

1.2 BACKGROUND

The overburden in the study area consists of fill and native soil/subsoil, and overlies weathered shale and sandstone bedrock of the Passaic Formation. The distribution and thickness of fill and

native overburden materials on the MISS is shown in the Section Plan and Cross Sections A-A', B-B', C-C', D-D', and E-E' provided in **Appendix A** (Department of Energy [DOE] 1992).

As shown in the cross sections, the average overburden thickness is approximately 20 feet on the MISS, and reaches a maximum thickness of about 25 feet in the area of Former Retention Pond B (**Figure 1**). The upper portion of the overburden is comprised of fill, which is laterally continuous across the MISS. The fill reaches a maximum mapped thickness of approximately 15 feet in Former Retention Pond B (Cross Section A-A' in **Appendix A**) (DOE 1992), and 10 feet in portions of Former Retention Ponds A and C (Cross Section D-D' and A-A' in **Appendix A**) (DOE 1992).

Shallow fill generally consists of a one to three feet thick tan to dark brown sand, and overlies pond sludge in the Former Retention Pond areas consisting of coal ash, process sludge and sand/gravel fill in the Former Retention Pond areas. A laterally continuous native black silt and sand unit is mapped at the base of the pond sludge/fill, and extends across most of the MISS site including Former Retention Ponds A, C, and E, and portions of B. The black silt and sand unit grades laterally and upward into the mapped undifferentiated sand silt and clay unit, which appears to underlie parts of Former Retention Pond B and the eastern edge of Former Retention Pond A. Fill sediments along the western edge of Former Retention Pond B are mapped in contact with unconsolidated "weathered bedrock", and consists of red-brown sand to gravel material. Boring logs from the current soil sampling in the area of Former Retention Ponds A, B, and C are provided in **Appendix B**.

The Draft GWRI Report identified Former Retention Ponds A and C as groundwater AOCs, and attributed inorganic (metals) groundwater contamination in those basins to leaching of impacted pond sludge/fill. This is supported by soil sampling data from a number of prior investigations which report that the highest soil metals concentrations are detected in these AOCs. Excavation and disposal of radiologically impacted soils within the MISS is proposed as part of the Operable Unit 1 (OU1) remediation in the *Record of Decision for Soils and Buildings at the FUSRAP Maywood Superfund Site (USACE, 2003b)*, and involves the removal of most pond sludge/fill. Sampling was thus focused on the native soil (black organic silt and sand unit/undifferentiated unit) located below the pond sludge/fill deposits and corresponding excavation limit (residual soils) to determine the residual soil metal concentrations and the corresponding SPLP concentrations.

1.3 SAMPLING RATIONALE

A total of 19 soil samples were proposed in the SSL Work Plan (WP), to be distributed in and adjacent to Former Retention Ponds A, B, and C. Three sample locations (A-8, C-7 and C-8) were added at impacted soil locations in response to NJDEP comments/concerns about the number of impacted soil samples and the distribution of data for analysis. Field sample locations are shown on **Figure 1**. Noting that individual metal contamination may be limited to any one Former Retention Pond, a minimum of six samples were collected in or adjacent to each Former Retention Pond. The distribution of samples in each Former Retention Pond area is biased, with the collection of five to seven samples in metal impacted soils. One sample in or adjacent to each Former to each Former Retention Pond area was located in minimally impacted soil areas to obtain low

range metal soil and SPLP concentration. Soil sample locations were selected from soil metals data provided in the *Remedial Investigation for the Maywood Site* (DOE 1992), *Final Remedial Investigation Report- Stepan Company Property* (CH2M Hill 1994), *Pre-Design Investigation For Potential Chemical Contamination at the MISS* (USACE 2002c), and *Draft GWRI Report* (USACE, 2003a).

Historical soil sampling data shows that soil metal concentrations decrease with depth below the pond sludge/fill, so sampling was biased toward the potentially impacted upper native soils interval. Derivation of SSLs from the native soils is important since they lie at or below the proposed OU1 depth of excavation, and will be the primary remaining soil media after the removal of the radiologically impacted pond sludge. Residual soil concentrations that exceed the site-specific SSL for a COC have the potential to impact groundwater.

In accordance with the *Soil Screening Guidance*, sampling was restricted to the vadose zone (unsaturated) soils, and focused on the one to two feet native soil interval below the pond sludge/fill. If groundwater was encountered at or above the top of native soils, a pond sludge/fill sample was collected in the one to two feet interval above the water table at that location. In accordance with the Work Plan, a pond sludge/fill sample and native soil sample was collected at the same location (B-5) for comparison purposes.

2.0 FIELD INVESTIGATION

2.1 SITE PREPARATION AND MOBILIZATION

Each plotted boring location was staked in the field, and evaluated with respect to overhead line clearance, proximity to known underground utilities, and road access and hazards. Six alternative boring locations were also located/staked in impacted soil areas on the MISS, and were cleared in case of boring refusal at a primary location, and/or the need for additional soil samples. Boring locations were cleared by Hager-Richter Geophysics, which included a utility plan review, utility line tracing, and use of sensors including the Radio-detection RD400 Magnetic Locator (RD), Chicago Steel Tape MT102 Magnetic Locator (CST) and Noggin 250 MHz Ground Penetrating Radar System (GPR). A One-Call request was submitted for soil boring activities on the site, and a "ticket" was issued on May 28, 2004. A USACE Quality Assurance/Quality Control (QA/QC) Preparatory Meeting was conducted prior to field activities, and included a review of the project scope of work, geophysical and one-call boring clearances, and Activity Hazard Analysis (AHA).

2.2 SOIL BORING ACTIVITIES

Geoprobe® boring and sampling activities were conducted during the period of June 21-24, 2004. A total of 54 borings were advanced at 22 sample locations, and included the collection of two or more adjacent cores at most locations to obtain the required soil sample volume. One sample was collected from each boring location, except at Boring B-5, where two samples were collected at different intervals. Boring B-2 was abandoned without sampling after repeated shallow refusals in and around the marked location, and a sample was instead collected at alternate Boring B-7. Boring C-4 was originally proposed as a "minimally-impacted" soil sample for Former Retention Pond C. Upon review of NJDEP SSL WP comments, and their focus on the distribution of impacted metals data, this location was abandoned in favor of a potentially more impacted location. Noting that there were no impacted soil areas close to the proposed C-4 location, it was decided to replace rather than relocate the sample to clearly identify the change from the WP. As noted in Section 1.3, samples were collected at three additional boring locations in Former Retention Ponds A (A-8) and C (C-7 and C-8).

Borings were completed by B&B Drilling using a track mounted Model 54DT Geoprobe® Macrocore. A radiation technician was present during all intrusive activities to monitor radiological activity and volatile organic constituents (VOCs) in core samples. Continuous four foot cores were collected at all sample locations using polyvinyl chloride (PVC)/polyethylene terephthalate (PET) liners. Detailed core logging was conducted by a geologist in the field, and sample intervals were selected based upon the interpreted fill/native soil contact and water table depths. Soil boring logs are provided in **Appendix B**.

At most locations, soil samples were collected in the one to two foot unsaturated native soil interval below the pond sludge/fill. Where the native soils were saturated, sludge/fill samples were collected in the one to two feet interval above groundwater. A summary of the boring depth to groundwater, sample intervals and sample media are given in **Table 1**. As shown, the majority (17/22) of samples were collected in native formation. All were collected above

groundwater. At boring B-5, a second shallow pond sludge/fill sample was collected for analysis.

At the conclusion of sampling, the location of each boring was determined by a Trimble Model PRO XRS differential backpack GPS, which is accurate to \pm - 50 cm. A boring location map was prepared from the GPS data, and is shown on **Figure 1**.

2.3 SAMPLING AND LABORATORY ANALYSIS

A total of 22 soil samples were collected in the field, in addition to field quality control samples. SSL QA/QC samples were collected in accordance with the *Soil Screening Level Work Plan* (USACE 2004b) and *Chemical Data Quality Control Report* (CDQMP, USACE 2002d), and included five rinseate blanks, two field duplicates, and one USACE split. Field samples were collected from the prescribed one to two foot interval(s), and thoroughly homogenized in a decontaminated stainless steel bowl. Soil samples were then placed into four labeled 8-oz jars and placed in a cooler with ice for the remainder of the field day. All samples were listed on a chain of custody form, packed, and sealed into a cooler for same day lab pickup or shipping for next day delivery.

Samples were analyzed for TAL Metals + Li/Boron (soil), SPLP TAL Metals + Li/Boron (aqueous), Soil pH, Soil Moisture, TOC (soil), and Grain Size Analysis – Mechanical & Hydrometer. A summary of the analytical methods, and number of collected field and QA/QC samples is provided in **Table 2**. Sample analysis were conducted at several laboratories, including Severn Trent Laboratory (STL) Connecticut (TAL metals, soil pH, TOC, and moisture content), STL St. Louis, Missouri (SPLP analysis for leachable TAL metals), and Advanced Terra Testing (ATT), Lakewood, Colorado (grain size and hydrometer). STL laboratories provided Level 3 data packages, which include contract laboratory program (CLP) data forms without raw data.

3.0 SAMPLING RESULTS AND DATA ANALYSIS

3.1 SUBSURFACE GEOLOGY

An evaluation of the SSL boring logs (**Appendix B and Table 1**) shows general agreement with the noted cross sections, historical boring data, and current groundwater data. At the surface, a one- to three-foot thick sand and gravel fill layer was encountered at all locations, which overlies a distinctive laminated, chalky, white/tan to gray silt fill. This unit, termed the upper fill unit, was logged at all but one sample location and ranged from two feet to seven feet in thickness. This unit is underlain at most locations by layers of common fill, and a soft, thinly interbedded light gray and dark gray to black silt (fill), termed the lower fill unit. Much of the lower fill unit had a pudding like consistency in cores within Former Retention Pond B, with locally perched groundwater. The base of the lower fill unit typically consisted of a one to two foot thick red brown to dark gray/black sand and silt, which overlies native material. A total of four samples were collected in unsaturated fill, and one in saturated (perched water) fill within the lower fill unit.

Native soils were sampled at 17 boring locations, and in most cases (nine samples) consisted of dark gray to black silt and sand. The other native soils samples were generally described as gray brown to red brown silt and sand, and may comprise the mapped native undifferentiated gray clay, silt and sand unit and/or the weathered bedrock unit described in Section 1.2. The dark gray to black silt and sand unit was also logged below these sampled native soils at borings B-3, B-4, B-6, C-5 and C-8, and beneath fill samples at borings B-3 and B-6. The dark gray to black silt and sand unit is absent in borings A-1, B-5, and B-7, where the pond sludge/fill deposits are in contact with the weathered bedrock unit. These boring locations lie outside the mapped extent of the dark gray to black silt and sand unit on the MISS. The logged subsurface geology is consistent with that depicted in the DOE, 1992 geologic cross sections (Section 1.2), and confirms the mapped distribution of the dark gray to black silt and sand unit and other native soil units in and adjacent to the Former Retention Ponds on the MISS.

3.2 LABORATORY ANALYSIS RESULTS

Hydrometer and grain size analysis were performed on the boring soil samples. The results of the laboratory analysis are presented in **Appendix C**. The results of these analyses provide confirmation of the qualitative physical descriptions of the soil samples provided on the boring logs **Appendix B** and **Table 1**.

Percent moisture, pH, and TOC laboratory results are provided in **Appendix D.** The percent moisture values for the sample soils ranged from 9.6 percent to 58.3 percent. Soil pH ranged from 6.7 to 8.77. TOC values ranged from 514 to 93,800 mg/kg, with an arithmetic and geometric mean of 18,918 mg/kg (1.89% or foc = 0.0189) and 8,088 mg/kg (foc = 0.0081), respectively. The soil-water distribution coefficient (and mobility) of metals is directly effected by geochemical parameters/processes including pH, sorbent content (combination of clay and metal oxyhydroxides, organic carbon), redox conditions, major cation chemistry, and metal speciation. In determining SSLs, EPA used the MINTEQA2 model and input a foc of 0.002, and varied pH (4.9 to 8.0) and iron oxide content (0.01 to 1.11%) (EPA/540/R95/128, 1996). The

range of TOC (foc) results are substantially higher than the USEPA 0.002 foc value that was used to calculate generic SSLs, and may account in part (along with elevated iron oxide reported in local soils) for the higher calculated SSL as compared to USEPA generic values for selected constituents in this report. The reported foc values also exceed published average values of 0.006 to 0.008 for undifferentiated sand, silt, and clay (Schwarzenbach 1981) and 0.0049 for alluvium (Movet et al 1973).

All data packages were submitted to a certified validator for validation in accordance with the USACE Guidance CENWK-EC-EF, Data Quality Evaluation Guidance (USACE 1999). Validated laboratory results for the COCs used in the SSL evaluation are presented in **Appendix D.**

Data qualifiers (Result Qualifier) were assigned to samples, or accepted by the validator, and include the following:

- U denotes the analyte was non-detect
- UJ denotes that the analyte was non-detect and that the detection limits were estimated
- J denotes that the concentration presented, was estimated
- R denotes that the analyte was rejected
- D denotes that the analysis required dilution prior to analysis
- B denotes that blank contamination was encountered in the sample

Data tables are included for antimony, arsenic, barium, beryllium, boron, cadmium, copper, chromium (total), lead, lithium, mercury, nickel, selenium, and thallium. Both soil and leachate concentration data are provided. Leachate results are presented in triplicate as well as average values.

As required by the NJDEP Site Remediation Program, and as identified in NJAC 7:26E, or the Tech Regs., an electronic data submission is required for samples obtained as part of a Site Investigation, Remedial Investigation, or Remedial Action. The HazSite deliverable was formatted in a text file format (txt). Appendix D contains the electronic deliverable on CD. As recommended by NJ DEP, USACE utilized the Electronic Data Submittal Application (EDSA) routine to verify that the files would be acceptable for importing into the NJ DEP database. The database files were accepted by the EDSA routine.

3.3 DETERMINATION OF DILUTION ATTENUATION FACTOR (DAF)

The USEPA and NJDEP provide generic DAF values of 20 and 11, respectively, for derivation of SSLs, but allow for calculation of alternative DAFs based upon site specific conditions. In accordance with the methodology in the *USEPA Soil Screening Guidance, Users Guide* (USEPA 1996), a site specific DAF was calculated for the MISS based on the aquifer hydraulic conductivity, hydraulic gradient, groundwater recharge rate, aquifer thickness, and source area size. The sensitivity of the dilution factor to variations of hydraulic conductivity, infiltration rate, and source length were also evaluated (**Appendix E**). The computed DAF is the best-fit value for the MISS site conditions.

The calculated DAF for the MISS source area was based upon site data for hydraulic conductivity, groundwater gradient, aquifer thickness and source area size using Equations 11 from the *Soil Screening Guidance*.

Equation 11: Derivation of dilution Factor

dilution factor = $1 + \frac{\text{Kid}}{\text{IL}}$

where:

dilution factor (unitless)

- K = aquifer hydraulic conductivity (m/yr)
- i = hydraulic gradient (m/m)
- I = infiltration rate (m/yr)
- d = mixing zone depth(m)
- L = source length parallel to ground water flow (m)

A site specific DAF of 20 was calculated based upon the following parameters:

K = 2043 m/yr (18.35 ft/day); Geometric Mean of Overburden (Draft GWRI Table 3-9, [USACE 2003])
i = 0.011 m/m; (across basins)
d = 3 m (10 ft); (average aquifer thickness)
I = 0.18 m/yr (7.0 in/yr); (EPA Default Infiltration Rate)
L = 20 m (65 ft); (variable)

The aquifer mixing zone depth was set equal to aquifer thickness due to the thinness of the aquifer (10 feet), and groundwater sampling data. Within the metal source areas, Geoprobe® groundwater samples were collected from the bottom 4 feet of aquifer (above bedrock), and detected similar metal groundwater concentrations to those reported in adjacent monitoring wells, which are screened across the water table. This data indicates that groundwater metals contamination, and the DAF mixing zone, extend vertically across the overburden aquifer.

The source length of 20 m (65 feet) was conservatively estimated from historical soil sampling data. Most historical metals soil sampling data does not show elevated concentrations, and those exceedances are typically isolated. Soil sampling in impacted areas shows that metal concentrations vary dramatically over short distances, and that "source areas" are limited in extent. Impacted soil areas appear to be small (25 feet in length) in most areas while extending up to 50 feet in the direction of groundwater flow along the north side of Former Retention Pond A.

3.4 DETERMINATION OF SOIL SCREENING LEVELS (SSL)

Migration to groundwater SSL values were evaluated for the selected soil COCs based on the methods described in the work plan and NJDEP draft procedures for IGWSRS determinations (**Appendix F**). As proposed in the SSL work plan, triplicate SPLP metals data were averaged

(mean) for each sample (**Appendix D**). Site sample data (excluding sludge and fill samples) were evaluated as one data set, since the sample locations are close together and the native soil type is common to most sample areas.

For each compound, the average SPLP results were plotted (on the Y axis), along with the Target Groundwater Concentration (TGC), and against the bulk soil metal concentration (on the X axis). A line was then fitted through the plotted points using statistical regression analysis techniques.

The TGC is defined as the groundwater cleanup standard multiplied by the DAF (20), and was derived using the lower of the Federal MCL or NJDEP GWQS. An alternative TGC was also applied for those COCs where the NJDEP GWQC, a human health based standard, was lower than the GWQS. The SSL was graphically determined by the horizontal extension of the TGC concentration to the fitted line, and extrapolation of corresponding bulk soil concentration on the X axis. Individual plots were prepared for each COC. The individual metal data plots are shown in **Appendix G**.

The reported soil metals bulk and SPLP concentrations were substantially lower than expected when the Work Plan was prepared, and all COC plotted sample bulk/SPLP values (except one arsenic and lead data point) fell below the respective TGC's on the regression plots. Further evaluation using regression analysis was not performed for the following reasons:

- 1. The plotted regression lines were not defined (bounded by data) at the TGC, except for arsenic.
- 2. The majority of data points did not lie above the TGC, per NJDEP requirements for regression analysis.
- 3. The best fit lines produced low R^2 (coefficient of determination) values indicating that the regression equation was a poor fit of the data.

For the foregoing reasons, an alternative approach was used to calculate SSL values for the MISS. SSL values for selected MISS COCs were derived using the NJDEP Draft Procedure for using SPLP results to develop IGWSRS "Using SPLP Results" sub-procedure "a" (Appendix F). Following this procedure, the highest SPLP concentration (below the TGC) was identified for each metal, and the corresponding bulk soil concentration was applied as the impact to groundwater SSL. The results based on this method are considered very conservative, since most COC SPLP leachate results fall well below the applicable TGCs. The results of the SSL analysis are given in Table 3. As shown, SSLs were developed for the COCs using both Federal MCL and NJDEP GWQC (when the GWQC was lower than the GWQS).

Due to the low detected concentrations of selected metals, the reported metal leachate concentrations for native soils are fractional (<10%) values of the calculated TGC. These results are considered excessively conservative, and in these instances, the greater of the derived and generic SSL values were applied. As shown in the last column of **Table 3**, EPA generic impact to groundwater values were applied to antimony, barium, beryllium, cadmium, lead, mercury, and selenium.

3.5 DISCUSSION

Seven of the 14 COC Federal MCL derived SSL values (antimony, barium, beryllium, cadmium, lead, mercury, and selenium) were at or below the USEPA Generic Impact to Groundwater Criteria as given in **Table 3**. The generic SSL value will be used for these metals. The remaining metal COC derived SSL values shown in **Table 3** are based on the maximum detected soil concentration with a leachate value below the TGC.

The following observations, related to the derivation of SSL for the MISS, can be made:

- 1. The major COCs arsenic and lithium, have historical soil data exceedances above of the calculated SSLs.
- 2. These soils are potential sources of groundwater contamination.
- 3. Plotted groundwater exceedances coincide with these impacted soils.

Arsenic, soil exceedances are limited to the area along the northern edge (along the railroad easement) of Former Retention Pond A, and to a lesser degree, the western half of Former Retention Pond C. Arsenic groundwater exceedances are detected in corresponding local wells (and geoprobes). Areas with lithium soil exceedances show the highest groundwater concentrations.

4.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

4.1 SUMMARY AND CONCLUSIONS

- 1. The NJDEP has not developed IGWSCC for inorganic constituents, therefore, SSLs need to be developed for overburden, vadose zone soils using site-specific chemical and physical parameters.
- 2. The COCs for this SSL evaluation include antimony, arsenic, barium, beryllium, boron, cadmium, copper, chromium (total), lead, lithium, mercury, nickel, selenium, and thallium which were all found to exceed a Federal or State limit during the Remedial Investigation.
- 3. The USACE proposed to calculate an SSL value for each of the selected inorganic COCs using the methodology described in the Soil Screening Guidance: Users Guide and the NJDEP Draft Procedure for using SPLP results to develop IGWSRS values.
- 4. The proposed OU #1 soil remediation (excavation) depths generally extend to the top of native soils, which overlie weathered shale and sandstone bedrock of the Passaic Formation.
- 5. A total of 54 borings were advanced at 22 sample locations using a Geoprobe® rig, and included the collection of two or more adjacent cores at most locations to obtain the required soil sample volume.
- 6. A total of 22 soil samples (and required QC samples) were collected from the borings distributed in, and adjacent to, Former Retention Ponds A, B, and C.
- 7. Samples were analyzed for TAL Metals + Li/Boron (soil), SPLP TAL Metals + Li/Boron (aqueous), Soil pH, Soil Moisture, TOC (soil), and Grain Size Analysis (Mechanical & Hydrometer).
- 8. The range of TOC (foc) results are substantially higher than the USEPA 0.002 foc value that was used to calculate generic SSLs, and may account in part for the higher calculated SSL values for selected constituents in this report.
- 9. A site specific DAF of 20 was calculated using site data.
- 10. SSL values for selected MISS COCs were determined using the NJDEP Draft Procedure for using SPLP results to develop IGWSRS and are given in **Table 3**.
- 11. Seven of the 14 COC Federal MCL derived SSL values (antimony, barium, beryllium, cadmium, lead, mercury, and selenium) were at or below the USEPA Generic Impact to Groundwater Criteria, therefore the generic SSL value was selected.

4.2 **RECOMMENDATIONS**

The following recommendations are made based on the field sampling program, laboratory analysis results, and impact to groundwater SSL data analysis activities:

- 1. A DAF of 20 should be used in determining migration to groundwater SSL (IGWSRS) values for the MISS.
- 2. The following IGWSRS values should be accepted for the MISS:
 - antimony, 5 mg/kg
 - arsenic, 122 mg/kg
 - barium, 1,600 mg/kg
 - beryllium, 63 mg/kg
 - boron, 52 mg/kg
 - cadmium, 8 mg/kg
 - chromium, 242 mg/kg,
 - copper, 426 mg/kg
 - lead, 400 mg/kg
 - lithium, 194 mg/kg
 - mercury, 2 mg/kg
 - nickel, 214 mg/kg
 - selenium, 5 mg/kg
 - thallium, 1.2 mg/kg

Noting the very conservative assumptions associated with the current SSL evaluation, if COC soil concentrations exceeding these values are encountered during remediation, revised IGWSRS values should be determined using the procedures presented in this Technical Memorandum.

5.0 **REFERENCES**

- 1. DOE, 1992, *Remedial Investigation for the Maywood Site Volume 1*, Prepared for the U.S. Department of Energy, by Bechtel National Inc.
- 2. CH2M Hill, 1994, Final Remedial Investigation Report-Stephen Property.
- 3. Mouvet, C.,D. Barberis and A.C.B. Bourg, *Adsorption Isotherms or Tri and Tetrachloroethylene by Various Natural Soils*, J. Hydrol., 149, 163-182, 1993.
- 4. NJDEP, 2004, *SPLP Impact to Groundwater Site Specific Remediation Standards (IGWSRS) Draft Procedure*, Letter from Ms. Donna L. Gaffigan, Case Manager to Mr. Allen Roos, Project Manager, USACE, May 5, 2004.
- 5. Scharzenback, R.P. and J. Westall, *Transport of Nonpolar Organic Compounds from Surface Water to Groundwater*, Laboratory Sorption Studies, Environ. Sci. Technol., 15(11), 1360-1367, 1981.
- 6. USACE, 1999, *Data Quality Evaluation Guidance*, U. S. Army Corp of Engineers, Guidance, CENWK-PE-ES.
- 7. USACE, 2002a, Feasibility Study for Soils and Buildings at the FUSRAP Maywood Superfund Site, Maywood, NJ.
- 8. USACE, 2002b, Proposed Plan for the Soils and Buildings at the FUSRAP Maywood Superfund Site, Maywood, NJ.
- 9. USACE, 2002c, *Pre-Design Investigation for Potential Chemical Contamination at the MISS*, prepared for the USACE by Stone and Webster, Inc.
- 10. USACE, 2002d, *Chemical Data Quality Control Report (CDQMP), Revision 1*, prepared for the USACE by Stone and Webster, Inc.
- 11. USACE, 2003a, *Draft Groundwater Remedial Investigation Report(GWRI)*, New York District, FUSRAP, Maywood Superfund Site.
- 12. USACE, 2003b, Record of Decision (ROD) for Soils and Buildings at the FUSRAP Maywood Superfund Site, New York District, FUSRAP Maywood Superfund Site.
- 13. USACE, 2004a, *Groundwater Remedial Investigation Report Addendum*, New York District, FUSRAP, Maywood Superfund Site.
- 14. USACE, 2004b, *Soil Screening Level (SSL) Workplan*, FUSRAP Maywood Superfund Site, Maywood, NJ.
- 15. USEPA, 1996, *Soil Screening Guidance: User's Guide*, Office of Solid Waste and Response, Publication 9355.4-23, Washington D.C.

TABLES

Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site Contract Number DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table 1 Boring Data Summary FUSRAP Maywood Superfund Site, Maywood, NJ

bgs) Interval 13.5 - 15.0 6.3 - 8.3 6.3 - 7.1 6.3 - 8.3 9.4 - 10.4 10.4 - 11.4 0 5.9 - 7.9 9.0 - 11.0 9.0 - 11.0 11.2 - 12.4 11.2 - 12.4 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 12.4 11.3 11.2 - 17.7 11.3 11.2 - 17.7 11.3 11.2 - 17.7 11.3 11.2 - 17.7 11.3 11.2 - 17.7 11.3 11.2 - 17.7 11.3 11.2 - 17.7 11.3 11.1 - 11.2 11.3 11.1 - 11.2 11.3 11.1 - 11.2 11.3 11.1 - 11.2 11.3 11.1 - 11.2 11.3 </th <th>Interval 13.5 - 15.0 6.3 - 7.1 6.3 - 7.1 6.3 - 8.3 9.4 - 10.4 10.4 - 11.4 5.9 - 7.9 9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A N/A</th> <th>Soil) SILT (Native Soil) dium SAND (Fill) SAND (Native Soil) Vative Soil) e sand (Native Soil) itve Soil) MV (Native Soil) w refusal nd sludge/Fill) ay (Native Soil)</th>	Interval 13.5 - 15.0 6.3 - 7.1 6.3 - 7.1 6.3 - 8.3 9.4 - 10.4 10.4 - 11.4 5.9 - 7.9 9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A N/A	Soil) SILT (Native Soil) dium SAND (Fill) SAND (Native Soil) Vative Soil) e sand (Native Soil) itve Soil) MV (Native Soil) w refusal nd sludge/Fill) ay (Native Soil)
06/21/04 > 15.4 $13.5 - 15.0$ $06/22/04$ 9.6 $6.3 - 7.1$ $06/22/04$ 9.6 $6.3 - 7.1$ $06/23/04$ 10.5 $9.4 - 10.4$ $06/23/04$ 11.4 $10.4 - 11.4$ $06/23/04$ 11.4 $10.4 - 11.4$ $06/23/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 12.6 $11.2 - 12.4$ $06/23/04$ N/A N/A $06/23/04$ 9.3 $7.8 - 8.5$ $06/23/04$ 9.3 $7.8 - 8.5$ $06/22/04$ 9.3 $7.8 - 8.5$ $06/22/04$ 9.3 $7.8 - 8.5$ $06/22/04$ 9.3 $7.8 - 8.5$ $06/22/04$ 9.3 $7.2.4 - 14.4$ $06/22/04$ 9.3 $7.8 - 8.5$ $06/22/04$	13.5 - 15.0 6.3 - 7.1 6.3 - 8.3 9.4 - 10.4 10.4 - 11.4 5.9 - 7.9 9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A 7.8 - 8.5	Soil) SILT (Native Soil) dium SAND (Fill) SAND (Native Soil) dative Soil) e sand (Native Soil) itve Soil) ay (Native Soil) Mative Soil) w refusal nd sludge/Fill) ay (Native Soil)
06/22/04 9.6 $6.3 - 7.1$ $06/23/04$ 8.4 $6.3 - 8.3$ $06/23/04$ 10.5 $9.4 - 10.4$ $06/23/04$ 11.4 10.5 $06/23/04$ 11.4 $10.4 - 11.4$ $06/23/04$ 11.1 $9.0 - 11.0$ $06/25/04$ > 8.0 $5.9 - 7.9$ $06/25/04$ 11.1 $9.0 - 11.0$ $06/25/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 11.6 $11.2 - 12.4$ $06/23/04$ N/A N/A $06/23/04$ $2.15.3$ $12.4 - 13.4$ $06/23/04$ 9.3 $7.8 - 8.5$ $06/23/04$ 9.3 $7.8 - 8.5$ $06/23/04$ 9.3 $7.8 - 8.5$ $06/22/04$ $7.1.2$ $12.4 - 14.4$ $06/22/04$ $2.17.7$ $12.4 - 14.4$ $06/22/04$ $7.1.9$ $7.8 - 8.5$ $06/22/04$ $7.1.9$ $8.1 - 9.1$ $06/22/04$ $7.1.2$ $7.8 - 8.6$ $06/22/04$ $7.1.2$ $7.8 - 8.6$ $06/22/04$ $7.1.2$ $10.2 - 11.2$ $06/24/04$ 10.6 $9.6 - 10.6$ $06/24/04$ 0.7 $9.6 - 10.6$ $06/24/04$ 0.7 $9.6 - 10.6$ $06/24/04$ 0.7 9.6	6:3 - 7.1 6:3 - 8.3 6.3 - 8.3 9.4 - 10.4 10.4 - 11.4 5.9 - 7.9 9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A 7.8 - 8.5	SILT (Native Soil) dium SAND (Fill) SAND (Native Soil) dative Soil) e sand (Native Soil) itve Soil) itve Soil) MND (Native Soil) w refusal nd sludge/Fill) ay (Native Soil)
06/21/04 8.4 $6.3 - 8.3$ $06/23/04$ 10.5 $9.4 - 10.4$ $06/23/04$ 11.4 10.5 $06/25/04$ $5.9 - 7.9$ $06/25/04$ $5.0 - 11.0$ $06/25/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 12.6 $11.2 - 12.4$ $06/23/04$ 12.6 $11.2 - 12.4$ $06/23/04$ >15.3 $12.4 - 13.4$ $06/23/04$ >15.6 $11.2 - 12.4$ $06/23/04$ >15.7 $12.4 - 13.4$ $06/23/04$ >12.6 $10.0 - 11.3$ $06/23/04$ >10.0 $10.0 - 11.3$ $06/23/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.3$ $06/22/04$ >10.0 $10.0 - 11.2$ $06/22/04$ >10.0 $9.6 - 10.6$ $06/24/04$ 10.8 $9.6 - 10.6$ $06/24/04$ $0.0.74/04$ $0.0.7$ $06/24/04$ $0.0.74/04$ $0.0.7$ $06/24/04$ $0.0.7$ $0.0.74/04$ $06/24/04$ $0.0.7$ $06/24/04$ $0.0.7$ $06/24/04$ $0.0.7$ $06/24/04$ $0.0.7$ $06/24/04$ $0.0.7$ $06/24/04$ 0.0	6.3 - 8.3 9.4 - 10.4 10.4 - 11.4 5.9 - 7.9 9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A 7.8 - 8.5	dium SAND (Fill) SAND (Native Soil) Jative Soil) e sand (Native Soil) itve Soil) itve Soil) My (Native Soil) Mr refusal md sludge/Fill) ay (Native Soil)
06/23/04 10.5 $9.4 - 10.4$ $06/23/04$ 11.4 $10.4 - 11.4$ $06/25/04$ 11.4 $10.4 - 11.4$ $06/25/04$ 11.1 $9.0 - 11.0$ $06/25/04$ 11.1 $9.0 - 11.0$ $06/25/04$ 11.1 $9.0 - 11.0$ $06/25/04$ 11.1 $9.0 - 11.0$ $06/23/04$ 12.6 $11.2 - 12.4$ $06/23/04$ N/A N/A $06/23/04$ 9.3 $7.8 - 8.5$ $06/22/04$ >17.7 $12.4 - 14.4$ $06/22/04$ >17.7 $12.4 - 14.4$ $06/22/04$ >17.7 $12.4 - 14.4$ $06/22/04$ >17.7 $12.4 - 14.4$ $06/22/04$ >17.7 $12.4 - 14.4$ $06/22/04$ >12.5 17.7 $06/22/04$ >12.5 $12.4 - 14.4$ $06/22/04$ >12.6 11.2 $06/22/04$ >12.6 $9.1 - 9.1$ $06/22/04$ >12.6 $9.1 - 9.1$ $06/22/$	9.4 - 10.4 10.4 - 11.4 5.9 - 7.9 9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A 7.8 - 8.5	SAND (Native Soil) Jative Soil) e sand (Native Soil) itve Soil) ay (Native Soil) Mative Soil) w refusal nd sludge/Fill) ay (Native Soil)
06/23/04 11.4 $10.4 - 11.4$ $06/25/04$ > 8.0 $5.9 - 7.9$ $06/25/04$ 11.1 $9.0 - 11.0$ $06/25/04$ 11.6 $11.2 - 12.4$ $06/23/04$ N/A N/A $06/23/04$ > 15.3 $12.4 - 13.4$ $06/23/04$ > 12.6 $11.2 - 12.4$ $06/23/04$ > 12.6 $11.2 - 12.4$ $06/23/04$ > 12.6 $11.2 - 12.4$ $06/22/04$ > 16.0 $10.0 - 11.3$ $06/22/04$ > 17.7 $12.4 - 14.4$ $06/22/04$ > 10.6 $10.0 - 11.3$ $06/22/04$ $> 11.6.0$ $10.0 - 11.3$ $06/22/04$ $> 11.6.0$ $10.0 - 11.3$ $06/22/04$ $> 11.6.0$ $10.0 - 11.3$ $06/22/04$ > 10.6 $10.0 - 11.3$ $06/22/04$ > 10.6 $10.0 - 11.3$ $06/22/04$ > 10.6 $8.1 - 9.1$ $06/22/04$ $06/22/04$ 10.8 $06/22/04$ $06/22/04$ $8.1 - 9.1$ $06/22/04$ $06/22/04$ 10.6 $06/24/04$ 10.6 $06/24/04$ 0.6 $06/24/04$ 0.6 $06/24/04$ 0.6 $06/24/04$ 0.6 $06/24/04$ 0.6 $06/24/04$ 0.6 $06/24/04$ 0.6	10.4 - 11.4 5.9 - 7.9 5.9 - 7.9 9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A 7.8 - 8.5	lative Soil) sand (Native Soil) tive Soil) y (Native Soil) AND (Native Soil) w refusal nd sludge/Fill) ay (Native Soil)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.9 - 7.9 9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A 7.8 - 8.5	e sand (Native Soil) tive Soil) ay (Native Soil) AND (Native Soil) w refusal nd sludge/Fill) ay (Native Soil)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9.0 - 11.0 11.2 - 12.4 12.4 - 13.4 N/A 7.8 - 8.5	tive Soil) ay (Native Soil) AND (Native Soil) w refusal nd sludge/Fill) ay (Native Soil)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11.2 - 12.4 12.4 - 13.4 N/A 7.8 - 8.5	ay (Native Soil) AND (Native Soil) w refusal nd sludge/Fill) ay (Native Soil)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.4 - 13.4 N/A 7.8 - 8.5	AND (Native Soil) w refusal nd sludge/Fill) ay (Native Soil)
06/22/04 N/A N/A 06/23/04 9.3 7.8 - 8.5 06/23/04 9.3 7.8 - 8.5 06/22/04 >16.0 10.0 - 11.3 06/22/04 >17.7 12.4 - 14.4 06/22/04 >19.0 15.7 - 17.7 06/22/04 12.5 7.8 - 8.8 06/22/04 12.5 7.8 - 8.8 06/22/04 11.2 10.2 - 11.2 06/22/04 11.2 10.2 - 11.2 06/22/04 11.2 10.2 - 11.2 06/22/04 11.2 10.2 - 11.2 06/22/04 11.2 10.6 - 10.6 06/22/04 10.8 9.6 - 10.6 06/24/04 N/A N/A 06/24/04 0.10.6 06/24/04 0.10.6	N/A 7.8 - 8.5	w refusal nd sludge/Fill) ay (Native Soil)
06/23/04 9.3 7.8 - 8.5 06/22/04 >16.0 10.0 - 11.3 06/22/04 >17.7 12.4 - 14.4 06/22/04 >19.0 15.7 - 17.7 06/22/04 >19.0 15.7 - 17.7 06/22/04 >112.5 7.8 - 8.8 06/22/04 12.5 7.8 - 8.8 06/22/04 11.2 10.2 - 11.2 06/22/04 11.2 8.1 - 9.1 06/22/04 11.2 10.2 - 11.2 06/22/04 11.2 10.2 - 11.2 06/24/04 10.8 8.6 - 10.6 06/24/04 N/A N/A 06/24/04 0.6/24/04 9.6 - 10.6 06/24/04 0.10.6 9.6 - 10.6 06/24/04 0.10.6 9.6 - 10.6	7.8 - 8.5	nd sludge/Fill) ay (Native Soil)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ay (Native Soil)
06/28/04 >17.7 12.4 - 14.4 06/22/04 >19.0 15.7 - 17.7 06/22/04 12.5 7.8 - 8.8 06/22/04 12.5 7.8 - 8.8 06/22/04 11.9 8.1 - 9.1 06/23/04 11.2 10.2 - 11.2 06/24/04 11.2 10.2 - 11.2 06/24/04 10.6 9.6 - 10.6 N/A N/A N/A 06/24/04 9.6 - 10.6		
06/22/04 >19.0 15.7 - 17.7 06/22/04 12.5 7.8 - 8.8 06/22/04 12.5 7.8 - 8.8 06/23/04 >11.9 8.1 - 9.1 06/24/04 11.2 10.2 - 11.2 06/24/04 10.8 8.6 - 10.6 06/24/04 10.6 9.6 - 10.6 06/24/04 N/A N/A		ond sludge/Fill)
06/22/04 12.5 7.8 - 8.8 06/23/04 >11.9 8.1 - 9.1 06/23/04 11.2 10.2 - 11.2 06/24/04 10.8 8.6 - 10.6 06/24/04 10.6 9.6 - 10.6 N/A N/A N/A		D (Native soil)
06/23/04 >11.9 8.1 - 9.1 06/24/04 11.2 10.2 - 11.2 06/24/04 10.8 8.6 - 10.6 06/24/04 10.8 8.6 - 10.6 06/24/04 10.6 9.6 - 10.6 N/A N/A N/A	7.8 - 8.8	T (Pond Sludge)
06/24/04 11.2 10.2 - 11.2 06/24/04 10.8 8.6 - 10.6 06/24/04 10.6 9.6 - 10.6 N/A N/A N/A		ILT (Pond Sludge)
06/24/04 10.8 8.6 - 10.6 06/24/04 10.6 9.6 - 10.6 N/A N/A N/A 06/24/04 9.6 - 9.6		d SAND -(Native)
06/24/04 10.6 9.6 - 10.6 N/A N/A N/A 06/24/04 9.6 9.6 - 9.6		ve Soils)
N/A N/A N/A N/A N/A 06/24/04 86 - 96		e Soils)
06/24/04 96 86-96		
	9.6 B.6 - 9.6 Dk gray-brown medium to fine SAND (Native Soils)	SAND (Native Soils)
C-6 06/24/04 13.7 12.6 - 13.6 Dk gray-bl		0 (Native Soils)
06/25/04 9.2 7.6 - 8.6	7.6 - 8.6	(Native Soil)
C- 8 06/28/04 6.3 4.7 - 6.2 Red-brn fi		lay siit (Native soil)

2004-09 SSL dft-00

Table 2 Analytical Methods/Sample Numbers and QA/QC Samples

FUSRAP Maywood Superfund Site, Maywood, NJ

Sample Item	Media	Method	Field Samples	Field Samples Rinsate Blanks	Duplicates	USACE Splits	Comments
TAL Metals + Li/Boron	Soil	SW-846 Method 6010B/7471A	22	ۍ س	5		
SPLP - TAL Metais + Li/Boron	Soil	1312/SW-846 Method 6010B/6020/7470A	22	AN	AN	¢2	SPLP was run in triplicate. No duplicate QA/QC sample was performed.
Soil pH	Soil	SW-846 Method 9045C	22	AN	5	NA	
Total Organic Carbon	Soil	Lloyd Kahn Method	22	٩N	2	NA	
Soil Moisture	Soil	MCAWW 160.3 Modified	22	AN	2	NA	
Grain Size Analysis - Mechanical & Hydrometer	Soil	D422-63	22	AN	AA	٩	

Notes:

NA = Not Analyzed

.

FUSRAP Maywood Superfund Site Contract Number DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Draft Rev. 00 September 2004

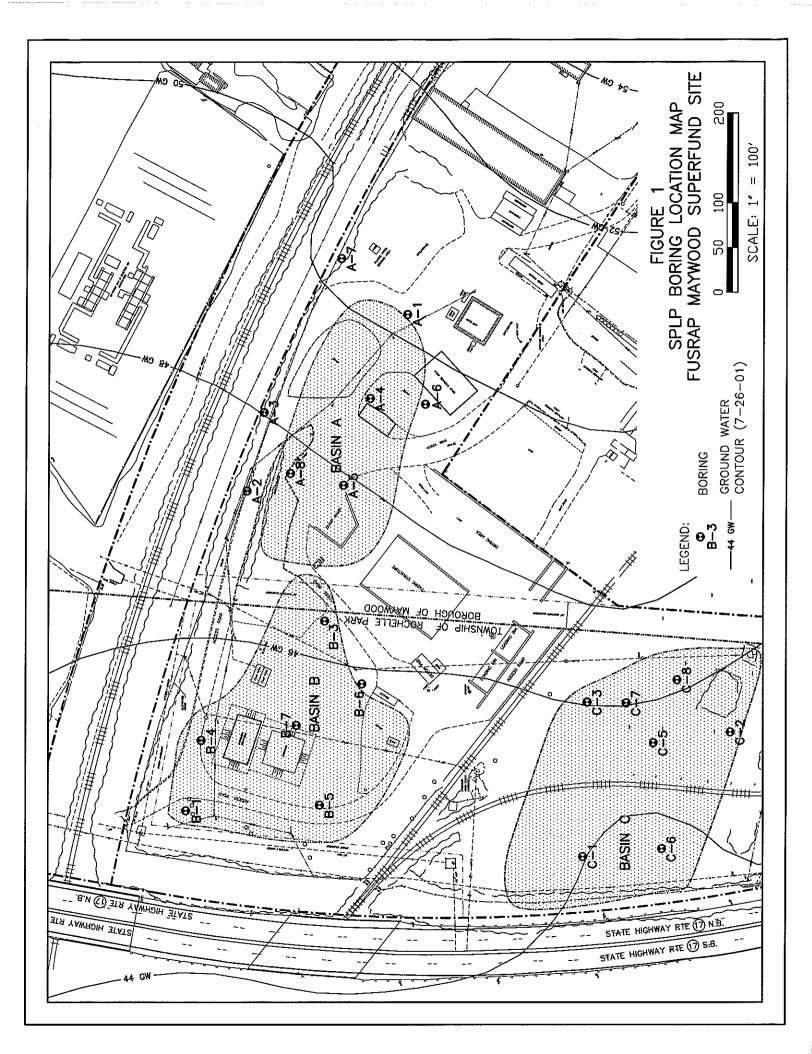
Table 3 Summary of SSL Data Analysis Results

FUSRAP Maywood Superfund Site, Maywood, NJ

Analyte	Ground	Groundwater Criteria (ug/L)	TGC = GWQC or MCL X DAF of 20 (ug/L) See Note 1.	Maximum Detected Soil Concentration With Leachate Below TGC (mg/Kg)	Maximum Detected Soil Concentration Location	USEPA Generic Impact to Groundwater Standard (mg/kg)	Criteria to Use (Generic or Derived)	Migration to Groundwater SSL (mg/kg)
Antimoni	6	Federal MCL	120	1.5 (Reporting Limit)	C-2	5	Generic	5
(INITINIC	2	NJDEP GWQC	40	1.5 (Reporting Limit)	C-2	5	Generic	5
Arconic	10	Federal MCL	200	122	A-6	29	Derived	122
	0.02	NJDEP GWQC	0.4	None	N/A	29	Generic	29
Barium	2000	NJDEP GWQC and Federal MCL	40,000	255	C-7	1600	Generic	1600
Benullium	4	Federal MCL	80	2 (Reporting Limit)	C-2	63	Generic	63
	0.008	NJDEP GWQC	0.16	None	N/A	63	Generic	63
Boron	7300	Region IX PRG	146,000	52	A-7	N/A	Derived	52
minmo	5	Federal MCL	100	1.9 (Reporting Limit)	A-7	8	Generic	80
	4	NJDEP GWQC	80	1.9 (Reporting Limit)	7-A	8	Generic	8
Chromium	100	NJDEP GWQC and Federal MCL	2000	242	A-1	38	Derived	242
, conor	1300	Federal MCL	26,000	426	A-6	N/A	Derived	426
	1000	NJDEP GWQC	20,000	426	A-6	N/A	Derived	426
1	15	Federal MCL	300	193	C-8	400 (Screening Level)	Generic	400
200	ភ	NJDEP GWQC	100	193	C-8	400 (Screening Level)	Generic	400
Lithium	730	Region IX PRG	14,600	194	A-7	N/A	Derived	194
Mercury	2	NJDEP GWQC and Federal MCL	40	0.61	A-7	N	Generic	2
Nickel	100	NJDEP GWQC	2000	214	A-6	130	Derived	214
Selenium	50	NJDEP GWQC and Federal MCL	1000	3 (Reporting Limit)	A-7	ъ	Generic	£
Thallium	2	Federal MCL	40	1.2 (Reporting Limit)	C-7	0.7	Derived	1.2
	0.5	NJDEP GWQC	10	1.2 (Reporting Limit)	C-7	0.7	Derived	1.2

Notes: (1.) TGCs were calculated by using the applicable NJDEP GWQS or Federal MCL and NJDEP GWQC if lower than the GWQS. GWQS = Groundwater Quality Standard NJDEP = New Jersey Department of Environmental Protection

NJUEP = New Jersey Department of Environmental Protection MCL = Maximum Contaminant Level PRG = Preliminary Remediation Goal ug/L = Micrograms per liter GWQC = Groundwater Quality Criteria

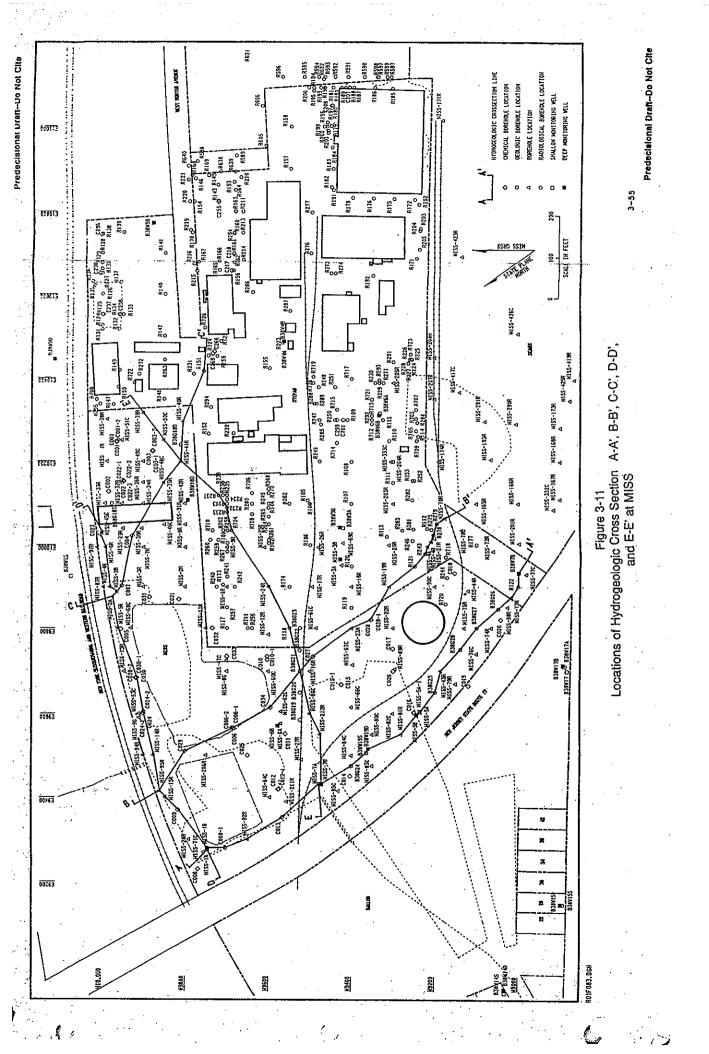

GWQS = Groundwater Quality Standard DAF = Dilution Attenuation Factor N/A = Not Applicable TGC = Target Groundwater Concentration

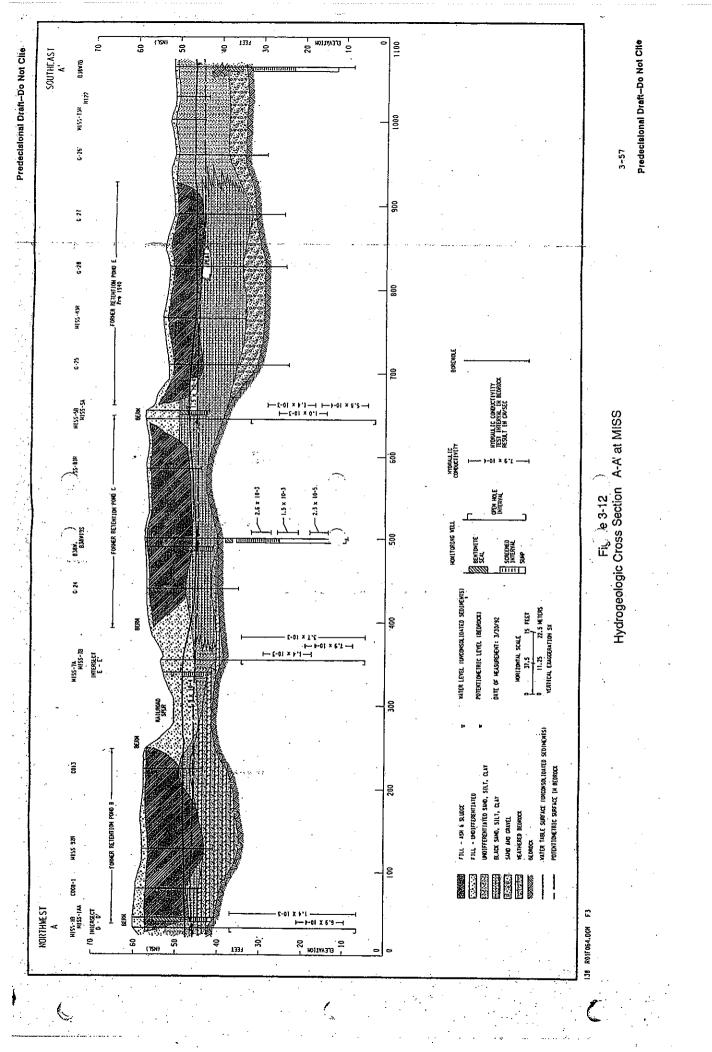
USEPA = United States Environmental Protection Agency

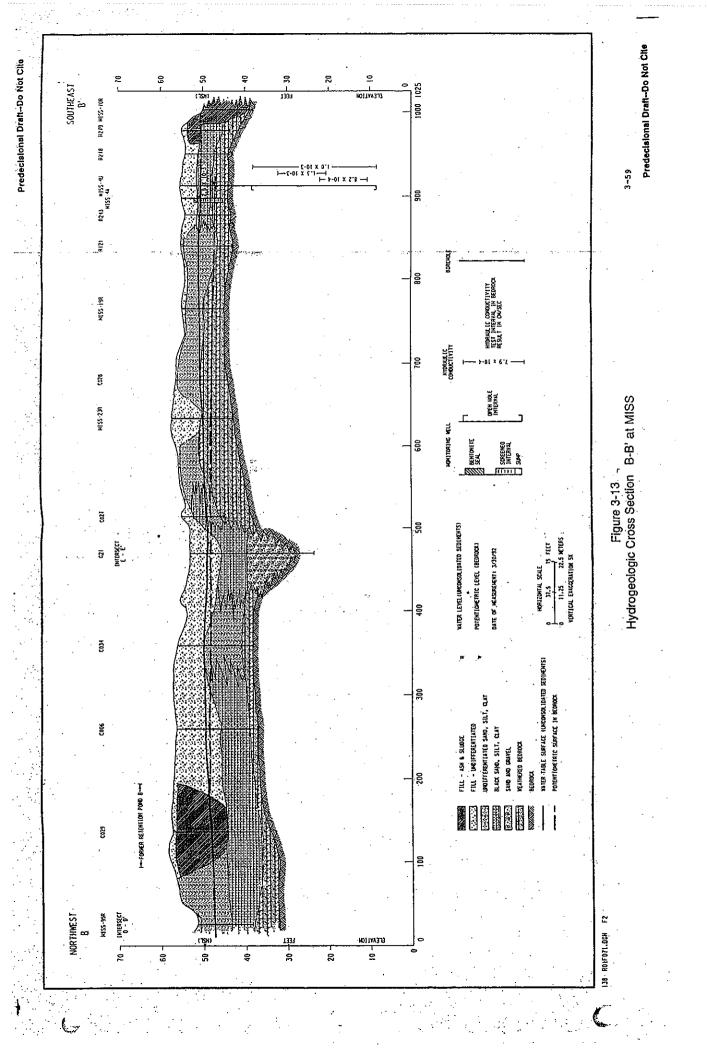
2004-09 SSL dft-00

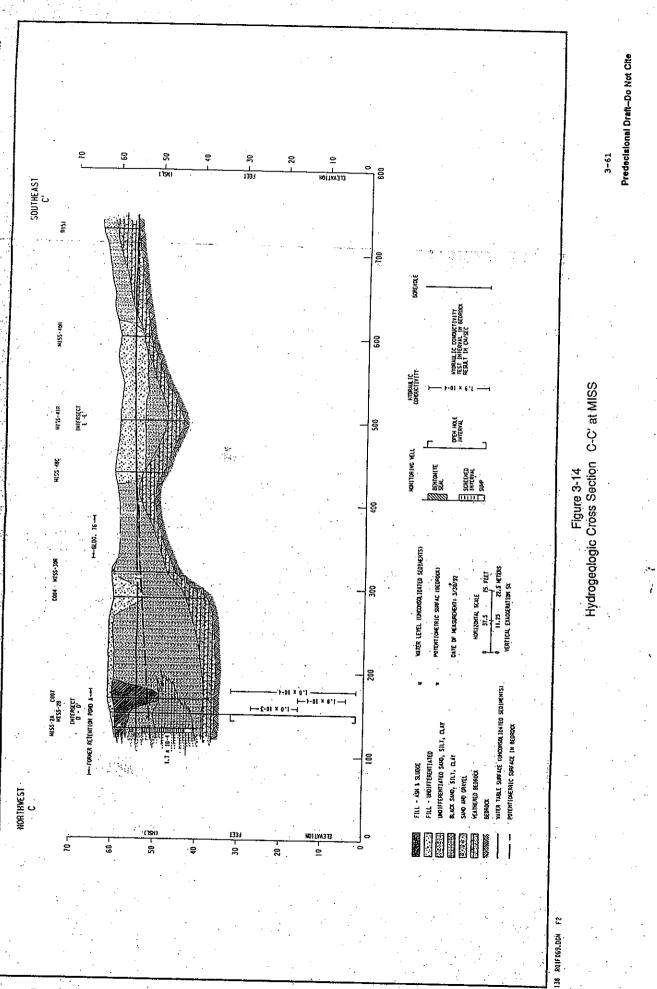
FIGURES

This page intentionally left blank.

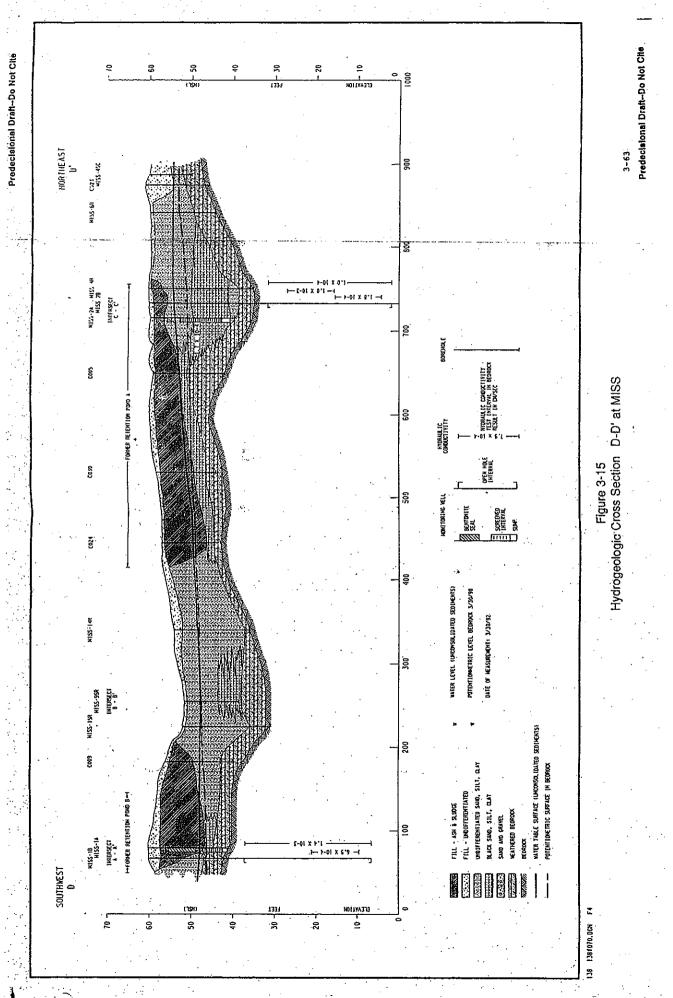


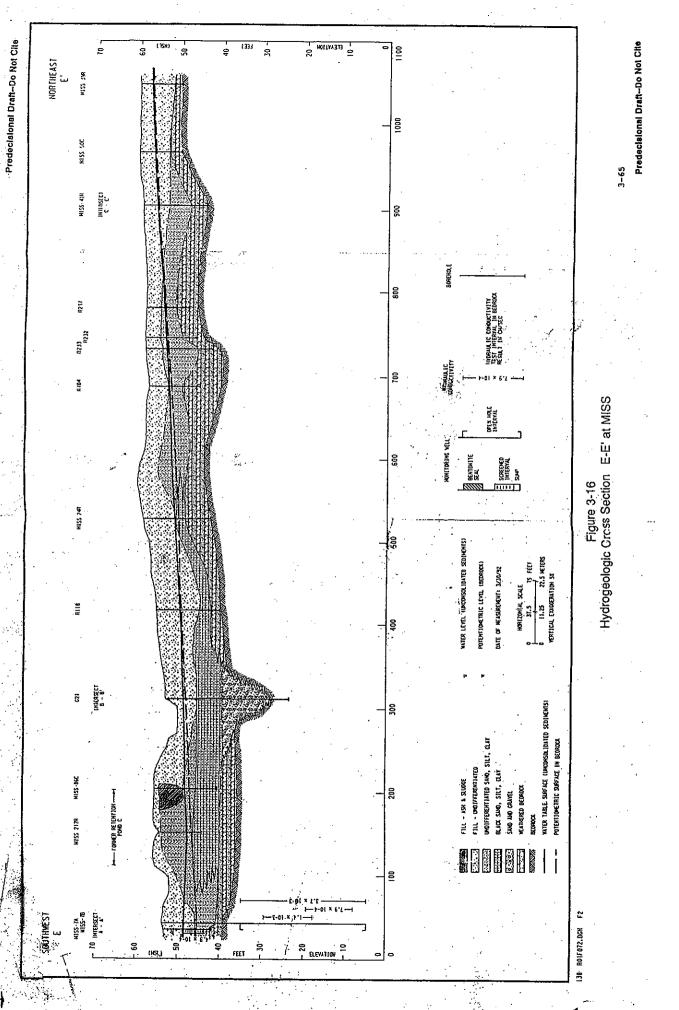

APPENDICES


This page intentionally left blank.


APPENDIX A DOE, 1992 SECTION PLAN AND CROSS SECTIONS A-A', B-B', C-C', D-D', & E-E'

This page intentionally left blank.





And .

APPENDIX B SOIL BORING LOGS

This page intentionally left blank.

						(Page 1 of 1)
		1AYWOOD Maywood, N			DATE STARTED : June 21, 2004 DATE COMPLETED : June 21, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett	
- 1	5	Shaw Projec	ct #6085	75	GEOLOGIST : Joseph McGuckin	ı
pth n et	Core #	Sample Recovery (feet)	PID (ppm)		DESCRIPTION	REMARKS
0				0.0-1.4 Dry,	gray 3/4" GRAVEL and CRUSHED ROCK aggregate	Total core runs = 2
1 2 3	1	4.0	0.0	powder (com 1.4-4.0 Dry, fill).	pacted fill). red-brown ROCK FLOUR and 3/4" GRAVEL (compacted	Core run #2 recovery (feet): 0-4: 3.6 4-8: 3.9 8-12: 3.7 12-15.4: 3.4 (refusal)
4 5 6 7	2	3.7	0.0	4.3 Dry, "bla 4.3-5.8 Dry, gravel-sized i 5.8-6.7 Mois 6.7-7.5 White	red ROCK FLOUR (fill). ck" red-brown silty clayey fine SAND (fill). red-brown silty fine SAND / sandy SILT with some ock fragments (moist @ 5.7) (fill). t, gray to dark gray silty fine SAND (fill). a/gray chalk-like SILT (pond sludge/fill). brown organic SILT (fill).	
8 9 0 1	3	3.7	0.0	sand fraction	urated/wet, dark gray brown clayey SILT with 15% fine (fill). turated/wet, very dark gray / black, with red-brown sandy SILT with 20% angular gravel (fill).	
2 3 4 5	4	2.6	0.0	quartz gravel (13.5). 13.5-15.0 W gravel. **CORE RUN 12.0-13.4 W	et, dark reddish brown sandy SILT with 1" white-gray (fill). Black-colored zone at interface with natural soil zone et, red-brown fine sandy SILT with 40% red-brown rock #2 et, black / dark gray silty fine SAND (fill). y/moist (not wet), red-brown sandy SILT with 35% gravel.	Native soils @ 13.5 feet, bgs. Sample interval: 13.5-15.0.
+ - -	LI.			END OF BOF	RING AT 15.4' BGS.	I
16 17 18 19				END OF ROF	(IING AT 10.4 BGS.	-0.

		mada	ucture,	IIIO.	(Page 1 of 1)				
		IAYWOOD		DATE	STARTED : June 22, 2004 COMPLETED : June 22, 2004 ING METHOD : Geoprobe	(Page 1 of 1)			
		Maywood, N Shaw Proje			ER : B&B / Gordon Blewett OGIST : Joseph McGuckin				
			000001	<u> </u>		17 W WE WE WATT W TT			
Depth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESCRIPTION	REMARKS			
0-				0.0-0.8 Dry, crushed	gray roadway STONE (fill).	Total core runs = 3			
1-				1.1-2.5 Moist, light g	ne sandy SILT (topsoil/fill). ray / white "chalk-like" SILT (pond sludge/fill).				
				sand (pond sludge/fil	own/black lens SILT with fine gravel and coarse I).				
2-	1	3.7	0.0	2.6-3.7 Moist, light g	ray / white SILT (pond sludge/fill).				
3-									
4									
-				6.0-6.15 Light gray /	ray / white SILT (pond sludge/fill). beige / tan fine silty SAND (pond sludge/fill),				
5-					andy SILT with little 1/2" to 3/4" Brunswick				
6	2	3.1	0.0	weathered rock fragm 6.6-7.1 Moist, black	nents. / very dark gray fine sandy SILT (soft).	Contact w/native soils @ 6.2 feet, bgs.			
7						Sample interval: 6.3-7.1.			
8-	\square			8.0-9.6 Moist to wet.	black / very dark gray fine sandy SILT grading to a				
9-]				silty fine SAND, high 9.6-9.9 Black / very	organic content, natural. dark gray silty organic fine to medium SAND with				
111				trace medium gravel 9.9-11.4 Mottled dar	(subrounded). k grav / red-brown / light grav silty CLAY / clavey	Saturated sediment (water table) @ 9.6			
10-	3	3.4		SILT (aquitard) with 2 to 1.25") rock fragme	25% fine sand and little Brunswick formation (1/4"	feet, bgs.			
11-									
12									
				END OF BORING AT	Г 12' BGS.				
13									
14									
15									
16									
17									
18-					٧				
19									
20-									

07-28-2004 n:\COOK\Maywood\A-2.bor

						(Page 1 of 1)	
	Ν	IAYWOOD Maywood, N	lew Jerse	ЭУ	DATE STARTED : June 21, 2004 DATE COMPLETED : June 21, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett GEOLOGIST : Jacob McGurkin		
		Shaw Projec	ot #60857	/5	GEOLOGIST : Joseph McGuckin		
epth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESCRIPTION	REMARKS	
0 1 1 2 3	1	3.0		FLOUR (road 0.5-1.0 Dry, (topsoil/fill). 1.0-2.7 Brow and trace san	white/gray angular crushed quartz GRAVEL and ROCK way surface) (fill). dark brown SILT with trace fine sand, some fine gravel n SILT with gravel rock fragments of Brunswick formation Id (fill). black COAL fragments (fill).	Total core runs = 2 Core run #2 recovery (feet): 5.0-9.0: 3.4 12.0-14.5: 2.5 (refusal)	
4 5 6 7	2	2.4		5.5-5.7 Gray 5.7-6.4 Mois **CORE RUN 5.0-9.0 Very silty fine to m	light gray, varved, soft chalky SILT (fill). GRAVEL and brown SILT (pond sludge/fill). t/wet, gray/brown silty fine/medium SAND to 8.4. #2 moist, gray/tan/brown silty fine SAND. (6.3-8.3 - Moist, edium SAND with fine root hairs and strands of vegetation pond sludge/fill below).) Sample collected in probable fill material at 6.3-8.3 feet interval, bgs.	
8 9 10 11 11	3	3.4		SAND (proba 9.3-10.4 Wet 10.4-10.8 We to 1/2" thick) of 10.8-11.1 Bit like without sl 11.1-11.4 Me **CORE RUN	black and brown vertically interbedded varved silty fine ble fill). t, black fine to medium SAND, trace silt fraction. et/saturated, black and dark gray interbedded lenses (1/8" of fine to medium sand with trace silt (probable fill). ack medium to coarse SAND with black organic fluid (oil- neen), slight odor (probable fill). bist, dark brown / mottled black silty CLAY, aquitard layer. #2	Saturated sediment (water table) @ 8. feet, bgs.	
12 13 14	4	2.5		COArse sand (**CORE RUN 12.0-14.5 Re		Probable native soils @ 12.0 feet, bgs	
15-	⊥ L	LI		END OF BOF	RING AT 14.5' BGS.	1	
16 17 17 18 18 19							

ł

		I Infrastr				ORING LOG [(Page 1 of 1)	
		MAYWOOD				: June 23, 2004 : June 23, 2004 : Geoprobe			
		<u>Maywood, 1</u> Shaw Proje			DRILLER : B&B / Gordon Blewett GEOLOGIST : Joseph McGuckin				
epth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESCF	RIPTION		REMARKS	
0-				1 <u>.</u>					
1 2 3	1	3.6	0.0	mat and tops 2.2-2.3 Red 2.3-2.8 Dry, I angular grave 2.8-3.3 Dark same, trace fi 3.3-3.5 Dry, I same (1/2" to	bil 0.0-0.2 (fill). BRICK gravel-sized fra ght red-brown fine sa l (fill). brown LIGNITE/PEAT ne root mat. red-brown silty fine SA	with 20% fine sand, gra agment and brown SILT ndy SILT with 20% fine and GRAVEL with 20% ND and rock GRAVEL ond sludge).	matrix. to medium % matrix of	Total core runs = 2 Core run #2 recovery (feet): 8.0-12.0: 3.3	
4	2	3.6		4.4-7.3 Moist (1/2" to 1") (p	, black zone of organi to wet, alternating ler ond sludge) (fill). , very dark gray organ	ises of dark gray / gray	/ white SILT	, ,	
8 9 10 11 11	3	3.9		2019 2019 2019 2019 2019 2019 2019 2019	, transition interface o , white SILT (pond slu e SAND (moist) with r	larker gray / gray-blue p f fill/natural material zor dge/fill), transition to gri emnant fine roots, sterr e to medium SAND, pro	ne @ 9.3-9.4. ay-brown vs.	Probable native formation @ 9.4 feet, bgs. Sample interval: 9.4-10.4, Saturated sediment (water table) @ 10.5 feet, bgs.	
12-					ING AT 12' BGS.				
13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19									

07-28-2004 n:\COOK\Maywood\A-4.bor

				Inc. BORING EUG DETAILS	(Page 1 of 1)
	Ņ	IAYWOOD Maywood, I Shaw Proje	New Jerse	DATE COMPLETED : June 23, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett	
)epth in feet	Core #	Sample Recovery (feet)	PID (ppm)	DESCRIPTION	REMARKS
0 1 2 3	1	3.9		0.0-0.3 Dry, gray GRAVEL (roadbase/fill). 0.3-0.6 Dry, light brown / tan SILT with some fine sand and 15% gravel (fill). 0.6-2.2 Dry, light brown fine sandy SILT with 20% fine to medium angular gravel (fill). 2.2-2.4 Dry, gray GRAVEL (former roadway subbase) (fill). 2.4-2.7 Dry, light brown / tan friable layer rock GRAVEL and brown SILT matrix (fill). 2.7-3.9 Dry, brown SILT with some gravel rock fragments and fine sand (fill).	Total core runs = 4 Core run #4 installed 7 feet west of core run #1 due to dense obstruction at depth in core run #1. Core run #3 recovery (feet): 9.0-13.0: 3.4 Core run #4 recovery (feet):
4 5 6 7 8	2	3.8		 4.0-5.2 Dry, same as above (fill). 5.2-5.4 Dry, dark brown silty HUMUS with little root mat and little medium angular gravel (fill). 5.4-5.5 Moist, light beige silty CLAY (fill). 5.5-7.0 Moist, light gray / gray / white alternating lenses (1/2" to 1.25") SILT (pond sludge/fill). 7.0-7.1 Dry, black fine sandy SILT with organic fraction (fill). 7.1-7.35 Moist, very light gray / white clayey SILT (fill). 7.35-7.4 Moist, gray fine sandy SILT with trace vegetation (stems, fibrous strands) (fill). 7.4-7.8 Moist, gray-brown silty fine SAND, with 10% root mat to 7.5, draw fine scandy SILT of 2.9 	9.0-13.0: 3.4
9 10 11 11	3	3.9		gray fine sandy SILT to 7.8. 8.0-9.1 Moist, gray SILT with alternating darker/lighter lenses of gray color (1/2" to 1") (pond sludge/fill). 9.1-10.1 Wet, alternating lenses of light gray / darker gray / white fine sandy SILT, grading to coarser silty fine SAND with increased depth (fill). 10.1-10.4 Gray/black clayey SILT, with 15% vegetation fibers/strands visible, interface of fill/natural soils @ 10.4. 10.4-10.7 Moist, dark gray-brown silty fine SAND (native soils). 10.7-11.4 Moist, very dark gray / black silty fine SAND, grading to more sandy fraction with 20% silt matrix.	Native soils @ 10.4 feet, bgs. Sample interval: 10.4-11.4. Saturated sediment (water table) @ 11.4 feet, bgs.
13	4	1.9		11.4-13.9 Saturated/wet, very dark gray / black fine SAND with 15% to 20% silt matrix fraction. 12.0-13.9 See above.	
14 15 16 17 18 19				END OF BORING AT 13.9' BGS.	

							(Page 1 of 1)
		MAYWOOD			DATE STARTED DATE COMPLETED DRILLING METHOD	: Geoprobe	
		<u>Maywood, I</u> Shaw Proje			DRILLER GEOLOGIST	: B&B / Gordon Blewett : Joseph McGuckin	
		Silaw Fillye	00007		1		
Depth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESCI	RIPTION	REMARKS
0 1 2 3	1	3.8		and 30% rock	k fragments (fill)	T (topsoil) with grass and root mat with trace gravel fragments (fill). GAND with 15% silt matrix fraction	Total core runs = 1
4 5 6 7	2	3.8		SILT @ 5.8.	t, dark brown / black o t, transitioning coarse	-like powder/fill). ansitioning to moist, black organic organic SILT. r with depth to a dark brown very silty	Native soils @ 5.8 feet, bgs. Sample interval: 5.9-7.9.
8-		L		END OF BOI	RING AT 8' BGS.	· · ·	L
9-							
10							
11							
12							
13							
14							
15				·			
16							
17-							
18							
19							

		AW Env Infrastr			BORING LOG DETAILS	FOR: A-7	
						(Page 1 of 1)	
	N	AYWOOD Maywood, N Shaw Proje	lew Jerse	Эу	DATE STARTED : June 21, 2004 DATE COMPLETED : June 21, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett GEOLOGIST : Joseph McGuckin		
Depth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESCRIPTION	REMARKS	
0 1 2 3	1	3.0		1.0-2.6 Dry, (fill).	light brown SILT (topsoil). reddish-brown fine sandy SILT with 30% gravel fragments dark gray SILT (rock flour) with white coarse sand fraction	Total core runs = 2	
4 5 6 7	2	3.6		5.2-5.5 Mois 5.5-6.6 Wet, SILT (pond s	white / light gray SILT (pond sludge/fill). t, light gray chalky SILT (pond sludge/fill). light gray, laminated, alternating 0.5" varves of chalky ludge/fill). tan-beige SILT with trace fine sand (fill).		
8 9 10	3	3.7		with decomposite and the second secon	et, dark gray silty fine SAND grading to a fine sandy SILT	Native soils @ 8.0 feet, bgs. Sample interval: 9.0-11.0.	
11						Saturated sediment (water table) @ 11.1 feet bgs.	
12		3.8		14.3-15.8 W	aturated/wet, very dark gray silty fine SAND. et, dark brown silty fine SAND with some alternating dark (0.5") lenses @ 15.4-15.7.		
14	4	3.0					
16				END OF BO	RING AT 16' BGS.		
18							
20-		······					

		AW Env Infrastri			В	ORING LOG DETAILS	FOR: A-8 (Page 1 of 1)		
	N	IAYWOOD	New Jerse	<u>а</u>	DATE STARTED : June 25, 2004 DATE COMPLETED : June 25, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett				
	Shaw Project #608575				GEOLOGIST	: Joseph McGuckin			
Depth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESCI	RIPTION	REMARKS		
0			,,	(fill).		T with 3/4" gravel rock fragments	Total core runs = 2		
1	1	3.4		2.1-3.4 Dry,	red-brown fine sandy red-brown fine sandy agments (fill).	SILT (fill). SILT with 30% large (3/4" to 2")	Core run #2 recovery (feet): 11.0-15.0: 3.6		
3	2	3.6		4.5-5.0 Dry,	red-brown SILT (fill). dark brown SILT (fill). t, red-brown fine sand	y SILT with some white mottles (fill).			
8 9 10 11	3	3.9		Interses SILT 10.0-11.6 Sa but darker cc 11.6-11.9 W soils interfac **CORE RUI 11.2-12.4 M	(pond sludge/fill). aturated, gray/black/ta vlor (fill). 'et, very dark gray / bla e. N #2	ay / light gray / black alternating n SILT lenses (same as 8.0-10.0), ack fine/medium organic SILT, natural medium SAND with 15% clay matrix	Probable native soils @ 11.2 feet, bgs. Sample interval: 11.2-12.4.		
12 13 14 15	4	3.1		12.4-12.7 Sa 12.7-15.1 Sa	ame as above, saturat	ty SAND, dense, residual Brunswick	Saturated sediment (water table) @ 12.6 feet, bgs.		
16 17				END OF BOI	RING AT 16' BGS.		•		
18									
20									

07-28-2004 n:\COOK\Maywood\A-8.bor

		Infrastro			(Page 1 of 1)
		AYWOOD		DATE COMPLETED : June 23, 2004 DRILLING METHOD : Geoprobe	· · · · · · · · · · · · · · · · ·
	5	Shaw Proje	ct #60857		<u></u>
epth in eet	Core #	Sample Recovery (feet)	PID (ppm)	DESCRIPTION	REMARKS
0-	1			0.0.0.4. Grav brown find condy SILT (topsoil) with grace and root	
1 1 2 3	1	3.3		0.0-0.4 Gray-brown fine sandy SILT (topsoil) with grass and root mat @ 0.0-0.1. 0.4-1.0 Dry, tan/beige fine sandy SILT (fill). 1.0-1.6 Dry, red-brown SILT with 25% red-brown shale rock fragments (fill). 1.6-3.3 Dry, very light gray / white / tan mottled SILT (re-worked pond sludge) (fill).	Total core runs = 2 Refusal @ 15.3. Core run #2 recovery (feet): 11.0-15.0: 3.5
4 5 6 7	2	4.0		4.0-8.0 Wet/saturated, alternating lenses of light gray / tan / beige / white SILT (1/2" to 1.25"), very soft (pond sludge) (fill), continues to 10.5.	
8 9 10 10	3	3.2		8.0-10.5 Wet/saturated, alternating lenses of gray/beige/tan/white SILT (1/2" to 1.25"), very soft (pond sludge/fill). 10.5-11.2 Moist, gray/tan soft silty CLAY / clayey SILT. **CORE RUN #2 10.5-12.4 Moist, gray/tan silty CLAY (pond sludge/fill), grading to a more dense clayey SAND @ 12.4 (probable natural soils).	
12 - 13 - 14 -	4	3.3		12.0-12.4 See above. 12.4-15.3 Moist, very dark gray / black / red-brown fine to medium SAND with trace silt matrix and some red-brown (1.5") sandstone rock fragments (Brunswick formation) @ 13.5 (probable natural formation).	Probable native soils @ 12.4 feet, bgs Sample interval: 12.4-13.4.
15- 16-	1 1	<u>ı </u>		END OF BORING AT 15.3' BGS.	1
17-					
18 19 19					

		Infrastr	,				(Page 1 of 1)
	N	AYWOOD	lew Jerse	y	DATE STARTED DATE COMPLETED DRILLING METHOD DRILLER GEOLOGIST		
	2	haw Proje	<u>ct #60857</u>	5	GEOLOGIST		
Depth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESC	RIPTION	REMARKS
0-	1						Total core runs = 2 B-2 offset 7 feet north due to overhea power lines. Obstruction/refusal encountered @ 2.0 in both core runs Boring abandoned.
2-				END OF BOI	RING AT 2' BGS.		I
3-							
4-							
5							
6							
7-							
8-							
9-							
10-							
-							
11~							
12							
13							
13 14							
-							
14-							
14 15							
14 15 16							
14 15 16							

						(Page 1 of 1)
	1	MAYWOOD Maywood, N Shaw Projec	lew Jerse	эу	DATE STARTED : June 23, 2004 DATE COMPLETED : June 23, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett GEOLOGIST : Joseph McGuckin	
epth in	#	Sample	PID			
eet	Core	Recovery (feet)	(ppm)		DESCRIPTION	REMARKS
0 1 2 3	1	3.9		0.4-1.6 Dry, 1.6-2.3 Dry, (roadbase/fill 2.3-2.7 Dry, (fill). 2.7-3.7 Very vegetation st	gray/red/tan GRAVEL with silt (roadway subbase/fill). red-brown large GRAVEL with silt (fill). light tan fine GRAVEL and fine SAND with silt matrix), burlap fabric swatch @ 2.3. gray fine GRAVEL with fine to medium sand and silt matrix dark gray / black SILT with 35% 1/2" to 3/4" gravel, trace ems (fill). red-brown lignite fibrous SILT with root mat (fill).	Total core runs = 2 Core run #2 recovery (feet): 6.0-10.0: 3.8
4 5 6 7 7 8	2	3.7		fraction (fill). 4.25-4.55 Dr (fill). 4.55-4.65 Dr 4.65-4.9 Moi 4.9-5.2 Dry, fraction (fill). 5.2-5.6 Dry, formation silt	, dark gray / black SILT with 30% fine to medium gravel y, gray/beige SILT with 25% fine to medium gravel fraction y, light red-gray SILT (rock flour) with trace medium gravel, st, dark brown SILT with trace fine sand. gray-brown medium/fine/coarse GRAVEL with 30% silt red-brown large GRAVEL and SILT (rock flour), Brunswick stone (fill).	
9 10 11	3	3.9		5.7-6.4 Dry, 6.4-6.9 Dry, fraction (fill). 6.9-7.4 Mois fabric/texture 7.4-7.6 Mois	gray SILT, dense (fill). Jark gray SILT with little 25% fine to medium gravel/slag Natural interface @ 6.9. t, black SILT with red laminations (remnant rock). t, gray/beige SILT (fill-verified). t, black SILT (same as 6.9-7.4, fill).	interval (7.8-8.5 feet, bgs) above the water table. Saturated sediment (water table) @ 9.3 feet, bgs.
12 13 14 15 16				8.0-8.2 Same 8.2-8.5 Moist sludge/fill), al 8.5-9.0 Moist white inorgan 9.0-11.3 Satu sift lens includ 11.3-11.9 We	a as above (7.6-7.8) to 8.1, then black organic SILT to 8.2, , light gray fine SAND with trace silt matrix (pond ternating light/darker lenses 1/2" to 3/4" pattern. , alternating lenses (1/2" to 3/4" thick) of very light gray / ic SILT and very fine SAND (pond sludge/fill). urated/wet 9.3-11.3, same as above except black organic led (pond sludge/fill). at, black organic SILT (native formation). RING AT 12' BGS.	Probable native soils @ 11.3 feet, bgs
17 18 18 19 19	·					

	ana	Infrastr	uotai o,		(Page 1 of 1)
_		IAYWOOD Naywood, I	-	DATE COMPLETED : June 22, 2004 DRILLING METHOD : Geoprobe	
		haw Proje			
epth in eet	Core #	Sample Recovery (feet)	PłD (ppm)	DESCRIPTION	REMARKS
0 -				0.0-0.5 Dry, gray road GRAVEL and ROCK FLOUR.	Total core runs = 3
1				0.5-1.0 Dry, brown/gray fine to medium SAND with some fine gravel and little silt (fill). 1.0-3.2 Light gray / beige / white SILT with some fine sandy silt laminations. Same through 4.0-6.2 (pond sludge/fill).	Core run #2 recovery (feet): 10.0-14.0: 3.4
2	1	3.2		nammauons. Same unougn 4.0-0.2 (pond siduge/im).	Core run #3 recovery (feet): 10.0-14.0: 3.4
3					
4 5				4.0-6.2 Same as above (fill). 6.2-6.5 Dry, dark gray / brown coarse SAND / fine GRAVEL with trace silt (fill).	
6	2	3.4		6.5-7.4 Light gray / beige / white SILT with some fine sandy silt laminations. Continues in 8.0-9.9 (pond sludge/fill).	
7 8 9 10 11	3	3.6		 8.0-9.9 Same as above. 9.9-10.0 Moist, gray/tan (transition zone) silty CLAY (fill/natural). 10.0-10.4 Moist, orange-brown fine sandy CLAY (probable native soils). 10.4-11.0 Moist, gray fine sandy clayey SILT grading to a black organic SILT. 11.0-11.6 Moist, dark gray / black organic SILT/PEAT with lignite roots and vegetation stems, strong organic odor, natural material. 	Probable native soils @ 10.0 feet, bg Sample interval: 10.0-11.3.
12				12.0-14.3 Orange-brown / dark gray / black / tan mottled silty CLAY with 15% fine subrounded gravel (1/4" to 1/2") fraction.	
13				14.3-15.3 More uniformly dark reddish brown CLAY (same texture as 12.0-14.3).	
14 15	4	3.3			, , , ,
16					
-				END OF BORING AT 16' BGS.	
17-					
18					
19-					

		l Infrastr	,				(Page 1 of 1)
	{	/AYWOOD Maywood, I Shaw Proje	New Jerse	ey	DATE STARTED DATE COMPLETED DRILLING METHOD DRILLER GEOLOGIST	: June 22, 2004 : June 22, 2004 (see remarks) : Geoprobe : B&B / Gordon Blewett : Joseph McGuckin	
epth in eet	Core #	Sample Recovery (feet)	PID (ppm)		DESCF	RIPTION	REMARKS
0 1 2 3	1	3.9		0.3-1.1 Dry, fragments. 1.1-1.9 Dry, 1.9-2.9 Dry, white silt (por 2.9-3.9 Mois)	red-brown sandy SILT brown / tan / light gray od sludge/fill). t. light gray / white SIL	SILT (topsoil) with some fine gravel with rock fragments/gravel (fill). fine sandy SILT with laminations of T layers interbedded with 1/2" to sand (pond sludge/fill).	Refusal @ 19.0
4	2	3.8		4.0-7.8 Moist	t, same as above, ligh	t gray / white SILT (pond sludge/fill).	
8 9 10 11 11	3	3.3		8.0-11.3 Wet (pond sludge/	, white 2" lenses SILT fill).	with regular 1/8" lenses gray silt	Probable perched water in pond sludge/fill @ 8.0-15.7 feet, bgs.
12 13 14 14 15	4	3.8		12.6-15.6 We white silt ever 15.6-15.8 We formation). **CORE RUN	y 1.5" to 2.5" (pond sl t, gray SILT with little #3	e fine sand and regular 1/2" lenses	Sample collected in probable pond sludge/fill (saturated) interval (12.4-14.4 feet, bgs).
16 17 17 18	5	2.7		16.0-19.0 Mo formation rock (1/16" to 1/8")	fragments (1/4" to 1"	n to fine SAND with some Brunswick), black mottles at some zones	Sample collected in native soils interval (15.7-17.7 feet, bgs).
19井	U				ING AT 19' BGS.		

					(Page 1 of 1)				
		MAYWOOD Maywood, I Shaw Proje	New Jerse	ey .	DATE STARTED : June 22, 2004 DATE COMPLETED : June 22, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett GEOLOGIST : Joseph McGuckin				
					· · · ·				
epth in eet	Core #	Sample Recovery (feet)	PID (ppm)		DESCRIPTION	REMARKS			
0 1 1 2 3	1	3.4		(roadway sur 0.5-0.9 Dry, 0.9-1.2 Dry, fragments (fil 1.2-3.4 Dry,	dark brown fine sand SILT (topsoil). dark gray / dark brown fine sandy SILT with 15% red brick	Total core runs = 2 Core run #2 recovery (feet): 7.0-11.0: 3.9			
4 5 6 7 8	2	3.3		4.7-5.0 Gray FLOUR. 5.0-5.2 Dry t with 20% 3/4 5.2-5.5 Mois fragments (fil 5.5-5.6 Dry, 5.6-5.8 Mois 5.8-6.3 Dark 5.2-5.5) with	white/gray SILT lens (chalk-like and friable). t, tan/brown SILT with 20% clay and 20% very fine sand. reddish brown silty coarse SAND / fine GRAVEL (same as decomposed wood fragments (postage stamp size/shape).	Sample interval: 7.8-8.8.			
9 10 11	3	3.9		fragments. 6.5-6.6 Mois 6.6-6.7 Mois 6.7-6.95 Bro 6.95-7.1 Rec Natural soil / 7.1-7.3 Mois silt (natural m					
12 13 14 15	4	3.4		white / black fragments of alternate from CLAYS/SILT 12.0-12.5 M fraction (prot 12.5-12.7 W 12.7-12.9 W 12.9-13.4 W 13.4-14.2 W clay/silt matri		Probable native soils @ 12.0 feet, bgs. Saturated sediment (water table) @ 12.5 feet, bgs.			
16 17 18 18 19	1			\silt matrix and	et/saturated, very dark gray / black fine SAND with trace d strong organic odor, natural. RING AT 16' BGS.				

					(Page 1 of 1)				
	N	IAYWOOD Iaywood, N	lew Jerse	y	DATE STARTED : June 23, 2004 DATE COMPLETED : June 23, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett GEOLOGIST : Joseph McGuckin				
epth	#	Sample	PID						
in eet	Core	Recovery (feet)	(ppm)		DESCRI	IPTION	REMARKS		
0 1 1				(roadway sub 0.5-1.9 Dry, matrix (fill), b	base). tan / light brown fine GF urlap fabric swatch at 1.	nd light gray sandy SILT matrix RAVEL and fine SAND with silt .9. RAVEL and coarse to medium	Total core runs = 2 Refusal @ 15.5. Core run #2 recovery (feet):		
2 3 1 4	1	3.4		SAND with si 2.2-2.6 Dry, stalks, fibers) 2.6-2.9 Dry, 2.9-3.3 Mois 3.3-3.4 Mois sludge/fill).	It matrix (fill). dark gray SILT with 209) (fill). dark gray-brown SILT w t, dark reddish brown S t, light gray SILT (chalk-	7.0-11.0: 3.2			
5 6 7	2	3.7			t, alternating lenses of c (pond sludge/fill).	dark gray / light gray / white SILT			
8 9 10 11 11	3	3.9		natural interb 8.1-9.2 Mois SILT (black) 9.2-11.1 We silty fine SAN 11.1-11.9 M	edded silts and fine sar t, black/gray alternating and very fine sandy SiL t, very dark gray fine sa ID, natural residual/wea bist, red-brown silty fine	ace limits of fill (pond sludge) and nds. g lenses (1/2" to 3/4") of organic T (gray) (pond sludge/fill). andy SILT, grading downward to a athered Brunswick formation. to medium SAND and some rock nation), pyrite fragment (1/8") @	Sample interval: 8.1-9.1. Probable native soils @ 9.2 feet, bgs		
12 13 14	4	3.0							
15									
16 17 17				END OF BOI	RING AT 15.5' BGS.				
18									
19-									

•	anu	Infrastro	uciuie,	nic.	(Page 1 of 1)			
		IAYWOOD Aywood, N		DATE COMPLETED : June 24, 2004 DRILLING METHOD . : Geoprobe	DATE COMPLETED : June 24, 2004 DRILLING METHOD . : Geoprobe			
		Shaw Proje		-				
pth n et	Core #	Sample Recovery (feet)	PID (ppm)	DESCRIPTION	REMARKS			
0 1 1 2 3	1	4.1		0.0-0.4 Dry, brown SILT and grass root mat (fill). 0.4-1.1 Dry, mottled light gray / brown / white SILT (industrial fill). 1.1-1.4 Dry, gray/brown mottled SILT with trace vegetation fragments (fill). 1.4-1.6 Moist, gray SILT unit (fill). 1.6-3.2 Moist, white / gray / light gray / tan SILT with chalk-like consistency, interbedded lenses (1/2" to 2") (pond sludge/fill). 3.2-4.1 Moist, same as above (1.6-3.2) (pond sludge/fill).	Total core runs = 2			
4 5 6 7	2	3.9		4.0-6.2 Moist to wet, same as above (1.6-4.1) (pond sludge/fill). 6.2-6.6 Saturated/wet, black organic SILT lenses (1/2" to 1") interbedded with very light gray silt lenses (1/2" to 1") (pond sludge/fill). 6.6-7.1 Gray / light gray / white / tan SILT lenses with trace fine sand (10%) (pond sludge/fill). 7.1-7.9 Very dark gray / black organic SILT zone with 1/8" laminations of light gray fine sand (fill).				
8 9 10 11	3	3.8		 8.0-9.5 Dark gray / very dark gray / black interbedded lenses of organic SILT (black) and SILT and silty gray CLAY (fill). 9.5-10.1 Black organic CLAY with some fine gravel and coarse to medium sand (5%) (fill). 10.1-10.2 Dark gray GRAVEL (1/2" to 3/4") with organic silt matrix (transition zone - bottom of pond/lagoon/basin). 10.2-11.2 Moist, dark gray-brown clayey fine to medium SAND (native soils). 11.2-13.0 Wet/saturated, dark gray-brown clayey fine to medium SAND, natural soils. 	Native soils @ 10.2 feet, bgs. Sample interval: 10.2-11.2. Saturated sediment (water table) @ 11.2 feet, bgs.			
12-	4	1.0		**CORE RUN #2 12.0-13.0 See above.				
13 14 14 115 115 116 117 117 118 119	-	1		END OF BORING AT 13' BGS.				

		Infrastro	,		(Page 1 of 1)				
		IAYWOOD Aaywood, N	_		DATE STARTED DATE COMPLETED DRILLING METHOD DRILLER				
	5	haw Proje	ct #60857	′5 	GEOLOGIST	: Joseph McGuckin			
epth in eet	Core #	Sample Recovery (feet)	PID (ppm)		DESC	RIPTION	REMARKS		
0 1 1 2 1 3	1	3.4		0.6-1.1 Dry,	brown SILT with gras very light gray / white t, dark gray clayey SI t, interbedded gray / enses (1/2" to 1.75") S	is and root mat (fill). e SILT (fill). LT, some organic fraction (fill). dark gray / light gray / white / SILT (pond sludge/fill).	Total core runs = 1		
4 5 6 7	2	3.3		4.0-7.3 Mois	t to saturated (5.8-7.3	3), same as above (pond sludge/fill).			
8 9 10 11 11	3	3.1		sludge/fill). 8.4-8.6 Inter interface from 8.6-9.0 Mois to fine SAND 9.0-9.5 Mois 9.5-9.9 Mois SAND with tr 9.9-10.4 Moi 10.4-11.1 M	bedded dark gray / be n fill to natural soils. st, tan-brown / orange (natural soils). st, tan/orange-brown \$ t, interbedded lamina ace silt matrix.	ay/white/tan SILT (chalk-like) (pond eige clayey fine SAND at transition -brown layers/lenses clayey medium SAND with 10% silt matrix. ations orange / tan-gray fine to medium m SAND. Ited/wet 10.8-11.1, dark gray medium sand fraction.	10.8 feet, bas,		
13 14 15 16 17 18 19 19 20				-	RING AT 12' BGS.				

		AW Env Infrastro			BORING LOG DETAILS			
		AYWOOD			(Page 1 of 1) DATE STARTED : June 24, 2004 DATE COMPLETED : June 24, 2004 DRILLING METHOD : Geoprobe DRILLING METHOD : DRIVER IN DRIVER			
		laywood, N haw Proje			DRILLER : B&B / Gordon Blewett GEOLOGIST : Joseph McGuckin			
					· · · ·			
Depth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESCRIPTION	REMARKS		
0 1 1 2	1	4.0		0.3-0.9 Dry, I 0.9-1.0 Dry, 1 1.0-1.5 Moist 1.5-4.0 Moist	, light gray silty fine SAND and grass and root mat (fill). ighter gray mottled with white SILT (industrial fill). white SILT (fill). , alternating lenses gray/tan/white SILT (fill). to wet, alternating lenses (1/4" to 2.25") beige / tan / ay / white / rust orange-brown SILT (pond sludge/fill).	Total core runs = 2 Core run #2 recovery (feet): 8.0-12.0: 4.0		
3 3 4					saturated, same as above (1.5-4.0), black / dark gray 3 (pond sludge/fill).			
5 6 7	2	3.8			s (pond sidugeniii).			
8 9 10	3	3.8		blue-gray alte fatty clay) (po 9.4-9.6 Very 9.6-10.6 Moi fraction. 10.6-11.8 We dense fine SA	ated/wet, dark gray / black / light gray / purple-gray / mating lenses clayey SILT, soft with minimal plasticity (not nd sludge/fill). dark gray / black fine sandy SILT (probable native soils). st, very dark gray / black fine SAND with 35% clay matrix et/saturated, large intertwined mottles (3" to 4") black ND with trace silt and dark gray fine sand, coarsening	Native soils @ 9.4 feet, bgs. Sample interval: 9.6-10.6. Saturated sediment (water table) @		
11 12				soils).	11.3-11.8 to a dark gray medium to fine SAND (natural	10.6 feet, bgs.		
13					(ING AT 12 DGS.			
14								
15 16								
17- 17-								
18 19								
20								

	anu	Infrastr	uciure,		(Page 1 of 1)
		AYWOOD		DATE COMPLETED : June 24, 2004 DRILLING METHOD : Geoprobe	
		Shaw Proje			
epth in eet	Core #	Sample Recovery (feet)	PID (ppm)	DESCRIPTION	REMARKS
0-					
1 1 2 3	1	3.6		0.0-0.2 Dry, gray GRAVEL and grass root mat (fill). 0.2-1.1 Moist, light gray brown SILT (industrial fill). 1.1-2.1 Moist, very light gray / white very fine sandy SILT (pond sludge) (fill). 2.1-3.0 Moist, alternating lenses gray / light gray / white / tan-orange SILT (1/4" to 1.5") (fill). 3.0-3.6 Moist, very light gray fine sandy SILT (fill).	Total core runs = 2 Core run #2 recovery (feet): 7.0-11.0: 3.0
4 5 6 7	2	4.0		 4.0-4.5 Moist, same as above (fill). 4.5-6.7 Wet/saturated, alternating layers dark gray / gray / white / light gray clayey SILT (pond sludge/fill). 6.7-7.6 Wet/saturated, alternating lenses gray / black / dark gray organic SILT (pond sludge/fill). 7.6-8.0 Dry, dark gray-brown very coarse SAND with 25% medium to fine sand and trace silt and cinder slag (fill). 	
8	3	3.4		 8.0-8.5 Same as 7.6-8.0, with large gravel (red brick) fragments and cinder/slag gravel fragments (fill). 8.5-8.6 Moist, dark gray-brown SILT with trace fine sand matrix (fill), interface of fill / natural soil transition zone. 8.6-9.6 Moist, dark gray-brown medium to fine SAND with 15% silt matrix fraction (natural soils). 9.6-10.8 Wet/saturated, black / very dark gray fine SAND with 20% silt matrix (natural soils). 10.8-11.4 Wet, dark gray medium to fine SAND. 	Native soils @ 8.6 feet, bgs. Sample interval: 8.6-9.6. Saturated sediment (water table) @ 9.6 feet, bgs.
12				END OF BORING AT 12' BGS.	<u> </u>
13 14 15 16 17 18 19					

	and	Infrastr	ucture,	Inc.	DOIN	NG LOG DETAILS	
	N	1aywood	- FUSRA	\ ₽	DATE STARTED : June DATE COMPLETED : June	24, 2004 24, 2004	(Page 1 of 1)
	1	Maywood, 1	New Jerse	ev	DRILLING METHOD : Geop DRILLER : B&B	robe / Gordon Blewett	
		Shaw Proje				oh McGuckin	I
Depth in feet	Core #	Sample Recovery (feet)	PiD (ppm)		DESCRIPTIC	ОИ	REMARKS
0-				0.0-0.4 Dp/	tan SILT with grass and root	mat /fill)	Total core runs = 4
1				0.4-1.0 Dry,	light gray mottled with white light gray SILT with trace fine	SILT (industrial fill).	* = Core run #2 (0.0 recovery in core run
1-				1.6-2.3 Dry,	white / very light gray SILT w	/ith 25% fine sand (fill). //2" to 1.5") white / gray / light	#1).
2	1	3.4		gray SILT (po	nd sludge/fill).		
3							
						<u> </u>	
4				4.0-7.6 Mois	t, alternating lenses (1/2" to SILT (pond sludge/fill) (sam	1.5") white / light gray / gray / e as 2.3-3.4).	
5-				7.6-7.9 Mois	t, light brown / tan clayey SIL	T (pond sludge/fill).	
6	2	3.9					
7-							
8-				**CORE RUN			
9-				tan / gray / sa	aturated white SILT (hydrauli) black / gray-blue / dark gray / c fill) with very soft	
10-1	3	3.9*		consistency a	and no physical strength char	racteristics (pond sludge/fill).	
10		0.5		•			
11							
12				12.0-12.5 M	oist, gray / gray-blue silty CL/	AY, medium stiff (pond	
13-				sludge/fill).		pils with clayey medium to fine	Native soils @ 12.6 feet, bgs.
				SAND with the	ace silt matrix. Dist, dark brown-gray / black		Sample interval: 12.6-13.6. Saturated sediment (water table) @
14-	4	3.7		20% silt matr	ix. ame as above, saturated 13.7		13.7 feet, bgs.
15							
16							
				END OF BOP	RING AT 16' BGS.		
17-							
18-							
19 19							
20-							

07-28-2004 n:\COOK\Maywood\C-6.bor

4	anu	Infrastr	uciure,		(Page 1 of 1)
	N	IAYWOOD Aaywood, I Shaw Proje	New Jerse	DATE COMPLETED : June 25, 2004 DRILLING METHOD : Geoprobe DRILLER : B&B / Gordon Blewett	(
epth n æt	Core #	Sample Recovery (feet)	PID (ppm)	DESCRIPTION	REMARKS
0-				0.0-0.2 Dry, light brown-gray fine sandy SILT with grass and root mat	Total core runs = 2
1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	3.5		(topsoil) (fill). 0.2-0.6 Dry, light gray / tan SILT (fill). 0.6-1.0 Dry, very light brown / tan SILT (fill). 1.0-1.2 Moist, light tan SILT (fill). 1.2-1.5 Dry, mottled brown / light tan SILT (fill). 1.5-1.7 Moist, light beige / tan clayey SILT (fill). 1.7-2.0 Dry, mottled (re-worked material) brown / dark gray / light gray SILT with 20% coarse slag sand fraction (fill). 2.0-2.8 Moist, very light gray / white / tan interbedded lenses SILT with trace fine sand (fill).	Core run #2 recovery (feet): 7.0-11.0: 3.5
5 5 6 7 8	2	3.1		 2.8-3.5 Moist, brown / tan / gray / white / orange-tan interbedded lenses (1/2" to 2.5") SILT (pond sludge/fill). 4.0-5.0 Moist, same as above (2.8-3.5), interbedded SILT lenses (pond sludge/fill). 5.0-5.3 Moist, tan-brown clayey SILT / silty CLAY (fill). 5.3-5.7 Moist, brown silty fine SAND and 10% root mat vegetation remnants (fill). 5.7-7.1 Dry, dark gray / dark brown / black lenses coarse SAND / fine gravel-sized CINDERS/SLAG (fill). **CORE RUN #2 7.0-7.5 Moist, dark orange-brown rusty coarse SAND / fine GRAVEL 	Native soils @ 7.6 feet, bgs. Sample interval: 7.6-8.6.
9 10 11 11	3	3.3		with 10% fines of cinder/slag (fill). 7.5-7.6 Moist, transition fill interface at 7.6, black organic SILT with 15% fine root mat (natural soils). 7.6-8.6 Moist, very dark gray / black fine sandy SILT with 10% clay fraction (natural material), stiff consistency and density, high natural organic content (native soils). 8.0-8.6 See above. 8.6-11.3 Same as above (7.6-8.6) except wet/saturated @ 9.2 to 9.5, then coarsening downward to silty fine SAND @ 9.7, to a fine to medium SAND @ 10.1, and coarse to medium black SAND @ 11.0-11.3 (natural	Saturated sediments (water table) @ 9.2 feet, bgs.
12		l		soils). END OF BORING AT 12' BGS.	J
13					
15					
16-					
17-					
18-					
19-					

	and	Infrastr	ucture,	Inc.		ORING LOG DETAILS	(Page 1 of 1)
	N	AYWOOD	lew Jerse	ey .		: June 25, 2004 : June 25, 2004 : Geoprobe : B&B / Gordon Blewett : Joseph McGuckin	
		Shaw Proje	<u>ct #60857</u>	<u> </u>	GEOLOGIST		-
Depth in feet	Core #	Sample Recovery (feet)	PID (ppm)		DESCF	RIPTION	REMARKS
0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	3.6		0.3-0.5 Dry, 0.5-1.1 Dry, rock fragmen 1.1-2.2 Mois (pond sludge 2.2-2.8 Dry, cinder/slag c 2.8-3.6 Dry,	brown-gray SILT and gray-brown SILT with ts (fill). t, mottled gray / white /fill). dark brown / tan / darl barse SAND / fine GR	/ SILT and grass root mat (fill). grass root mat (topsoil) (fill). 50% red-brown sandstone/shale / black / dark gray / tan-orange SILT < gray / dark orange-brown SILT and AVEL (industrial fill). n / dark gray / dark brown / white	Total core runs = 2 Core run #2 recovery (feet): 3.0-7.0: 3.0
4 5 6 7	2	3.1		4.6-4.7 Mois brown coarse 4.7-6.2 Mois medium sand weathered su and rock con 6.2-7.1 Satu with remnant	t, transition zone inter to medium SAND wit t, darker orange-reddi I and 15% silt/clay fine bbrounded sandstone tained visible remnant rated/wet at 6.3, dark	sh brown fine SAND with 20% e fraction matrix, 30% 1/2" to 3/4" gravel (Brunswick formation), soils rock fabric (natural material). red-brown fine sandy clayey SILT I/diagonal lines) to 6.6, coarsening	Native soils @ 4.7 feet, bgs. Sample interval: 4.7-6.2.
8 9 10	3	3.6	1.3	8.8-9.7 Mois red-brown roo 9.7-11.3 Moi fragments (B	ck fragments (3/4"-2") st, orange-brown silty runswick formation). bist, red-brown SHALE	in fine sandy SILT with 40%	
11 12							Max PID (11.3-11.6) = 1.3 ppm.
12 13 14 15 16 17 18 19				END OF BOF	RING AT 12' BGS.		

07-28-2004 n.\COOKMaywood\C-8.bor

Revision 00 October 2004

APPENDIX C HYDROMETER AND GRAIN SIZE

This page intentionally left blank.

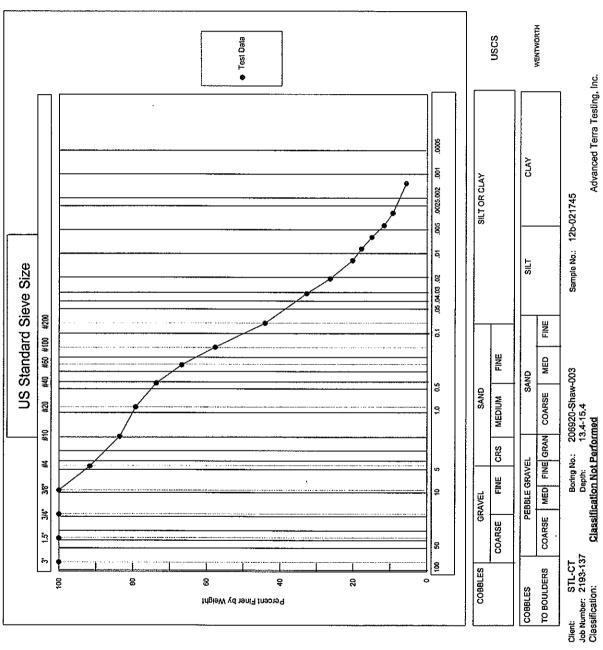
HYDROMETER ANALYSIS WITH MECHANICAL GSA ASTM D 422

CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206920-Shaw-003 13.4-15.4 12b-021745 Proj #206920 Maywood Fusrap		SAMPLED DATE TES WASH SIE DRY SIEVI	TED VE	6/21/04 7/14/04 RS Yes No
MOISTURE DATA			WASH SIE	VE ANALYS	ilS
HYGROSCOPIC	Yes		Wt. Total S	•	060.47
NATURAL	No		Wet Weight of -	(0)	262.17
			Before Wa Weight of -	0.07	55.37
Wt. Wet Soil & Pan (g)		4.33	After Wash	ning (g)	39.22
Wt. Dry Soil & Pan (g) Wt. Lost Moisture (g)		0.08 4.25	Weight of - Wet		206.80
Wt. of Pan Only (g)		3.61	Weight of -		
Wt. of Dry Soil (g) Moisture Content %		6.47	Dry (199.68
Moisture Content %		11.7	Wt. Total S Dry (238.90
Wt. Hydrom. Sample W	/et (g) 5	7.72	Calc. Wt. "	W" (g)	61.85
Wt. Hydrom. Sample D	ry (g) 5	1.70	Calc. Mass	s + #10	10.15

Sieve Number	Pan Weight	Indiv. Wt. + Pan	Indiv. Wt.	Cum. Wt.	Cum. %	% Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	19.78	19.78	19.78	8.3	91.7
#10	0.00	19.44	19.44	39.22	16.4	83.6
#20 #40	2.36 2.36	5.04 5.80	2.68 3.44	2.68 6.12	20.8 26.3	79.2 73.7
#60	2.31	6.60	4.29	10.41	33.2	66.8
#100 #200	2.34 2.36	7.97 10.75	5.63 8.39	16.04 24.43	42.4 55.9	57.6 44.1

Data entered by: RS Data checked by: <u>57</u> FileName: QUH00345

Date: 07/16/2004 Date: 7-/4-04


CLIENT	STL-CT		JOB NO. 2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESC LOCATION	D.	206920-Shaw-003 13.4-15.4 12b-021745 Proj #206920 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/21/04 7/14/04 RS Yes No
Hydrometer Sp. Gr. of So Value of "alp Deflocculant Defloc. Corr Meniscus Co	oil bha" t 'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	24.7 0.01291 61.850 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0						
2.0	26.00	20.25	32.7	32.7	12.03	0.0316
5.0	22.00	16.25	26.3	26.3	12.68	0.0206
15.0	18,25	12.50	20.2	20.2	13.30	0.0122
30.0	16.75	11.00	17.8	17.8	13.54	0.0087
60.0	15.00	9.25	15.0	15.0	13.83	0.0062
120.0	13.00	7.25	11.7	11.7	14.16	0.0044
250.0	11.50	5.75	9.3	9.3	14.40	0.0031
1448.0	9.25	3.50	5.7	5.7	14.77	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: SR FileName: QUH00345 Date: 07/16/2004 Date: <u>7-16-04</u>

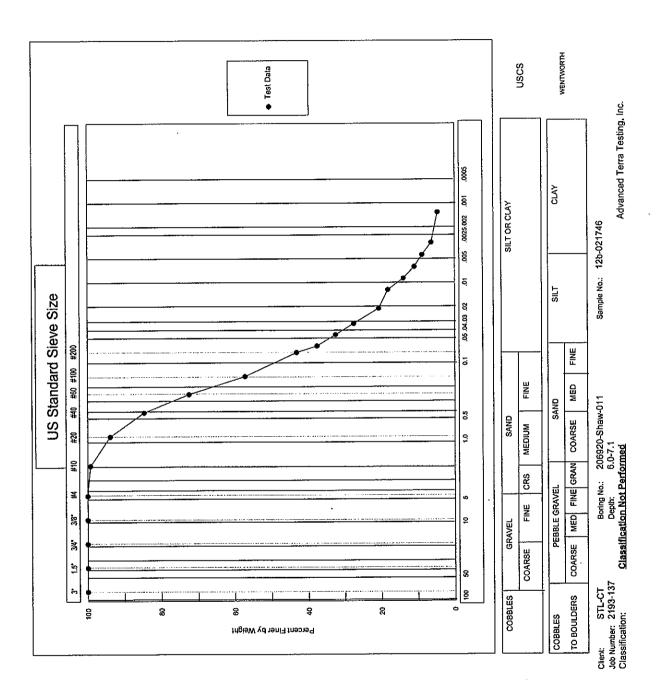
. •

CLIENT STL-CT		JOB NO. 2193-13	7
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206920-Shaw-011 6.0-7.1 12b-021746 Proj #206920 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/22/04 7/14/04 RS Yes No
MOISTURE DATA		WASH SIEVE ANAL	YSIS
HYGROSCOPIC	Yes	Wt. Total Sample Wet (g)	156.79
NATURAL	No	Weight of + #10 Before Washing (g) Weight of + #10	1.82
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)		After Washing (g) Weight of - #10	1.21
Wt. Lost Moisture (g) Wt. of Pan Only (g)	0.33 3.68	Weight of - #10 Weight of - #10	154.97
Wt. of Dry Soil (g) Moisture Content %	40.23 0.8	Dry (g) Wt. Total Sample	154.31
		Dry (g)	155.52
Wt. Hydrom. Sample W Wt. Hydrom. Sample D		Calc. Wt. "W" (g) Calc. Mass + #10	59.15 0.46

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0:00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.00	0.00	0.00	0.0	100.0
#10	0.00	1.21	1.21	1.21	0.8	99.2
#20	2.35	5.52	3.17	3.17	6.1	93.9
#40	2.35	7.78	5.43	8.60	15.3	84.7
#60	2.35	9.59	7.24	15.84	27.6	72.4
#100	2.35	11.38	9.03	24.87	42.8	57.2
#200	2.28	10.60	8.32	33.19	56.9	43.1

Data entered by: RS Data checked by: <u>57</u> FileName: QUH01146

Date: 07/16/2004 Date: <u>7-/2-0</u>


CLIENT	STL-CT		JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESCF LOCATION).	206920-Shaw-011 6.0-7.1 12b-021746 Proj #206920 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVE	VE	6/22/04 7/14/04 RS Yes No
Hydrometer a Sp. Gr. of So Value of "alp Deflocculant Defloc. Corr' Meniscus Co	bil bha" n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg Temp. Coe Wt. Dry Sa % of Total \$	f. K mple "W"	24.9 0.01288 59.147 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0				-		_
0.5	28.00	22.20	37.5	37.5	11.70	0.0623
1.0	25.00	19.20	32.5	32.5	12.19	0.0450
2.0	22.00	16.20	27.4	27.4	12.68	0.0324
5.0	18.00	12.20	20.6	20.6	13.34	0.0210
15.0	16.50	10.70	18.1	18.1	13.58	0.0123
30.0	14.00	8.20	13.9	13.9	13.99	0.0088
60.0	12.25	6.45	10.9	10.9	14.28	0.0063
120.0	11.00	5.20	8.8	8.8	14.49	0.0045
250.0	9.50	3.70	6.3	6.3	14.73	0.0031
1442.0	8.50	2.70	4.6	4.6	14.90	0.0013

Grain Diameter = K*(SQRT(L/T))

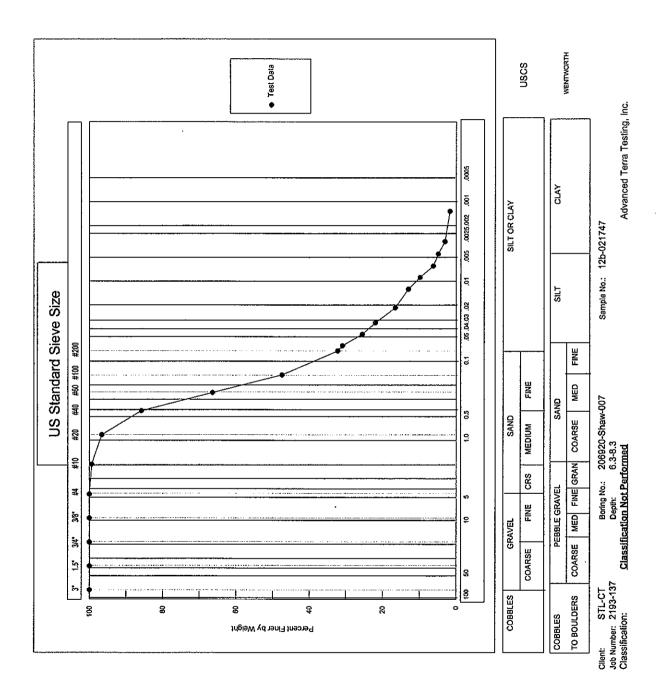
Data entered by: RS Data checked by: <u>57</u> FileName: QUH01146

Date: 07/16/2004 Date:<u>7−/∠−⊿¥</u>

CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206920-Shaw-007 6.3-8.3 12b-021747 Proj #206920 Maywood Fusrap	7	SAMPLED DATE TES WASH SIE DRY SIEVI	TED VE	6/21/04 7/14/04 RS Yes No
MOISTURE DATA			WASH SIE	VE ANALYS	ilS
HYGROSCOPIC	Yes		Wt. Total S		004.04
NATURAL	No		Wet Weight of Before Wa	+ #10 shing (g)	234.34 2.10
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)		82.63 82.15	Weight of - After Wash Weight of -	ning (g)	1.63
Wt. Lost Moisture (g) Wt. of Pan Only (g)		0.48	Wet Weight of -	(g)	232.24
Wt. of Dry Soil (g) Moisture Content %		78.49 0.6	Dry (Wt. Total S	(g)	231.30
Moisture Content 70		0.0	Dry (•	232.93
Wt. Hydrom. Sample W Wt. Hydrom. Sample D		55.67 55.33	Calc. Wt. " Calc. Mass		55.72 0.39

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.00	0.00	0.00	0.0	100.0
#10	0.00	1.63	1.63	1.63	0.7	99.3
#20	2.35	3.84	1.49	1.49	3.4	96.6
#40	2.30	8.32	6.02	7.51	14.2	85.8
#60	2.29	13.16	10.87	18.38	33.7	66.3
#100	2.28	12.82	10.54	28.92	52.6	47.4
#200	2.36	10.86	8.50	37.42	67.9	32.1

Data entered by: RS Data checked by: <u></</u> FileName: QUH00747


Date: 07/16/2004 Date: <u>7-/८-04</u>

CLIENT STL-CT		JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206920-Shaw-007 6.3-8.3 12b-021747 Proj #206920 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/21/04 7/14/04 RS Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	25.0 0.01286 55.723 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0					·	
0.5	23.00	17.20	30.9	30,9	12.52	0.0643
1.0	20.00	14.20	25.5	25.5	13.01	0.0464
2.0	18.00	12.20	21.9	21.9	13.34	0.0332
5.0	15.00	9.20	16.5	16.5	13.83	0.0214
15.0	13.00	7.20	12.9	12.9	14.16	0.0125
30.0	11.25	5.45	9.8	9.8	14.45	0.0089
60.0	9.25	3.45	6.2	6.2	14.77	0.0064
120.0	8.50	2.70	4.8	4.8	14.90	0.0045
250.0	7.50	1.70	3.1	3.1	15.06	0.0032
1440.0	6.75	0.95	1.7	1.7	15.18	0.0013

Grain Diameter = $K^*(SQRT(L/T))$

Data entered by: RS Data checked by: <u>57</u> FileName: QUH00747 Date: 07/16/2004 Date: <u>7-/८-04</u>

CLIENT STL-CT		JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206950-Shaw-014 9.4 12b-021748 Proj #206950 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/23/04 7/14/04 RS Yes No
MOISTURE DATA		WASH SIEVE ANALY	'SIS
HYGROSCOPIC	Yes	Wt. Total Sample Wet (g)	190.80
NATURAL	No	Weight of + #10 Before Washing (g) Weight of + #10	4.42
Wt. Wet Soil & Pan (g Wt. Dry Soil & Pan (g)		After Washing (g) Weight of - #10	3.22
Wt. Lost Moisture (g) Wt. of Pan Only (g)	0.23	Wet (g) Weight of - #10	186.38
Wt. of Dry Soil (g) Moisture Content %	28.20 0.8	Dry (g) Wt. Total Sample	186.06
	0.0	Dry (g)	189.28
Wt. Hydrom. Sample V Wt. Hydrom. Sample I		Calc. Wt. "W" (g) Calc. Mass + #10	60.20 1.02

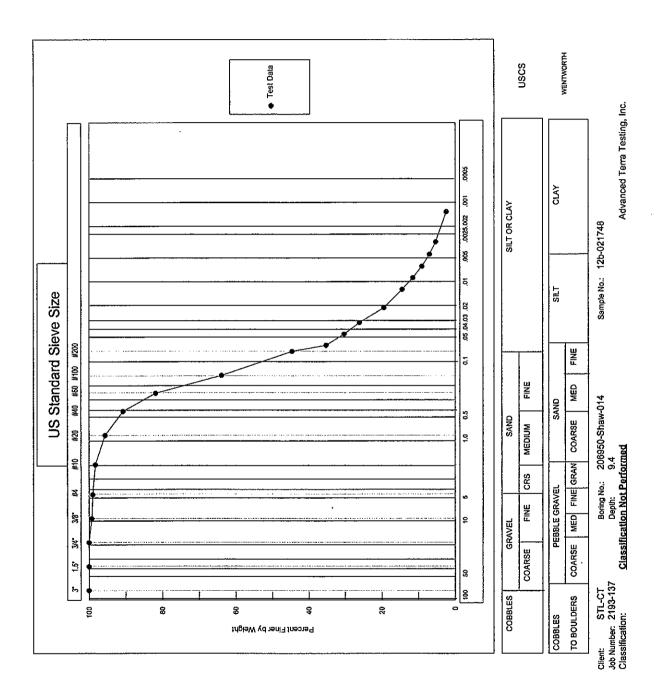
Sieve Number	Pan Weight	Indiv. Wt. + Pan	Indiv. Wt.	Cum. Wt.	Cum. %	% Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0:00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	1.43	1.43	1.43	0.8	99.2
#4	0.00	0.46	0.46	1.89	1.0	99.0
#10	0.00	1.33	1.33	3.22	1.7	98.3
#20	2.38	3.97	1.59	1.59	4.3	95.7
#40	2.32	5.25	2.93	4.52	9.2	90.8
#60	2.35	7.69	5.34	9.86	18.1	81.9
#100	2.36	13.22	10.86	20.72	36.1	63.9
#200	2.31	13.89	11.58	32.30	55.4	44.6

Data entered by: RS Data checked by: <u>SR</u> FileName: QUH01448

Date: 07/16/2004 Date: <u>7-/2-04</u>

CLIENT	STL-CT

JOB NO. 2193-137


BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206950-Shaw-014 9.4 12b-021748 Proj #206950 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/23/04 7/14/04 RS Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 ~1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	24.9 0.01288 60.195 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0)			-		
0.5	27.00	21.20	35.2	35.2	11.86	0.0627
1.0	24.00	18.20	30.2	30.2	12.35	0.0453
2.0	21.50	15.70	26.1	26.1	12.76	0.0325
5.0	17.50	11.70	19.4	19.4	13.42	0.0211
15.0	14.50	8.70	14.5	14.5	13.91	0.0124
30.0	12.75	6.95	11.5	11.5	14.20	0.0089
60.0	11.25	5.45	9.1	9.1	14.45	0.0063
120.0	10.00	4.20	7.0	7.0	14.65	0.0045
250.0	9.00	3.20	5.3	5.3	14.81	0.0031
1458.0	7.25	1.45	2.4	2.4	15.10	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>\$7</u> FileName: QUH01448

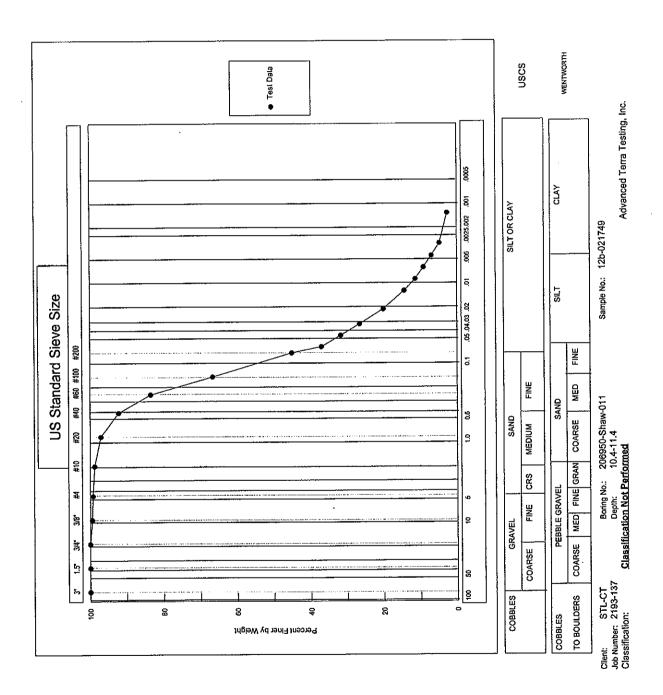
Date: 07/16/2004 Date: <u>7-/6-04</u>

CLIENT STL-CT		JOB NO. 2193-1	37
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206950-Shaw-011 10.4-11.4 12b-021749 Proj #206950 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/23/04 7/14/04 RS Yes No
MOISTURE DATA		WASH SIEVE ANA	LYSIS
HYGROSCOPIC	Yes	Wt. Total Sample Wet (g)	209.10
NATURAL	No	Weight of + #10	203.10
		Before Washing (g) Weight of + #10	2.95
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)	31.33 31.00	After Washing (g) Weight of - #10	2.54
Wt. Lost Moisture (g) Wt. of Pan Only (g)	0.33 3.70	· Wet (g) Weight of - #10	206.15
Wt. of Dry Soil (g) Moisture Content %	27.30 1.2	_ Dry (g) Wt. Total Sample	204.09
		Dry (g)	206.63
Wt. Hydrom. Sample W Wt. Hydrom. Sample Di		Calc. Wt. "W" (g) Calc. Mass + #10	57.35 0.71

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	1.19	1.19	1.19	0.6	99.4
#4	0.00	0.42	0.42	1.61	0.8	99.2
#10	0.00	0.93	0.93	2.54	1.2	98.8
#20	2.31	3.30	0.99	0.99	3.0	97.0
#40	2.38	5.13	2.75	3.74	7.8	92.2
#60	2.38	7.38	5.00	8.74	16.5	83.5
#100	2.33	12.04	9.71	18.45	33.4	66.6
#200	2.36	14.72	12.36	30.81	54.9	45.1

Data entered by: RS Data checked by: <u>SR</u> FileName: QUH01149

Date: 07/16/2004 Date: 7-/2-04


CLIENT	STL-CT		JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESC LOCATION	0.	206950-Shaw-011 10.4-11.4 12b-021749 Proj #206950 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVI	VE	6/23/04 7/14/04 RS Yes No
Hydrometer Sp. Gr. of S Value of "alı Deflocculan Defloc. Corr Meniscus C	oil pha" t	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg Temp. Coe Wt. Dry Sa % of Total	f. K mple "W"	24.9 0.01288 57.353 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0						
0.5	27.00	21.20	37.0	37.0	11.86	0.0627
1.0	24.00	18.20	31.7	31.7	12.35	0.0453
2.0	21.00	15.20	26.5	26.5	12.85	0.0326
5.0	17.25	11.45	20.0	20.0	13.46	0.0211
15.0	14.00	8.20	14.3	14.3	13.99	0.0124
30.0	12.25	6.45	11.2	11.2	14.28	0.0089
60.0	11.00	5.20	9.1	9.1	14.49	0.0063
120.0	9.75	3.95	6.9	6.9	14.69	0.0045
250.0	8.50	2.70	4.7	4.7	14.90	0.0031
1452.0	7.25	1.45	2.5	2.5	15.10	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>57</u> FileName: QUH01149

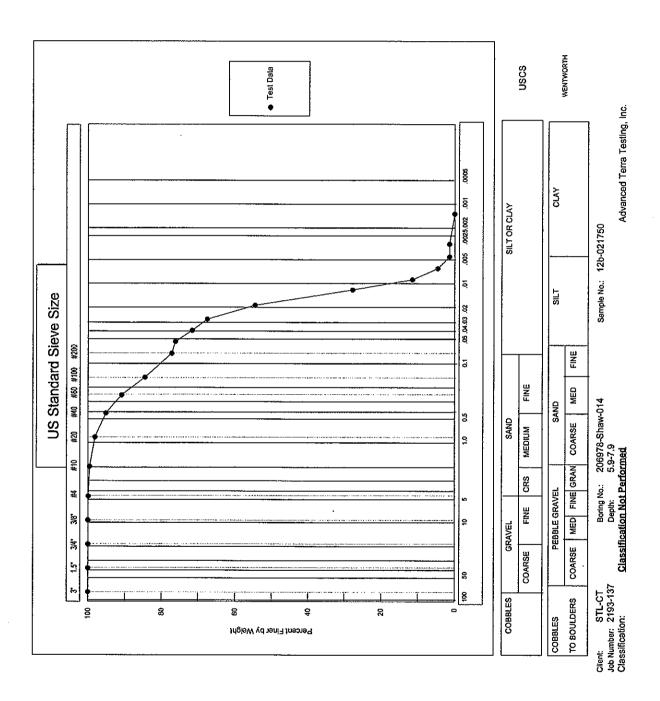
Date: 07/16/2004 Date: 7-/2-24

CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206978-Shaw-014 5.9-7.9 12b-021750 Proj #206978 Maywood Fusrap		SAMPLED DATE TES WASH SIE DRY SIEVE	TED VE	6/25/04 7/14/04 RS Yes No
MOISTURE DATA			WASH SIE	VE ANALYS	IS
HYGROSCOPIC	Yes		Wt. Total S		400.00
NATURAL	No		Wet Weight of H	⊦#10	162.62
			Before Wa Weight of H		0.86
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)	-	3.36 2.94	After Wash Weight of -		0.75
Wt. Lost Moisture (g)		0.42 3.65	Wet Weight of -	(g)	161.76
Wt. of Pan Only (g) Wt. of Dry Soil (g)		9.29	Dry (g)	159.58
Moisture Content %		1.4	Wt. Total S Dry (•	160.33
Wt. Hydrom. Sample W		4.66	Calc. Wt. "	.07	54.14
Wt, Hydrom. Sample D	ry (g) 5	3.88	Calc. Mass	; + #10	0.25

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3" 1 1/2" 3/4" 3/8" #4 #10	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.22 0.53	0.00 0.00 0.00 0.22 0.53	0:00 0.00 0.00 0.00 0.22 0.75	0.0 0.0 0.0 0.1 0.5	100.0 100.0 100.0 100.0 99.9 99.5
#20	2.36	3.14	0.78	0.78	1.9	98.1
#40	2.39	4.00	1.61	2.39	4.9	95.1
#60	2.36	4.66	2.30	4.69	9.1	90.9
#100	2.30	5.73	3.43	8.12	15.5	84.5
#200	2.33	6.31	3.98	12.10	22.8	77.2

Data entered by: RS Data checked by: <u>SR</u> FileName: QUH01450

Date: 07/16/2004 Date: <u>7-/6-04</u>


CLIENT STL-CT		JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206978-Shaw-014 5.9-7.9 12b-021750 Proj #206978 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/25/04 7/14/04 RS Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	24.9 0.01288 54.138 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0					·	
0.5	47.00	41.25	76.2	76.2	8.58	0.0533
1.0	44.50	38.75	71.6	71.6	8.99	0.0386
2.0	42.25	36.50	67.4	67.4	9.36	0.0279
5.0	35.25	29.50	54.5	54.5	10.51	0.0187
15.0	20.75	15.00	27.7	27.7	12.89	0.0119
30.0	12.00	6.25	11.5	11.5	14.32	0.0089
60.0	8.25	2.50	4.6	4.6	14.94	0.0064
120.0	6.50	0.75	1.4	1.4	15.22	0.0046
250.0	6.50	0.75	1.4	1.4	15.22	0.0032
1440.0	5.75	0.00	0.0	0.0	15.35	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by:RSData checked by:*S* FileName:QUH01450

Date: 07/16/2004 Date: <u>7-/2-24</u>

CLIENT	STL-CT			JOB NO.	2193-137	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	O. DR.	206920-Shaw-00 9.0-11.0 12b-021799 Proj #206920 Maywood Fusrap	-	SAMPLED DATE TES WASH SIE DRY SIEV	STED EVE	6/21/04 7/14/04 RS Yes No
MOISTURE	E DATA			WASH SIE	EVE ANALYS	IS
HYGROSC	OPIC	Yes		Wt. Total S Wet		81.09
NATURAL		No		Weight of	+ #10	• • • • •
				Before Wa Weight of		0.82
	oil & Pan (g)		21.23 20.37	After Wash Weight of	ning (g)	0.64
Wt. Dry Sol Wt. Lost Me	il & Pan (g) oisture (g)		0.86	Wet	(g)	80.27
Wt. of Pan Wt. of Dry S			3.74 16.63	Weight of Dry		76.49
Moisture Co			5.2	Wt. Total S	Sample	
				Dry	(g)	77.13
Wt. Hydron	n. Sample W	'et (g)	62.55	Calc. Wt. "		59.97
Wt. Hydron	n. Sample D	ry (g)	59.47	Calc. Mass	s + #10	0.50

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3" 1 1/2" 3/4" 3/8" #4 #10	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.13 0.51	0.00 0.00 0.00 0.00 0.13 0.51	0.00 0.00 0.00 0.00 0.13 0.64	0.0 0.0 0.0 0.2 0.8	100.0 100.0 100.0 100.0 99.8 99.2
#20	2.30	3.92	1.62	1.62	3.5	96.5
#40	2.36	6.56	4.20	5.82	10.5	89.5
#60	2.34	8.88	6.54	12.36	21.4	78.6
#100	2.31	8.91	6.60	18.96	32.4	67.6
#200	2.37	7.48	5.11	24.07	41.0	59.0

Data entered by:	RS	Date:	07/16/2004	
Data checked by: 5R		Date: 7-/4	-04	
FileName: QUH00699)			ADVANCED TERRA TESTING, INC.

CLIENT	STL-CT				JOB NO.	2193-137	
BORING N DEPTH SAMPLE N SOIL DESO LOCATION	NO. CR.	206920-Sha 9.0-11.0 12b-021799 Proj #20692 Maywood Fu	0		SAMPLED DATE TEST WASH SIEV DRY SIEVE		6/21/04 7/14/04 RS Yes No
Hydromete Sp. Gr. of (Value of "a Defloccula Defloc. Co Meniscus (Soil Ilpha" nt rr'n	ASTM 152 H 2.65 1.00 Sodium Hex 4.8 -1.0	l ametaphosph	nate	Temp., Deg. Temp. Coef. Wt. Dry Sarr % of Total S	.K iple "W"	25.0 0.01286 59.972 100.0
т							
Elapsed Time	Hydrometer	r Reading Corrected		% Total	Effective Depth	Grain Diameter	
(min)	Original	"R"	100Ra/W	Sample	L	(mm)	
0.0	o -	-		-		-	-
0.9	5 36.00	30.25	50.4	50.4	10.39	0.0586	
1.0	0 33.00	27.25	45.4	45.4	10.88	0.0424	
2.0	0 29.50	23.75	39.6	39.6	11.45	0.0308	
5.0			33.8	33.8		0.0199	
15.0			27.1	27.1		0.0118	
30.0			22.5	22.5		0.0085	
60.0	0 17.00	11.25	18.8	18.8	13.50	0.0061	

15.0

10.4

7.1

15.0

10.4

7.1

13.87

14.32

14.65

0.0044 0.0031

0.0013

Grain Diameter = K*(SQRT(L/T))

14.75

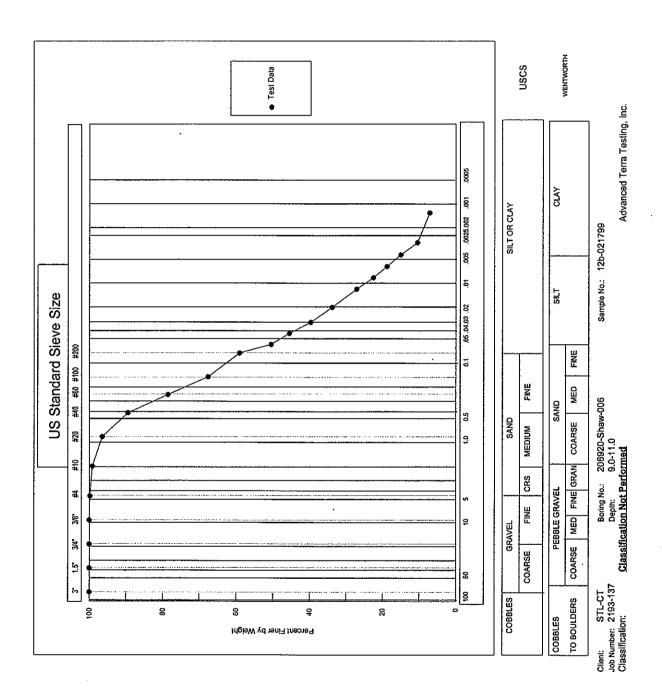
12.00

10.00

9.00

6.25

4.25


120.0

250.0

1440.0

Data entered by: RS Data checked by: SR FileName: QUH00699

07/16/2004 Date: Date: 7-16-04

		JOB NO.	2193-137	
206928-Shaw-007 11.2-12.4 12b-021814 Proj #206950 Maywood Fusrap		DATE TES WASH SIE	TED VE	6/25/04 7/13/04 DMP/AG Yes No
		WASH SIE	VE ANALYS	IS
Yes				
No				244.94
				7.76
	+	After Wash	ing (g)	4.14
				237.18
	7.32	Ďry (g)	239.38
	0.6			243.52
et (g) 59	9.06	Calc. Wt. "	N" (g)	59.73
y (g) 58	3.71	Calc. Mass	+ #10	1.02
	11.2-12.4 12b-021814 Proj #206950 Maywood Fusrap Yes No 6 6 6 6 1 5 5	11.2-12.4 12b-021814 Proj #206950 Maywood Fusrap Yes No 61.33 60.99 0.34 3.67 57.32 0.6 et (g) 59.06	206928-Shaw-007 SAMPLED 11.2-12.4 DATE TES 12b-021814 WASH SIE Proj #206950 DRY SIEVE Maywood Fusrap WASH SIE Yes Wt. Total S No Weight of + 61.33 After Wash 60.99 Weight of - 0.34 Wet 3.67 Weight of - 57.32 Dry (0.6 Wt. Total S Dry (0.6 et (g) 59.06 Calc. Wt. "	206928-Shaw-007SAMPLED11.2-12.4DATE TESTED12b-021814WASH SIEVEProj #206950DRY SIEVEMaywood FusrapWASH SIEVE ANALYSYesWt. Total Sample Wet (g)NoWeight of + #10 Before Washing (g) Weight of + #1061.33After Washing (g) Weight of - #10 0.340.34Wet (g) Weight of - #10 Dry (g)0.6Wt. Total Sample Dry (g)et (g)59.06Calc. Wt. "W" (g)

Sieve Number	Pan Weight	Indiv. Wt. + Pan	Indiv. Wt.	Cum. Wt.	Cum. %	% Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.86	0.86	0.86	0.4	99.6
#10	0.00	3.28	3.28	4.14	1.7	98.3
#20	2.34	5.12	2.78	2.78	6.4	93.6
#40	2.38	9.35	6.97	9.75	18.0	82.0
#60	2.38	11.61	9.23	18.98	33.5	66.5
#100	2.34	11.41	9.07	28.05	48.7	51.3
#200	2.36	10.94	8.58	36.63	63.0	37.0

Data entered by: RS Data checked by: <u>57</u> FileName: QUH08714

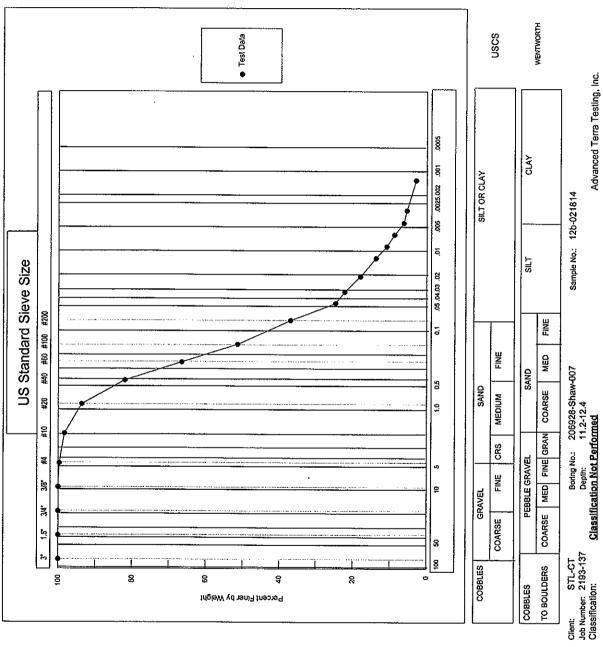
Date: 07/16/2004 Date: 7-//-04

CLIENT S	STL-CT		JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR LOCATION	1 . 12 . P	06928-Shaw-007 1.2-12.4 2b-021814 roj #206950 laywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVI	ted Ve	6/25/04 7/13/04 DMP/AG Yes No
Hydrometer # Sp. Gr. of Soi Value of "alph Deflocculant Defloc. Corr'n	il na" S	STM 152 H 2.65 1.00 odium Hexametaphosphate 4.8	Temp., Deg Temp. Coe Wt. Dry Sa % of Total :	f. K mple "W"	26.0 0.01272 59.726 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0					·	
1.0	20.50	14.75	24.7	24.7	12.93	0.0457
2.0	19.00	13.25	22.2	22.2	13.17	0.0326
5.0	16.50	10.75	18.0	18.0	13.58	0.0210
15.0	14.00	8.25	13.8	13.8	13.99	0.0123
30.0	12.25	6.50	10.9	10.9	14.28	0.0088
60.0	11.00	5.25	8.8	8.8	14.49	0.0063
120.0	9.50	3.75	6.3	6.3	14.73	0.0045
250.0		3.25	5.4	5.4	14.81	0.0031
1440.0	7.50	1.75	2.9	2.9	15.06	0.0013

-1.0

Grain Diameter = K*(SQRT(L/T))


Meniscus Corr'n

Data entered by: RS Data checked by: <u>57</u> FileName: QUH08714

Date: 07/16/2004

.

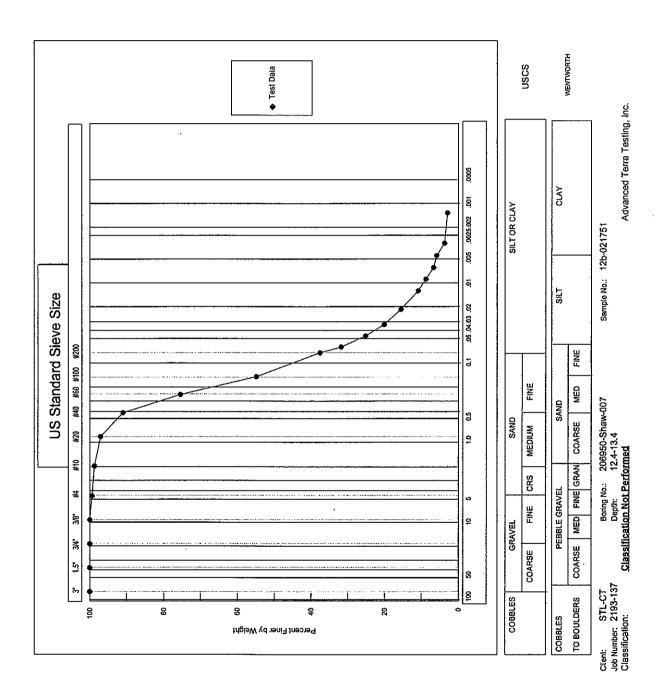
Date:<u>?-/4-04</u>

CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206950-Shaw-007 12.4-13.4 12b-021751 Proj #206950 Maywood Fusrap		SAMPLED DATE TES WASH SIE DRY SIEVI	TED	6/23/04 7/14/04 RS Yes No
MOISTURE DATA			WASH SIE	VE ANALYS	SIS
HYGROSCOPIC	Yes		Wt. Total S		249.59
NATURAL	No		Wet Weight of H		249.09
			Before Wa Weight of H	shing (g)	4.02
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)			After Wash Weight of -	0.07	3.18
Wt. Lost Moisture (g) Wt. of Pan Only (g)	0.17 3.73		Wet Weight of -	(g)	245.57
Wt. of Dry Soil (g) Moisture Content %	30.98	-	Dry (Wt. Total S	g)	245.07
Moldare content 70	0	, ,	Dry (•	248.25
Wt. Hydrom. Sample V	Vet (g) 59.40)	Calc. Wt. "	W" (g)	59.84
Wt. Hydrom. Sample D	ory (g) 59.08	3	Calc. Mass	; + #10	0.77

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3" 1 1/2" 3/4" 3/8" #4 #10	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 1.54 1.64	0.00 0.00 0.00 1.54 1.64	0:00 0.00 0.00 1.54 3.18	0.0 0.0 0.0 0.0 0.6 1.3	100.0 100.0 100.0 100.0 99.4 98.7
#20	3.70	4.68	0.98	0.98	2.9	97.1
#40	3.61	7.27	3.66	4.64	9.0	91.0
#60	3.63	12.91	9.28	13.92	24.5	75.5
#100	3.55	15.90	12.35	26.27	45.2	54.8
#200	3.67	14.03	10.36	36.63	62.5	37.5

Data entered by: RS Data checked by: <u>S7</u> FileName: QUH00751

Date: 07/16/2004


Date: <u>7-/2-04</u>

CLIENT	STL-CT		JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESC LOCATION	0. :R.	206950-Shaw-007 12.4-13.4 12b-021751 Proj #206950 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVE	VE	6/23/04 7/14/04 RS Yes No
Hydrometer Sp. Gr. of S Value of "al Deflocculan Defloc. Con Meniscus C	ioil pha" it r'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 5.0 -1.0	Temp., Deg Temp. Coe Wt. Dry Sa % of Total	f. K mple "W"	25.0 0.01286 59.842 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0)					
0.5	25.00	19.00	31.8	31.8	12.19	0.0635
1.0	21.00	15.00	25.1	25.1	12.85	0.0461
2.0	18.00	12.00	20.1	20.1	13.34	0.0332
5.0	15.25	9.25	15.5	15.5	13.79	0.0214
15.0	12.50	6.50	10.9	10.9	14.24	0.0125
30.0	11.25	5.25	8.8	8.8	14.45	0.0089
60.0	10.00	4.00	6.7	6.7	14.65	0.0064
120.0	9.50	3.50	5.8	5.8	14.73	0.0045
250.0	8.25	2.25	3.8	3.8	14.94	0.0031
1440.0	7.75	1.75	2.9	2.9	15.02	0.0013

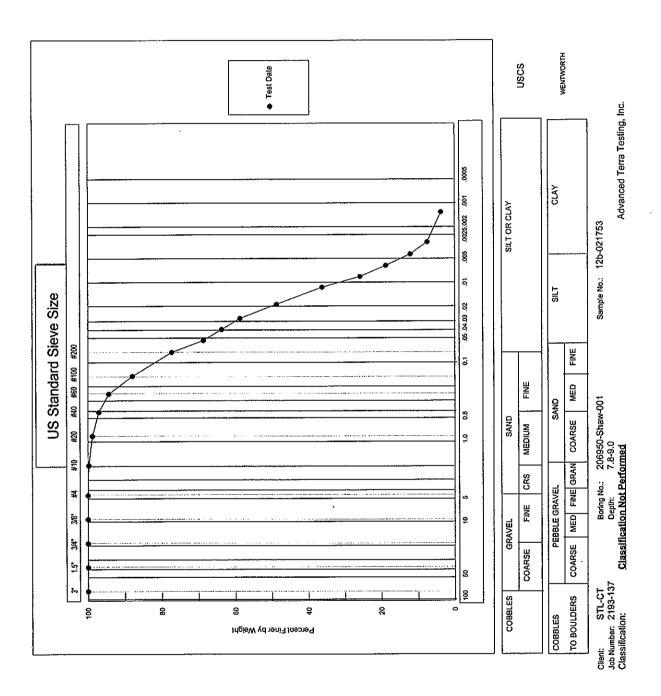
Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>></u> FileName: QUH00751 Date: 07/16/2004 Date: <u>7-/ሪ-04</u>

CLIENT	STL-CT				JOB NO.	2193-137	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	10. CR.	206950-Shav 7.8-9.0 12b-021753 Proj #206950 Maywood Fu)		SAMPLED DATE TES WASH SIE DRY SIEVE	νE	6/23/04 7/14/04 RS Yes No
MOISTURI	E DATA				WASH SIE	VE ANALYS	BIS
HYGROSC	OPIC	Yes			Wt. Total S Wet (92.13
NATURAL		No			Weight of + Before Was	#10 shing (g)	0.22
	oil & Pan (g) il & Pan (g)		33.24 32.32		Weight of + After Wash Weight of -	ing (g)	0.19
	oisture (g)		0.92		Wet (Weight of -	(g)	91.91
Wt. of Dry Moisture C	Soil (g)		28.73 3.2		Dry (Wt. Total S	g)	89.09
Molatore C	ontent 70		0.2		Dry (89.28
	n. Sample W n. Sample D		61.85 59.93		Calc. Wt. "\ Calc. Mass		60.06 0.13
Sieve Number	Pan Weight	Indiv. Wt. + Pan	Indiv. Wt.	Cum. Wt.	Cum. %	% Finer	

Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0:00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.00	0.00	0.00	0.0	100.0
#10	0.00	0.19	0.19	0.19	0.2	99.8
#20	2.37	2.97	0.60	0.60	1.2	98.8
#40	2.37	3.41	1.04	1.64	2.9	97.1
#60	2.36	3.97	1.61	3.25	5.6	94.4
#100	2.35	6.21	3.86	7.11	12.1	87.9
#200	2.32	8.72	6.40	13.51	22.7	77.3

Data entered by: RS Data checked by: <u>5%</u> FileName: QUH00153


Date: 07/16/2004 Date: 7-/2-04

CLIENT STL-CT		JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206950-Shaw-001 7.8-9.0 12b-021753 Proj #206950 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/23/04 7/14/04 RS Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	25.0 0.01286 60.060 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0						
0.5	47.00	41.25	68.7	68.7	8.58	0.0533
1.0	44.00	38.25	63.7	63.7	9.07	0.0387
2.0	41.00	35.25	58.7	58.7	9.57	0.0281
5.0	35.00	29.25	48.7	48.7	10.55	0.0187
15.0	27.50	21.75	36.2	36.2	11.78	0.0114
30.0	21.25	15.50	25.8	25.8	12.81	0.0084
60.0	17.00	11.25	18.7	18.7	13.50	0.0061
120.0	13.00	7.25	12.1	12.1	14.16	0.0044
250.0	10.25	4.50	7.5	7.5	14.61	0.0031
1464.0	8.00	2.25	3.7	3.7	14.98	0.0013

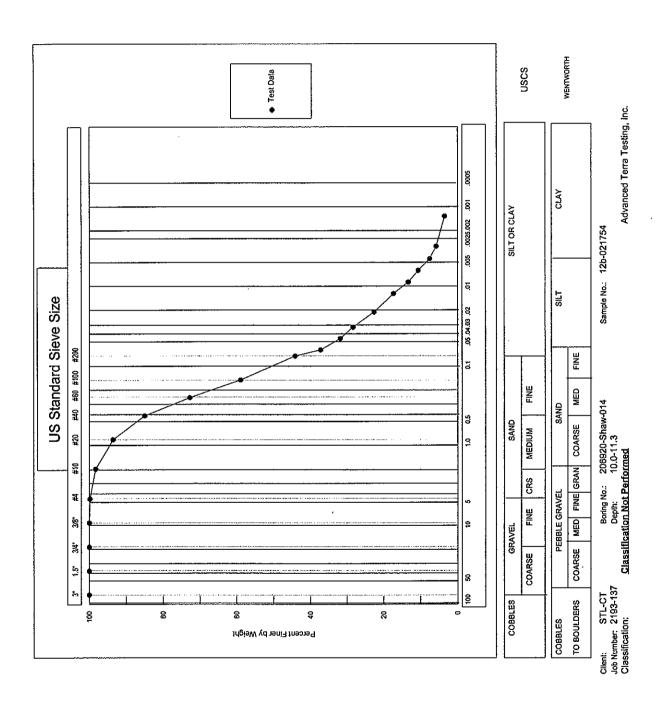
Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>SR</u> FileName: QUH00153 Date: 07/16/2004 Date: 7-/2-24

CLIENT S	STL-CT			JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESCF LOCATION).	206920-Shaw-01 10.0-11.3 12b-021754 Proj #206920 Maywood Fusrap		SAMPLED DATE TES WASH SIE DRY SIEV	STED EVE	6/22/04 7/14/04 RS Yes No
MOISTURE	DATA			WASH SIE	EVE ANALYS	SIS
HYGROSCO	PIC	Yes		Wt. Total S Wet		125.82
NATURAL		No		Weight of		120.02
			~	Before Wa Weight of		2.21
Wt. Wet Soil Wt. Dry Soil 8			32.43 32.21	After Wasl Weight of	hing (g)	2.21
Wt. Lost Moi	sture (g)		0.22	Wet	(g)	123.61
Wt. of Pan O Wt. of Dry So	oil (g)		3.71 28.50	Weight of Dry	(g)	122.66
Moisture Cor	ntent %		0.8	Wt. Total S Dry	•	124.87
Wt. Hydrom.	Sample W	/et (g)	55.93	Calc. Wt. "	'W" (g)	56.50
Wt. Hydrom.			55.50	Calc. Mass		1.00

Sieve Number	Pan Weight	Indiv. Wt. + Pan	Indiv. Wt.	Cum. Wt.	Cum. %	% Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0:00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.20	0.20	0.20	0.2	99.8
#10	0.00	2.01	2.01	2.21	1.8	98.2
#20	2.29	4.93	2.64	2.64	6.4	93.6
#40	2.36	7.20	4.84	7.48	15.0	85.0
#60	2.36	9.29	6.93	14.41	27.3	72.7
#100	2.35	10.15	7.80	22.21	41.1	58.9
#200	2.37	10.74	8.37	30.58	55.9	44.1

Data entered by: RS Data checked by: <u>SR</u> FileName: QUH01454


Date: 07/16/2004 Date: 7-/4-04

CLIENT	STL-CT		JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESCI LOCATION	Э.	206920-Shaw-014 10.0-11.3 12b-021754 Proj #206920 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVI	VE	6/22/04 7/14/04 RS Yes No
Hydrometer Sp. Gr. of So Value of "alp Deflocculant Defloc. Corr Meniscus Co	oil oha" t 'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 5.0 -1.0	Temp., De Temp. Coe Wt. Dry Sa % of Total	of. K mple "W"	24.9 0.01288 56.505 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0		_				
0.5	27.00	21.00	37.2	37.2	11.86	0.0627
1.0	24.00	18.00	31.9	31.9	12.35	0.0453
2.0	22.00	16.00	28.3	28.3	12.68	0.0324
5.0	18.75	12.75	22.6	22.6	13.22	0.0209
15.0	15.75	9.75	17.3	17.3	13.71	0.0123
30.0	13.50	7.50	13.3	13.3	14.08	0.0088
60.0	12.00	6.00	10.6	10.6	14.32	0.0063
120.0	10.25	4.25	7.5	7.5	14.61	0.0045
250.0	9.25	3.25	5.8	5.8	14.77	0.0031
1440.0	8.00	2.00	3.5	3.5	14.98	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>SFR</u> FileName: QUH01454 Date: 07/16/2004 Date: <u>7-/4-64</u>

CLIENT STL-0	ст		JOB NO. 21	193-137
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206978-Shaw 12.4-14.4 12b-021817 Proj #206950 Maywood Fus		SAMPLED DATE TESTE WASH SIEVE DRY SIEVE	
MOISTURE DATA	A		WASH SIEVE	ANALYSIS
HYGROSCOPIC	Yes		Wt. Total Sam	-
NATURAL	No		Wet (g) Weight of + #	
NATURAL	110		Before Washi	ng (g) 0.00
Wt. Wet Soil & Pa Wt. Dry Soil & Pa	107	33.37 25.71	Weight of + # After Washing Weight of - #1	ı (g) 0.00
Wt. Lost Moisture		7.66	Weight of 4 #1 Wet (g)	
Wt. of Pan Only	(0)	3.64	Weight of - #1	
Wt. of Dry Soil Moisture Content	(g) %	22.07 34.7	Dry (g) Wt. Total Sarr	40.48
Wolstore Content	70	04.5	Dry (g)	40.48
Wt. Hydrom. Sam	ple Wet (g)	54.52	Calc. Wt. "W"	(g) 40.48
Wt. Hydrom. Sam		40.48	Calc. Mass +	#10 0.00

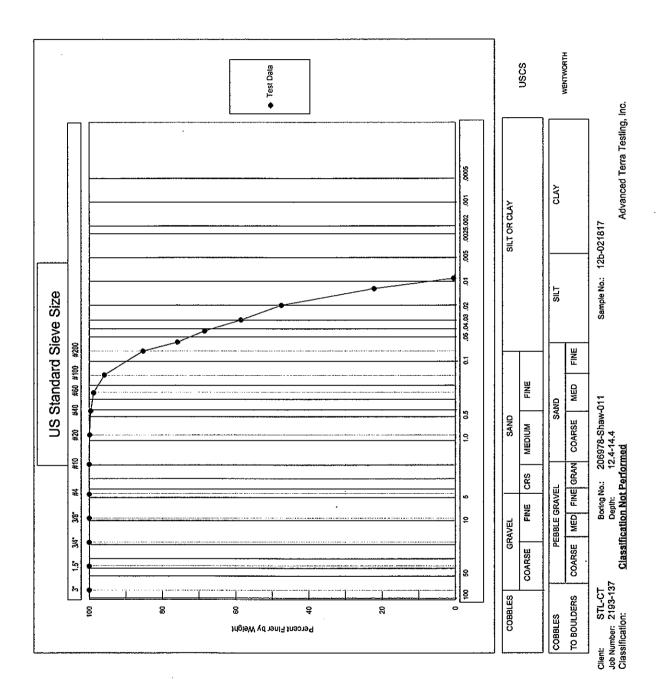
Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3" 1 1/2" 3/4" 3/8" #4 #10	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0	100.0 100.0 100.0 100.0 100.0 100.0
#20	2.35	2.40	0.05	0.05	0.1	99.9
#40	2.37	2.49	0.12	0.17	0.4	99.6
#60	2.28	2.62	0.34	0.51	1.3	98.7
#100	2.34	3.50	1.16	1.67	4.1	95.9
#200	2.36	6.63	4.27	5.94	14.7	85.3

07/16/2004

Data entered by:	RS	Date:	07/*
Data checked by: 5/	٩	Date: ۲۰	-16-00
FileName: QUH011	117		

ADVANCED TERRA TESTING, INC.

.


CLIENT	STL-CT		JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESC LOCATION	0. CR.	206978-Shaw-011 12.4-14.4 12b-021817 Proj #206950 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEV	TED VE	6/25/04 7/13/04 DPM/AG Yes No
Hydrometer Sp. Gr. of S Value of "al Deflocculan Defloc. Com Meniscus C	ioil pha" it r'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., De Temp. Coo Wt. Dry Sa % of Total	of. K Imple "W"	26.0 0.01272 40.475 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0						
0.5	36.50	30.70	75.8	75.8	10.30	0.0577
1.0	33.50	27.70	68.4	68.4	10.80	0.0418
2.0	29.50	23.70	58.6	58.6	11.45	0.0304
5.0	25.00	19.20	47.4	47.4	12.19	0.0199
15.0	14.75	8.95	22.1	22.1	13.87	0.0122
30.0	6.00	0.20	0.5	0.5	15.31	0.0091
60.0	5.50	-0.30	-0.7	-0.7	15.39	0.0064

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by:_____ FileName: QUH01117 Date: Date:____ 07/16/2004

.

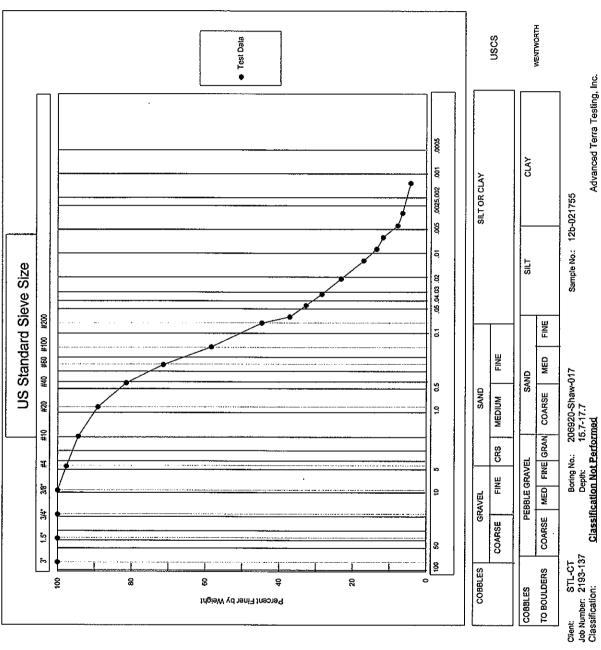
CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206920-Shaw-017 15.7-17.7 12b-021755 Proj #206920 Maywood Fusrap	7	SAMPLED DATE TES WASH SIE DRY SIEVI	TED VE	6/22/04 7/14/04 RS Yes No
MOISTURE DATA			WASH SIE	EVE ANALYS	IS
HYGROSCOPIC	Yes		Wt. Total S Wet	,	171.72
NATURAL	No		Weight of Before Wa Weight of	+ #10 Ishing (g)	12.03
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)		57.37 57.10	After Wash Weight of	ning (g)	9.62
Wt. Lost Moisture (g) Wt. of Pan Only (g)		0.27 3.62	Wet Weight of	(g)	159.69
Wt. of Dry Soil (g) Moisture Content %		53.48 0.5	Dry (Wt. Total S		161.29
			Dry	(g)	170.91
Wt, Hydrom, Sample W		54.30	Calc. Wt. "		57.25
Wt. Hydrom. Sample D	ry (g)	54.02	Calc. Mass	s + #10	3.22

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3" 1 1/2" 3/4" 3/8" #4 #10	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 4.11 5.51	0.00 0.00 0.00 0.00 4.11 5.51	0:00 0.00 0.00 0.00 4.11 9.62	0.0 0.0 0.0 2.4 5.6	100.0 100.0 100.0 100.0 97.6 94.4
#20	2.33	5.34	3.01	3.01	10.9	89.1
#40	2.32	6.73	4.41	7.42	18.6	81.4
#60	2.36	8.13	5.77	13.19	28.7	71.3
#100	2.37	9.81	7.44	20.63	41.7	58.3
#200	2.36	10.21	7.85	28.48	55.4	44.6

Data entered by: RS Data checked by: <u></u> FileName: QUH01755

:

Date: 07/16/2004 Date: <u>7-/6-64</u>


CLIENT	STL-CT		JOB NO. 2193-137	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	206920-Shaw-017 15.7-17.7 12b-021755 Proj #206920 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/22/04 7/14/04 RS Yes No
Hydromete Sp. Gr. of S Value of "a Defloccular Defloc. Cor Meniscus C	Soil Ipha" nt rr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	24.9 0.01288 57.246 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0		_				
0.5	27.00	21.20	37.0	37.0	11.86	0.0627
1.0	24.50	18.70	32.7	32.7	12.27	0.0451
2.0	22.00	16.20	28.3	28.3	12.68	0.0324
5.0	19.00	13.20	23.1	23.1	13.17	0.0209
15.0	15.50	9.70	16.9	16.9	13.75	0.0123
30.0	13.50	7.70	13.5	13.5	14.08	0.0088
60.0	12.50	6.70	11.7	11.7	14.24	0.0063
120.0	10.25	4.45	7.8	7.8	14.61	0.0045
250.0	9.50	3.70	6.5	6.5	14.73	0.0031
1436.0	8.25	2.45	4.3	4.3	14.94	0.0013

Grain Diameter = K*(SQRT(L/T))

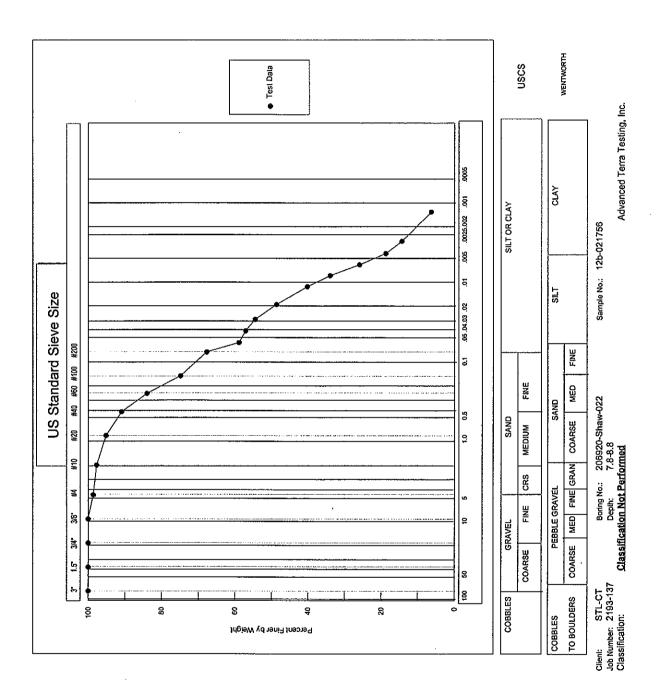
Data entered by: RS Data checked by: <u></u> FileName: QUH01755

Date: 07/16/2004 Date: <u>7-/ሪ-ơ-/</u>

CLIENT STL-CT		JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206920-Shaw-022 7.8-8.8 12b-021756 Proj #206920 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/22/04 7/14/04 RS Yes No
MOISTURE DATA		WASH SIEVE ANALY	SIS
HYGROSCOPIC	Yes	Wt. Total Sample	114.34
NATURAL	No	Wet (g) Weight of + #10	
		Before Washing (g) Weight of + #10	2.90
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)	33.52 33.01	After Washing (g) Weight of - #10	2.57
Wt. Lost Moisture (g)	0.51 3.64	Weight of - #10	111.44
Wt. of Pan Only (g) Wt. of Dry Soil (g) Moisture Content %	29.37 1.7	Dry (g) Wt. Total Sample	109.86
Molatare Content 70	1.7	Dry (g)	112.43
Wt. Hydrom. Sample W Wt. Hydrom. Sample D		Calc. Wt. "W" (g) Calc. Mass + #10	56.05 1.28

Sieve Number	Pan Weight	Indiv. Wt. + Pan	Indiv. Wt.	Cum. Wt.	Cum. %	% Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	1.53	1.53	1.53	1.4	98.6
#10	0.00	1.04	1.04	2.57	2.3	97.7
#20	2.37	3.80	1.43	1.43	4.8	95.2
#40	2.31	4.68	2.37	3.80	9.1	90.9
#60	2.36	6.25	3.89	7.69	16.0	84.0
#100	2.37	7.48	5.11	12.80	25.1	74.9
#200	2.37	6.39	4.02	16.82	32.3	67.7

Data entered by: RS Data checked by: <u>SR</u> FileName: QUH02256 Date: 07/16/2004 Date: 7-/4-04


CLIENT STL-	СТ	JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206920-Shaw-022 7.8-8.8 12b-021756 Proj #206920 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/22/04 7/14/04 RS Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 5.0 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	24.9 0.01288 56.053 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0					·	
0.5	39.00	33.00	58.9	58.9	9.89	0.0573
1.0	38.00	32.00	57.1	57.1	10.06	0.0408
2.0	36.50	30.50	54.4	54.4	10.30	0.0292
5.0	33.25	27.25	48.6	48.6	10.84	0.0190
15.0	28.50	22.50	40.1	40.1	11.62	0.0113
30.0	25.00	19.00	33.9	33.9	12.19	0.0082
60.0	20.50	14.50	25.9	25.9	12.93	0.0060
120.0	16.50	10.50	18.7	18.7	13.58	0.0043
250.0	14.00	8.00	14.3	14.3	13.99	0.0030
1440.0	9.50	3.50	6.2	6.2	14.73	0.0013

Grain Diameter = K*(SQRT(L/T))

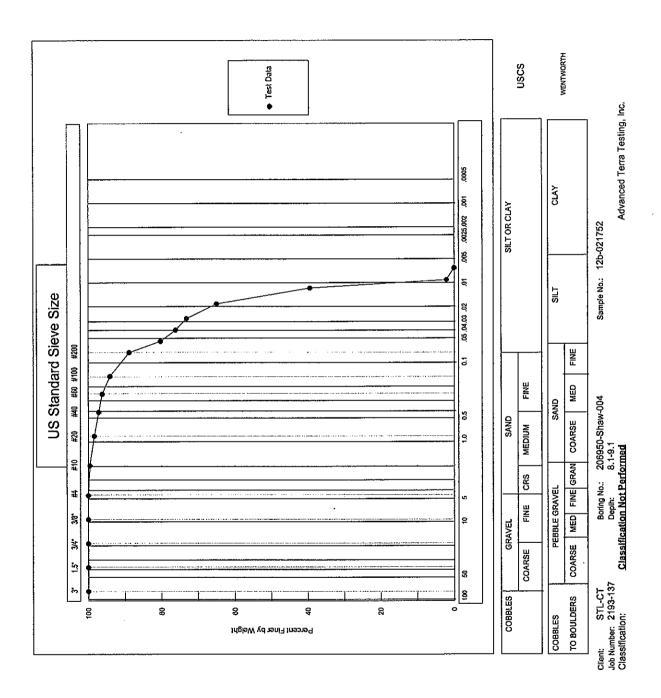
Data entered by: RS Data checked by: <u>57</u> FileName: QUH02256

Date: 07/16/2004 Date: 7-/2-04

CLIENT ST	L-CT		JOB NO. 2193-137	,
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206950-Sh 8.1-9.1 12b-02175 Proj #2069 Maywood F	2 9650	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/23/04 7/14/04 RS Yes No
MOISTURE DA	ATA		WASH SIEVE ANALY	/SIS
HYGROSCOP	IC Yes		Wt. Total Sample	00.70
NATURAL	No		Wet (g) Weight of + #10	68.78
			Before Washing (g) Weight of + #10	0.29
Wt. Wet Soil &		16.80 15.27	After Washing (g) Weight of - #10	0.26
Wt. Dry Soil & Wt. Lost Moist	ure (g)	1.53	Wet (g)	68.49
Wt. of Pan Onl Wt. of Dry Soil Moisture Conte	(g)	3.68 11.59 13.2	Weight of - #10 Dry (g) Wt. Total Sample	60.53
Moisture Conta	5110 70	1012	Dry (g)	60.79
Wt. Hydrom. S Wt. Hydrom. S	ample Wet (g) ample Dry (g)	55.10 48.68	Calc. Wt. "W" (g) Calc. Mass + #10	48.89 0.21

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.00	0.00	0.00	0.0	100.0
#10	0.00	0.26	0.26	0.26	0.4	99.6
#20	2.36	2.96	0.60	0.60	1.7	98.3
#40	2.37	2.96	0.59	1.19	2.9	97.1
#60	2.39	2.85	0.46	1.65	3.8	96.2
#100	2.31	3.35	1.04	2.69	5.9	94.1
#200	2.33	4.90	2.57	5.26	11.2	88.8

Data entered by: RS	Date: 07/16/2004
Data checked by: <u>57</u>	Date: 7-/4-04
FileName: QUH00452	ADVANCED TERRA TESTING, INC.


CLIENT	STL-CT		JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESC LOCATION	0. :R.	206950-Shaw-004 8.1-9.1 12b-021752 Proj #2069650 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVE	VE	6/23/04 7/14/04 RS Yes No
Hydrometer Sp. Gr. of S Value of "al Deflocculan Defloc. Con Meniscus C	oil pha" it r'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg Temp. Coe Wt. Dry Sa % of Total	f. K mple "W"	25.1 0.01285 48.887 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0						
0.5	45.00	39.25	80.3	80.3	8.91	0.0542
1.0	43.00	37.25	76.2	76.2	9.24	0.0390
2.0	41.50	35.75	73.1	73.1	9.48	0.0280
5.0	37.50	31.75	64.9	64.9	10.14	0.0183
15.0	25.00	19.25	39.4	39.4	12.19	0.0116
30.0	6.75	1.00	2.0	2.0	15.18	0.0091
60.0	5.75	0.00	0.0	0.0	15.35	0.0065

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>57</u> FileName: QUH00452

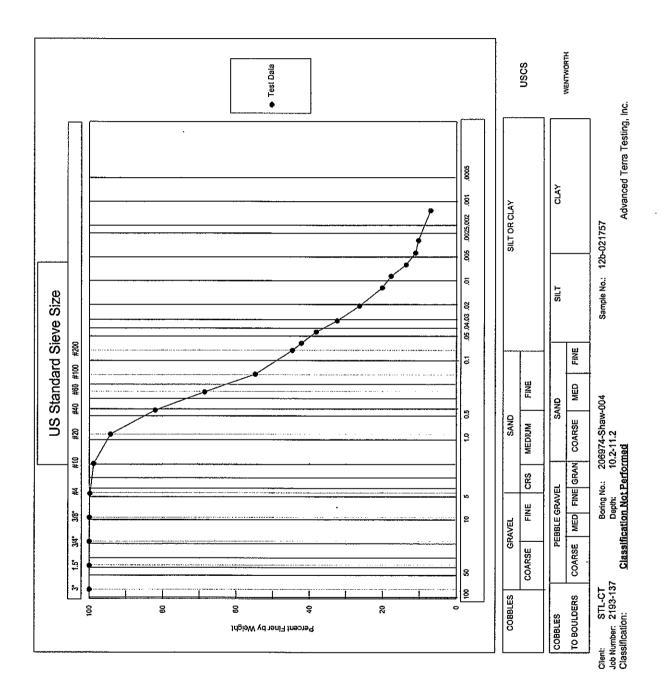
Date: 07/16/2004 Date: 7-16-04

CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206974-Shaw-004 10.2-11.2 12b-021757 Project #206974 Maywood Fusrap		SAMPLED DATE TES WASH SIE DRY SIEVI	TED	6/24/04 7/15/04 RS Yes No
MOISTURE DATA			WASH SIE	VE ANALYS	IS
HYGROSCOPIC	Yes		Wt. Total S		400.00
NATURAL	No		Weight of · Before Wa Weight of ·	+ #10 shing (g)	192.90 2.85
Wt. Wet Soil & Pan (g Wt. Dry Soil & Pan (g)	, -	5.50 5.30	After Wash Weight of	ning (g)	2.29
Wt. Lost Moisture (g) Wt. of Pan Only (g)	-	0.20 3.76	Weight of -	(g)	190.05
Wt. of Dry Soil (g) Moisture Content %		0.10 0.6	Dry (Wt. Total S	(g)	189.41
Moisture Content %		0.8	Dry (•	191.70
Wt. Hydrom. Sample V Wt. Hydrom. Sample D		50.71 50.33	Calc. Wt. " Calc. Mass		61.05 0.73

Sieve Number	Pan Weight	Indiv. Wt. + Pan	Indiv. Wt.	Cum. Wt.	Cum. %	% Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0:00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.41	0.41	0.41	0.2	99.8
#10	0.00	1.88	1.88	2.29	1.2	98.8
#20	3.69	6.48	2.79	2.79	5.8	94.2
#40	3.65	11.08	7.43	10.22	17.9	82.1
#60	3.64	11.88	8.24	18.46	31.4	68.6
#100	3.69	12.13	8.44	26.90	45.3	54.7
#200	3.67	9.84	6.17	33.07	55.4	44.6

Data entered by: RS Data checked by:<u>AMA</u> FileName: QUH00457

Date: 07/19/2004 Date: 7/14/04


CLIENT S	STL-CT		JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESCR LOCATION),	206974-Shaw-004 10.2-11.2 12b-021757 Project #206974 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVI	VE	6/24/04 7/15/04 RS Yes No
Hydrometer # Sp. Gr. of So Value of "alpl Deflocculant Defloc. Corr'r Meniscus Co	nil ha" n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 5.3 -1.0	Temp., Deg Temp. Coe Wt. Dry Sa % of Total	f. K mple "W"	24.4 0.01295 61.055 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0		·	-			-
0.5	32.00	25.75	42.2	42.2	11.04	0.0609
1.0	29.50	23.25	38.1	38.1	11.45	0.0438
2.0	26.00	19.75	32.3	32.3	12.03	0.0318
5.0	22.25	16.00	26.2	26.2	12.64	0.0206
15.0	18.50	12.25	20.1	20.1	13.26	0.0122
30.0	17.00	10.75	17.6	17.6	13.50	0.0087
60.0	14.50	8.25	13.5	13.5	13.91	0.0062
120.0	13.00	6.75	11.1	11.1	14.16	0.0044
250.0	12.50	6.25	10.2	10.2	14.24	0.0031
1448.0	10.50	4.25	7.0	7.0	14.57	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by:<u>AMG</u> FileName: QUH00457

Date: 07/19/2004 Date: 7/19/04

CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206974-Shaw-007 8.6-10.6 12b-021758 Proj #206974 Maywood Fusrap		SAMPLED DATE TES WASH SIE DRY SIEVI	TED VE	6/24/04 7/15/04 RS Yes No
MOISTURE DATA			WASH SIE	VE ANALYS	ilS
HYGROSCOPIC	Yes		Wt. Total S		162.50
NATURAL	No		Wet Weight of -		102.50
			Before Wa Weight of	shing (g)	4.39
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)	45. 45.		After Wash Weight of -	ning (g)	2.72
Wt. Lost Moisture (g) Wt. of Pan Only (g)	0.	15 62	Wet Weight of -	(g)	158.11
Wt. of Dry Soil (g) Moisture Content %	41.		Dry (Wt. Total S	(g)	159.21
Moisture Coment 78		J. T	Dry (•	161.93
Wt. Hydrom. Sample W Wt. Hydrom. Sample D			Calc. Wt. " Calc. Mass	· • ·	61.06 1.03

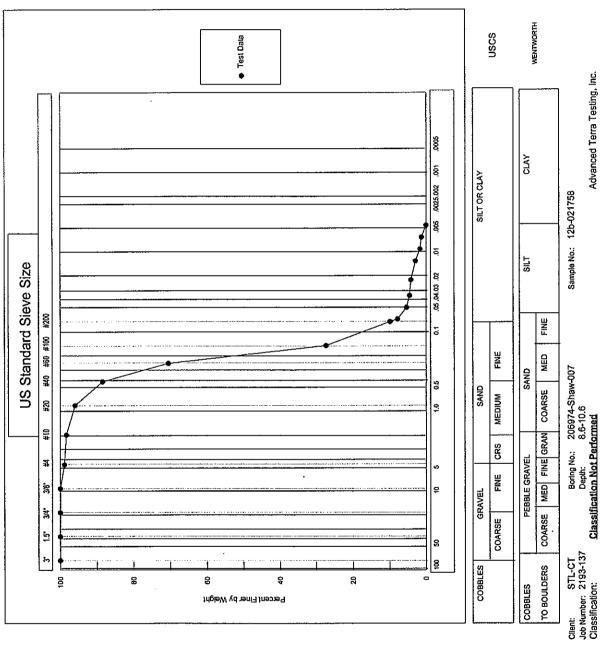
Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3" 1 1/2" 3/4" 3/8" #4 #10	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 1.79 0.93	0.00 0.00 0.00 1.79 0.93	0:00 0.00 0.00 1.79 2.72	0.0 0.0 0.0 1.1 1.7	100.0 100.0 100.0 100.0 98.9 98.3
#20	2.37	3.78	1.41	1.41	4.0	96.0
#40	2.41	7.01	4.60	6.01	11.5	88.5
#60	2.31	13.27	10.96	16.97	29.5	70.5
#100	2.37	28.77	26.40	43.37	72.7	27.3
#200	2.37	13.02	10.65	54.02	90.2	9.8

Data entered by: RS Data checked by: <u>SR</u> FileName: QUH00758

.

-

Date: 07/16/2004 Date: 7-/4-04


CLIENT	STL-CT		JOB NO.	2193-137		
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION		206974-Shaw-007 8.6-10.6 12b-021758 Proj #206974 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVI	VE	6/24/04 7/15/04 RS Yes No	
Hydrometer Sp. Gr. of So Value of "alp Deflocculant Defloc. Corr Meniscus Co	oil bha" t 'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 5.3 -1.0	Temp., Deg Temp. Coe Wt. Dry Sa % of Total	f. K mple "W"	24.4 0.01295 61.057 100.0	

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0	ı	· _				
0.5	11.00	4.75	7.8	7.8	14.49	0.0697
1.0	9.50	3.25	5.3	5.3	14.73	0.0497
2.0	9.00	2.75	4.5	4.5	14.8 1	0.0352
5.0	8.75	2.50	4.1	4.1	14.86	0.0223
15.0	8.00	1.75	2.9	2.9	14.98	0.0129
30.0	7.25	1.00	1.6	1.6	15.10	0.0092
60.0	7.00	0.75	1.2	1.2	15.14	0.0065
120.0	6.25	0.00	0.0	0.0	15.27	0.0046

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>57</u> FileName: QUH00758

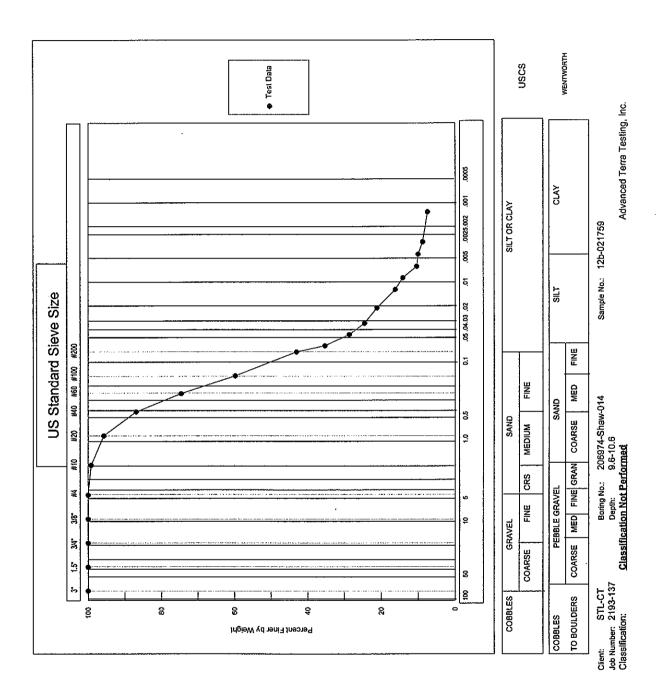
Date: 07/16/2004 Date: <u>7-/4-04</u>

CLIENT STL-CT		JOB I	NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206974-Shaw-014 9.6-10.6 12b-021759 Project #206974 Maywood Fusrap	WAS	PLED E TESTED H SIEVE SIEVE	6/24/04 7/15/04 RS Yes No
MOISTURE DATA		WAS	H SIEVE ANALYS	SIS
HYGROSCOPIC	Yes	Wt. T	otal Sample Wet (g)	193.24
NATURAL	No	Befor	ht of + #10 e Washing (g) ht of + #10	1.99
Wt. Wet Soil & Pan (g Wt. Dry Soil & Pan (g)		After	Washing (g) ht of - #10	1.62
Wt. Lost Moisture (g) Wt. of Pan Only (g)	0.18 3.74	-	Wet (g) ht of - #10	191.25
Wt. of Dry Soil (g) Moisture Content %	22.76 0.8		Dry (g) otal Sample	190.12
			Dry (g)	191.74
Wt. Hydrom. Sample V Wt. Hydrom. Sample D			Wt. "W" (g) Mass + #10	60.25 0.51

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0:00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	0.00	0.00	0.00	0.0	100.0
#10	0.00	1.62	1.62	1.62	0.8	99.2
#20	3.63	5.70	2.07	2.07	4.3	95.7
#40	3.57	8.87	5.30	7.37	13.1	86.9
#60	3.73	11.15	7.42	14.79	25.4	74.6
#100	3.67	12.58	8.91	23.70	40.2	59.8
#200	3.71	13.79	10.08	33.78	56.9	43.1

Data entered by: RS Data checked by: <u>AMG</u> FileName: QUH01459

Date: 07 Date:<u>1/19/04</u> 07/19/2004


CLIENT STL-(т	JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206974-Shaw-014 9.6-10.6 12b-021759 Project #206974 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/24/04 7/15/04 RS Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 5.3 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	24.5 0.01294 60.247 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0			••••		·	⊷
0.5	27.50	21.25	35.3	35.3	11.78	0.0628
1.0	23.50	17.25	28.6	28.6	12.44	0.0456
2.0	21.00	14.75	24,5	24.5	12.85	0.0328
5.0	19.00	12.75	21.2	21.2	13.17	0.0210
15.0	16.00	9.75	16.2	16.2	13.67	0.0123
30.0	14.75	8.50	14.1	14.1	13.87	0.0088
60.0	12.50	6.25	10.4	10.4	14.24	0.0063
120.0	12.25	6.00	10.0	10.0	14.28	0.0045
250.0	11.50	5.25	8.7	8.7	14.40	0.0031
1441.0	10.75	4.50	7.5	7.5	14.53	0.0013

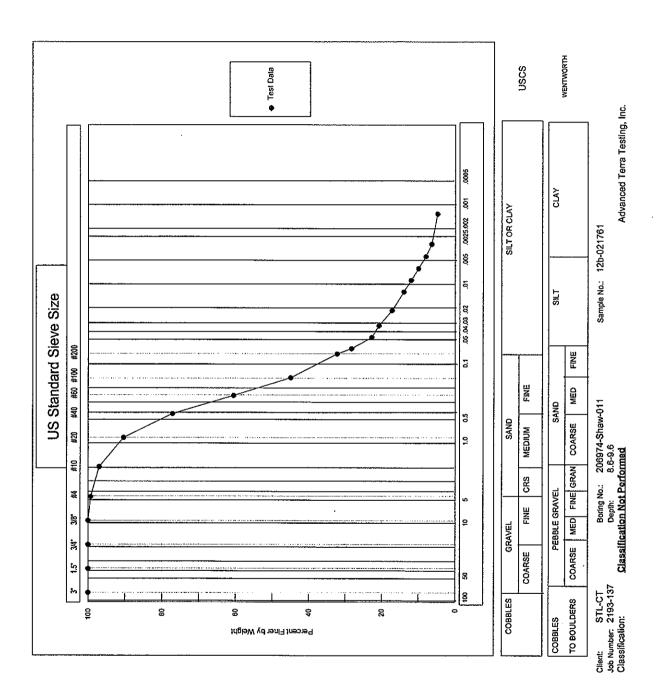
Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>AMG</u> FileName: QUH01459

Date: 07/19/2004 Date: 7/14/04

CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206974-Shaw-011 8.6-9.6 12b-021761 Project #206974 Maywood Fusrap		SAMPLED DATE TES WASH SIE DRY SIEV	TED VE	6/24/04 7/15/04 RS Yes No
MOISTURE DATA			WASH SIE	VE ANALYS	SIS
HYGROSCOPIC	Yes		Wt. Total S Wet		204.45
NATURAL	No		Weight of + Before Wa	+ #10 shing (g)	7.11
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)		50.37 50.02	Weight of - After Wash Weight of -	iing (g)	6.03
Wt. Lost Moisture (g) Wt. of Pan Only (g)		0.35 3.61	Wet Weight of -	(g)	197.34
Wt. of Dry Soil (g) Moisture Content %		46.41 0.8	Dry (Wt. Total S		196.93
			Dry (g)	202.96
Wt. Hydrom. Sample W Wt. Hydrom. Sample D		61.44 60.98	Calc. Wt. " Calc. Mass		62.85 1.87
- ,					

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00		0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	1.45	1.45	1.45	0.7	99.3
#10	0.00	4.58	4.58	6.03	3.0	97.0
#20	3.74	7,90	4,16	4.16	9.6	90.4
#20 #40 #60	3.68 3.61	12.01 14.10	8.33 10.49	12.49 22.98	22.8 39.5	77.2 60.5
#100	3.57	13.34	9.77	32.75	55.1	44.9
#200	3.62	11.65	8.03	40.78	67.9	32.1


Data entered by:	RS	Date:	07/19/2004
Data checked by:		Date:	
FileName: QUH017	61		ADVANCED TERRA TESTING, INC.

CLIENT	STL-CT		JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESC LOCATION	0. :R.	206974-Shaw-011 8.6-9.6 12b-021761 Project #206974 Maywood Fusrap	SAMPLED DATE TES WASH SIE DRY SIEVE	VE	6/24/04 7/15/04 RS Yes No
Hydrometer Sp. Gr. of S Value of "alı Deflocculan Defloc. Corr Meniscus C	oil pha" t r'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 5.3 -1.0	Temp., Deg Temp. Coe Wt. Dry Sa % of Total 3	f. K mple "W"	24.3 0.01297 62.851 100.0

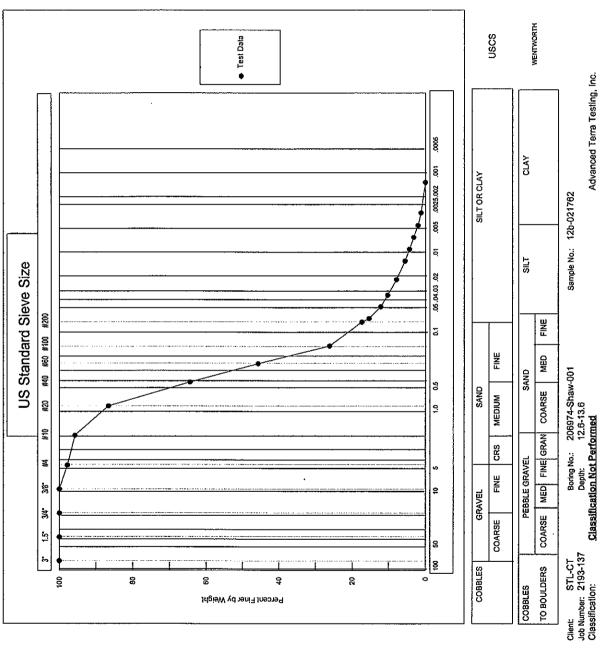
T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0	i				·	
0.5	24.00	17.75	28.2	28.2	12.35	0.0644
1.0	20.50	14.25	22.7	22.7	12.93	0.0466
2.0	19.25	13.00	20.7	20.7	13.13	0.0332
5.0	17.00	10.75	1 7.1	17.1	13.50	0.0213
15.0	15.00	8.75	13.9	13.9	13.83	0.0124
30.0	13.75	7.50	11.9	11.9	14.04	0.0089
60.0	12.50	6.25	9.9	9.9	14.24	0.0063
120.0	11.25	5.00	8.0	8.0	14.45	0.0045
250.0	10.25	4.00	6.4	6.4	14.61	0.0031
1461.0	9.25	3.00	4.8	4.8	14.77	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by:<u>AMG</u> FileName: QUH01761 Date: 07/19/2004 Date:<u>7/14/04</u>

CLIENT STL-CT			JOB NO.	2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206974-Shaw-00 12.6-13.6 12b-021762 Project #206974 Maywood Fusraj		SAMPLED DATE TES WASH SIE DRY SIEV	STED EVE	6/24/04 7/15/04 RS Yes No
MOISTURE DATA			WASH SIE	EVE ANALYS	IS
HYGROSCOPIC	Yes		Wt. Total S Wet	•	146.98
NATURAL	No		Weight of	+ #10	
			Before Wa Weight of	0.07	7.23
Wt. Wet Soil & Pan (g		38.97	After Wasl	hing (g)	6.22
Wt. Dry Soil & Pan (g		38.68	Weight of		400 75
Wt. Lost Moisture (g)		0.29	Wet		139.75
Wt. of Pan Only (g)		3.72 34.96	Weight of		139.60
Wt. of Dry Soil (g) Moisture Content %		0.8	Dry Wt. Total S		109.00
Moistare Content 70		0.0	Dry	•	145.82
Wt. Hydrom. Sample \	Net (g)	61.67	Calc. Wt. '	'W" (g)	63.89
Wt. Hydrom. Sample I	Dry (g)	61.16	Calc. Mas	s + #10	2.73

Sieve	Pan	Indiv.	indiv.	Cum.	Cum.	% Finor
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	0.00	0.00	0.00	0.0	100.0
3/8"	0.00	0.00	0.00	0.00	0.0	100.0
#4	0.00	3.24	3.24	3.24	2.2	97.8
#10	0.00	2.98	2.98	6.22	4.3	95.7
#20	3.57	9.44	5.87	5.87	13.5	86.5
#40	3.58	17.76	14.18	20.05	35.6	64.4
#60	3.69	15.64	11.95	32.00	54.4	45.6
#100	3.70	16.20	12.50	44.50	73.9	26.1
#200	3.61	9.24	5.63	50.13	82.7	17.3
<u>π</u> 200	0.01	9.24	0.00	50.15	02.1	17.0


Data entered by: RS Data checked by: <u>AMa</u> FileName: QUH00162 Date: 07/19/2004 Date:<u>**7**/19/04</u>

CLIENT S	TL-CT	JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206974-Shaw-001 12.6-13.6 12b-021762 Project #206974 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/24/04 7/15/04 RS Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha Deflocculant Defloc. Corr'n Meniscus Corr	2.65 a" 1.00 Sodium Hexametaphosphate 5.3	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	24.4 0.01295 63.889 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0						
0.5	16.00	9.75	15.3	15.3	13.67	0.0677
1.0	14.00	7.75	12.1	12.1	13.99	0.0484
2.0	12.75	6.50	10.2	10.2	14.20	0.0345
5.0	11.25	5.00	7.8	7.8	14.45	0.0220
15.0	9.75	3.50	5.5	5.5	14.69	0.0128
30.0	9.00	2.75	4.3	4.3	14.81	0.0091
60.0	8.25	2.00	3.1	3.1	14.94	0.0065
120.0	7.50	1.25	2.0	2.0	15.06	0.0046
250.0	7.00	0.75	1.2	1.2	15.14	0.0032
1457.0	6.25	0.00	0.0	0.0	15.27	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>AM/</u> FileName: QUH00162 Date: 07/19/2004 Date: <u>7/9/04</u>

CLIENT	STL-CT			JOB NO.	2193-137	
BORING NO DEPTH SAMPLE NO SOIL DESCI LOCATION).	206978-Shaw-00 7.6-8.6 12b-021760 Proj #2069650 Maywood Fusrap		Sampled Date tes Wash sie Dry siev	STED EVE	6/25/04 7/13/04 DPM/AG Yes No
MOISTURE	DATA			WASH SIE	EVE ANALYS	IS
HYGROSCO	OPIC	Yes		Wt. Total S		
NATURAL		No		Wet Weight of		264.64
				Before Wa Weight of	shing (g)	6.43
Wt. Wet Soil Wt. Dry Soil			69.06 66.87	After Wash Weight of	ning (g)	3.61
Wt. Lost Moi	isture (g)		2.19	Wet	(g)	258.21
Wt. of Pan C Wt. of Dry Se			3.70 63.17	Weight of - Dry -		252.28
Moisture Co	ntent %		3.5	Wt. Total S Dry	· · ·	255.89
Wt. Hydrom.	. Sample W	et (g)	61.13	Calc. Wt. "	W" (g)	59.93
Wt. Hydrom.			59.08	Calc. Mass		0.85

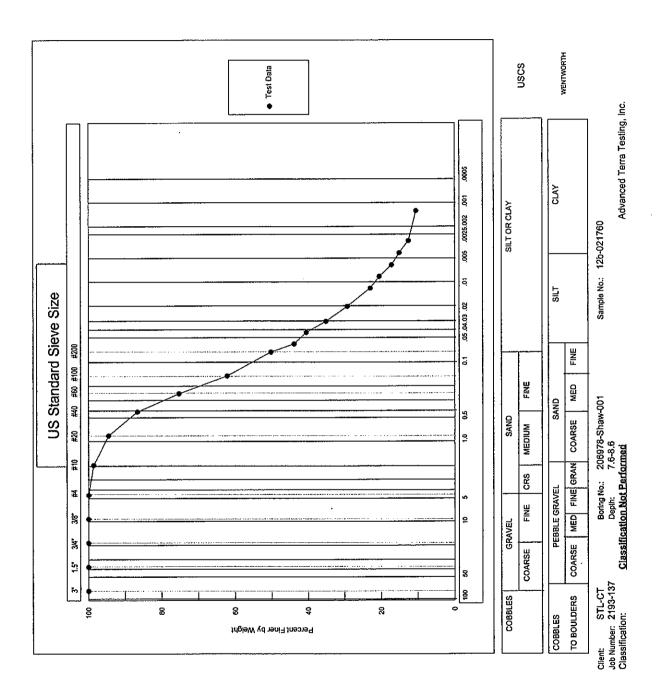
Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3" 1 1/2" 3/4" 3/8" #4 #10	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.15 3.46	0.00 0.00 0.00 0.00 0.15 3.46	0.00 0.00 0.00 0.00 0.15 3.61	0.0 0.0 0.0 0.1 1.4	100.0 100.0 100.0 100.0 99.9 98.6
#20	2.36	4.79	2.43	2.43	5.5	94.5
#40	2.32	7.06	4.74	7.17	13.4	86.6
#60	2.37	9.17	6.80	13.97	24.7	75.3
#100	2.38	10.26	7.88	21.85	37.9	62.1
#200	2.35	9.55	7.20	29.05	49.9	50.1

Data entered by: RS Data checked by: <u>57</u> FileName: QUH00160

Date: 07/16/2004 Date: <u>?-/2-04</u>

|--|

JOB NO. 2193-137


BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206978-Shaw-001 7.6-8.6 12b-021760 Proj #2069650 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/25/04 7/13/04 DPM/AG Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	26.3 0.01268 59.929 100.0

T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0					- 	
0.5	32.00	26.25	43.8	43.8	11.04	0.0596
1.0	30.00	24.25	40.5	40.5	11.37	0.0428
2.0	26.75	21.00	35.0	35.0	11.90	0.0309
5.0	23.25	17.50	29.2	29.2	12.48	0.0200
15.0	19.50	13.75	22.9	22.9	13.09	0.0118
30.0	18.00	12.25	20.4	20.4	13.34	0.0085
60.0	16.00	10.25	17.1	17.1	13.67	0.0061
120.0	14.75	9.00	15.0	15.0	13.87	0.0043
250.0	13.25	7.50	12.5	12.5	14.12	0.0030
1440.0	12.00	6.25	10.4	10.4	14.32	0.0013
				•		

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>SR</u> FileName: QUH00160

Date: 07/16/2004 Date: <u>7-/2-04</u>

CLIENT STL-CT		JOB NO. 2193-137	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206978-Shaw-009 4.7-6.2 12b-021811 Proj #2069650 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/25/04 7/13/04 DPM/AG Yes No
MOISTURE DATA		WASH SIEVE ANALYS	SIS
HYGROSCOPIC	Yes	Wt. Total Sample Wet (g)	268.74
NATURAL	No	Weight of + #10 Before Washing (g) Weight of + #10	14.33
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)	70.67 69.96	After Washing (g) Weight of - #10	10.59
Wt. Lost Moisture (g) Wt. of Pan Only (g)	0.71 3.67	Wet (g) Weight of - #10	254.41
Wt. of Dry Soil (g) Moisture Content %	66.29 1.1	Dry (g) Wt. Total Sample	255.41
Molature Content 78	1.3	Dry (g)	266.00
Wt. Hydrom. Sample W Wt. Hydrom. Sample D		Calc. Wt. "W" (g) Calc. Mass + #10	59.23 2.36

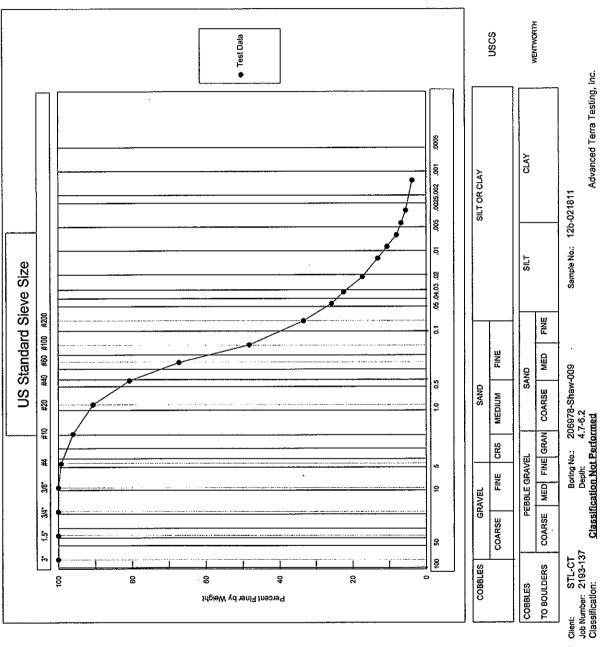
Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3" 1 1/2" 3/4" 3/8" #4 #10	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 2.00 8.59	0.00 0.00 0.00 2.00 8.59	0.00 0.00 0.00 2.00 10.59	0.0 0.0 0.0 0.0 0.8 4.0	100.0 100.0 100.0 100.0 99.2 96.0
#20	2.31	5.52	3.21	3.21	9.4	90.6
#40	2.37	8.22	5.85	9.06	19.3	80.7
#60	2.31	10.27	7.96	17.02	32.7	67.3
#100	2.37	13.67	11.30	28.32	51.8	48.2
#200	2.37	11.13	8.76	37.08	66.6	33.4

Data entered by: Data checked by: 574	RS	Date: Date: _7-/4	07/16/2004 - 04	
FileName: QUH0091	1			ADVANCED TERRA TESTING, INC.

CLIENT 3	STL-	CT
----------	------	----

JOB NO. 2193-137

BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	206978-Shaw-009 4.7-6.2 12b-021811 Proj #2069650 Maywood Fusrap	SAMPLED DATE TESTED WASH SIEVE DRY SIEVE	6/25/04 7/13/04 DPM/AG Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 H 2.65 1.00 Sodium Hexametaphosphate 4.8 -1.0	Temp., Deg. C Temp. Coef. K Wt. Dry Sample "W" % of Total Sample	26.1 0.01271 59.228 100.0


T Elapsed Time (min)	Hydrometer Original	Reading Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)
0.0	·					
1.0	21.00	15.25	25.7	25.7	12.85	0.0455
2.0	19.00	13.25	22.4	22.4	13.17	0.0326
5.0	16.00	10.25	17.3	17.3	13.67	0.0210
15.0	13.50	7.75	13.1	13.1	14.08	0.0123
30.0	12.00	6.25	10.6	10.6	14.32	0.0088
60.0	10.50	4.75	8.0	8.0	14.57	0.0063
120.0	9.75	4.00	6.8	6.8	14.69	0.0044
250.0	9.00	3.25	5.5	5.5	14.81	0.0031
1440.0	8.00	2.25	3.8	3.8	14.98	0.0013

Grain Diameter = K*(SQRT(L/T))

Data entered by: RS Data checked by: <u>5/</u> FileName: QUH00911

Date: 07/16/2004 Date: <u>7-/& -& 4</u>

.

APPENDIX D SUMMARY OF ANALYTICAL RESULTS

This page intentionally left blank.

APPENDIX D TABLE OF CONTENTS

- 1) **Table D-1** Physical Parameter Results -Percent Moisture -Total Organic Carbon -pH
- 2) **Table D-2 SPLP** Results -Antimony -Arsenic -Barium -Beryllium -Boron -Cadmium -Chromium (Total) -Copper -Lead -Lithium -Mercury -Nickel -Selenium -Thallium
- 3) NJDEP Hazsite Deliverable

available on attached CD-ROM

This page intentionally left blank.

Table D-1 Physical Parameter Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

10.3 0.1 11 on 8250 111 111 7.98 0.2 111 111 7.98 0.2 0.2 0.1 0.1 21.3 0.1 0.2 0.1 177 0.1 0.1 0.1 127 0.2 0.1 0.1 13.6 0.2 0.1 0.1 3730 116 0.2 0.1 3730 116 0.1 0.1 3730 116 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.1	Boring	S&W Lab Sample ID	Analysis Name	Result	Detection Limit	Result Qualifier	Unit of Measure	Depth of Measure (ft bgs)	Collection Date:
12b-021145 Total Organic Carbon 8250 111 mg/kg mg/kg 12b-021145 Percent Molsture 21.3 0.1 Percent Percent 12b-021146 Percent Molsture 21.3 0.1 Percent Percent 12b-021147 Percent Molsture 21.3 0.1 Percent 12b-021147 Percent Molsture 13.6 0.1 Percent 12b-021147 Percent Molsture 13.6 0.1 Percent 12b-021147 Percent Molsture 3730 116 Percent 12b-021147 Percent Molsture 3730 116 Percent 12b-021147 Percent Molsture 3730 122 Percent 12b-021147 Percent Molsture 13.5 0.1 Percent 12b-021147 Percent Molsture 13.5 0.2 Percent 12b-02148 Percent Molsture 13.5 0.2 Percent 12b-02149 Percent Molsture 13.5 0.2 Percent 12b-02149 <td>A-1</td> <td>12b-021745</td> <td></td> <td>10.3</td> <td>0.1</td> <td></td> <td>Percent</td> <td>13.4-15.4</td> <td>6/21/2004</td>	A-1	12b-021745		10.3	0.1		Percent	13.4-15.4	6/21/2004
12b-021745 pH T T Percent Moisture 7.38 0.2 pH Unlis 12b-021746 Toral Organic Gathon 17300 127 Percent Moisture 21-3 0.1 Percent Moisture 12b-021746 Toral Organic Gathon 17900 127 Percent Moisture 21-0 12b-021747 Toral Organic Gathon 7740 0.2 PH Unlis Percent 12b-021747 Toral Organic Gathon 3730 0.1 Percent Percent 12b-021747 Toral Organic Gathon 3730 0.1 Percent Percent 12b-021748 Toral Organic Gathon 7.49 0.2 PH Unlis Percent 12b-021748 Percent Moisture 18.3 0.1 Percent Percent 12b-021748 Percent Moisture 18.3 0.1 Percent Percent 12b-021749 Percent Moisture 22.1 0.1 Percent Percent 12b-021749 Percent Moisture 22.3 0.1 Percent Percent	A-1	12b-021745	Total Organic Carbon	8250	111		mg/kg	13.4-15.4	6/21/2004
12b-021746 Percent Moisture 21.3 0.1 Percent Percent 12b-021745 Total Organic Carbon 17990 127 Percent Moisture Percent Percent 12b-021745 Total Organic Carbon 17900 127 Percent Moisture Percent Percent 12b-021747 Percent Moisture 13.6 0.1 Percent Percent 12b-021747 Percent Moisture 13.6 0.1 Percent Percent 12b-021748 Percent Moisture 13.6 0.1 Percent Percent 12b-021748 Percent Moisture 18.3 0.1 Percent Percent 12b-021749 Per	A-1	12b-021745	Hd	7.98	0.2		pH Units	13.4-15.4	6/21/2004
12b-021746 Percent Moisture 21.3 0.1 Percent mg/kg 12b-021746 Total Organic Carbon 17900 127 mg/kg mg/kg 12b-021747 Percent Moisture 13.6 0.1 Percent Percent 12b-021747 Percent Moisture 13.6 0.1 Percent Percent 12b-021747 Percent Moisture 13.6 0.1 Percent Percent 12b-021748 Percent Moisture 13.6 0.1 Percent Percent 12b-021748 Percent Moisture 13.6 0.1 Percent Percent 12b-021749 Percent Moisture 12.2 0.1 Percent Percent 12b-021749 Percent Moisture 22.1 0.1 Perce									
12b-021746 Total Organic Carbon 17800 127 mg/kg pH Units 12b-021747 Percent Moisture 13.6 0.1 Percent pH Units 12b-021747 Percent Moisture 37.30 116 pH Units pH Units 12b-021747 Total Organic Carbon 37.30 116 pH Units pH Units 12b-021748 Total Organic Carbon 37.30 120 pH Units pH Units 12b-021748 Percent Moisture 18.3 0.1 pH Units pH Units 12b-021749 Percent Moisture 18.3 0.1 pH Units pH Units 12b-021749 Percent Moisture 22.1 0.1 pH Units pH Units 12b-021749 Percent Moisture 23.3 0.1 pH Units pH Units 12b-021749 Percent Moisture 23.3 0.1 pH Units pH Units 12b-021749 Percent Moisture 23.3 0.1 pH Units pH Units 12b-021749 Percent Moisture 33.3	A-2	12b-021746		21.3	0.1		Percent	6.3-7.1	6/22/2004
12b-021746 pH Units 743 0.2 pH Units pH Units 12b-021747 Percent Moisture 13.6 0.1 Percent Percent 12b-021747 Total Organic Carbon 33730 116 Percent Percent 12b-021748 Percent Moisture 53730 116 Percent Percent 12b-021748 Percent Moisture 18.3 0.1 Percent Percent 12b-021748 Percent Moisture 18.3 0.1 Percent Percent 12b-021748 Percent Moisture 18.3 0.1 Percent Percent 12b-021749 Percent Moisture 22.1 0.1 Percent Percent 12b-021749 Percent Moisture 22.3 0.1 Percent Percent 12b-021749 Percent Moisture 7.29 0.2 Percent Percent 12b-021750 Percent Moisture 7.29 0.2 Percent Percent 12b-021760 Total Organic Carbon 12b-02176 Percent Moisture<	A-2	12b-021746	Total Organic Carbon	17900	127		mg/kg	6.3-7.1	6/22/2004
12b-021/37 Percent Moisture 13.6 0.1 Percent mg/kg 12b-021/34 Total Organic Carbon 3730 116 pH units mg/kg 12b-021748 Total Organic Carbon 5.97 0.2 pH units pH units 12b-021748 Percent Moisture 18.3 0.1 percent percent 12b-021748 Percent Moisture 18.3 0.1 percent pH units 12b-021748 Percent Moisture 18.3 0.1 percent pH units 12b-021748 Percent Moisture 22.1 0.1 0.7 pH units 12b-021749 Percent Moisture 22.1 0.1 0.7 pH units 12b-021749 Percent Moisture 33.3 0.1 0.7 pH units 12b-021749 Percent Moisture 33.3 0.7 0.7 pH units 12b-021750 Percent Moisture 33.3 0.7 0.7 pH units 12b-021750 Percent Moisture 3	A-2	12b-021746	Hq	7.49	0.2		pH Units	6.3-7.1	6/22/2004
12b-021747 Percent Moisure 13.6 0.1 Percent Percent 12b-021747 Total Organic Carbon 3730 116 mg/rg mg/rg 12b-021747 Total Organic Carbon 5.97 0.2 pH Units pH Units 12b-021748 Percent Moisture 18.3 0.1 pH Units pH Units 12b-021748 Percent Moisture 18.3 0.1 pH Units pH Units 12b-021749 Percent Moisture 22.1 0.1 pH Units pH Units 12b-021749 Percent Moisture 22.1 0.1 pH Units pH Units 12b-021749 Percent Moisture 22.1 0.1 pH Units pH Units 12b-021749 Percent Moisture 33.3 0.1 pH Units pH Units 12b-021760 Percent Moisture 33.3 0.1 pH Units pH Units 12b-021760 Percent Moisture 33.3 0.1 pH Units pH Units 12b-021760 Percent Moistur									
12b-021747 Total Organic Carbon 3730 116 mg/kg h 12b-021747 Total Organic Carbon 6.97 0.2 pH Units pH Un	A-3	12b-021747		13.6	0.1		Percent	6.3-8.3	6/21/2004
12b-021747 pH 6.97 0.2 pH Indits Indits Indits	A-3	12b-021747	Total Organic Carbon	3730	116		mg/kg	6.3-8.3	6/21/2004
12b-021748 Percent Moisture 18.3 0.1 Percent 12b-021748 Total Organic Carbon 10500 122 Percent Percent 12b-021748 Total Organic Carbon 10500 122 Percent Percent 12b-021749 Percent Moisture 22.1 0.1 Percent 12b-021749 Percent Moisture 22.1 0.1 Percent 12b-021749 Percent Moisture 22.1 0.1 Percent 12b-021750 Percent Moisture 33.3 0.1 Percent 12b-021750 Percent Moisture 33.3 0.1 Percent 12b-021750 Percent Moisture 33.3 0.1 Percent 12b-021750 Total Organic Carbon 44100 150 Percent 12b-021750 Total Organic Carbon 6.9 0.1 Percent 12b-021760 Total Organic Carbon 6.9 0.2 Percent 12b-021760 Total Organic Carbon 6.9 0.1 Percent 12b-021799 </td <td>A-3</td> <td>12b-021747</td> <td>Hq</td> <td>6.97</td> <td>0.2</td> <td></td> <td>pH Units</td> <td>6.3-8.3</td> <td>6/21/2004</td>	A-3	12b-021747	Hq	6.97	0.2		pH Units	6.3-8.3	6/21/2004
12b-021748 Percent Moisture 18.3 0.1 Percent Percent 12b-021748 Total Organic Carbon 10500 122 pH Units pH Units 12b-021748 Total Organic Carbon 10500 122 pH Units pH Units 12b-021749 Percent Moisture 22.1 0.1 pH Units pH Units 12b-021749 Percent Moisture 22.1 0.1 pH Units pH Units 12b-021749 Percent Moisture 22.1 0.1 pH Units pH Units 12b-021750 Percent Moisture 33.3 0.1 pH Units pH Units 12b-021750 Percent Moisture 33.3 0.1 pH Units pH Units 12b-021750 Percent Moisture 33.3 0.1 pH pH pH 12b-021750 Percent Moisture 33.3 0.1 pH pH pH 12b-021750 Percent Moisture 33.3 0.1 pH pH pH 12b-021799 Percent Moi									
12b-021748 Total Organic Carbon 10500 122 mg/kg mg/kg 12b-021748 Percent Moisture 7.38 0.2 pH Units pH Units 12b-021749 Percent Moisture 22.1 0.1 pH Units pH Units 12b-021749 Total Organic Carbon 20800 128 0.1 percent 12b-021749 Total Organic Carbon 20800 128 0.1 pH Units 12b-021750 Percent Moisture 33.3 0.1 pH Units pH Units 12b-021750 Percent Moisture 33.3 0.1 pG pH Units 12b-021750 Total Organic Carbon 47.4 0.1 pG pH Units 12b-021750 Total Organic Carbon 8.7 0.2 pG pH Units 12b-021750 Total Organic Carbon 9.3 0.2 pH pH Units 12b-021750 Total Organic Carbon 8.7 0.2 pG pH Units 12b-021750 Total Organic Carbon 9.3 0.2 <	A-4	12b-021748		18.3	0.1		Percent	9.4-10.4	6/23/2004
12b-021748 pH T.38 0.2 pH Units Percent 12b-021749 Percent Moisture 22.1 0.1 Percent Percent 12b-021749 Total Organic Carbon 20800 128 pH Units 12b-021750 Percent Moisture 2.0 0.1 pH Units 12b-021750 Percent Moisture 33.3 0.1 pH Units 12b-021750 Percent Moisture 33.3 0.1 pH Units 12b-021750 Total Organic Carbon 44100 150 pH Units 12b-021750 Total Organic Carbon 6.9 0.2 pH Units 12b-021750 Total Organic Carbon 8.7 0.1 pm (priss) 12b-021750 Total Organic Carbon 8.7 0.1 pm (priss) 12b-021750 Percent Moisture 8.7 0.1 pm (priss) 12b-021750 Percent Moisture 8.7 0.1 pm (priss) 12b-021799 Percent Moisture 8.7 0.1 pm (priss) 12b-021799 <td>A-4</td> <td>12b-021748</td> <td>Total Organic Carbon</td> <td>10500</td> <td>122</td> <td></td> <td>mg/kg</td> <td>9.4-10.4</td> <td>6/23/2004</td>	A-4	12b-021748	Total Organic Carbon	10500	122		mg/kg	9.4-10.4	6/23/2004
12b-021749 Percent Moisture 22.1 0.1 Percent Percent $12b-021749$ Total Organic Carbon 20800 128 mg/kg mg/kg $12b-021749$ Percent Moisture 20800 128 pH Units mg/kg $12b-021750$ Percent Moisture 33.3 0.1 percent pH Units $12b-021750$ Percent Moisture 33.3 0.1 percent percent $12b-021750$ Percent Moisture 33.3 0.1 percent percent $12b-021799$ Percent Moisture 33.3 0.1 percent percent $12b-021799$ Percent Moisture 47.4 0.1 percent percent $12b-021799$ Percent Moisture 47.4 0.1 0.1 percent $12b-021799$ Percent Moisture 47.4 0.1 0.1 percent $12b-021799$ Percent Moisture 47.4 0.1 0.1 percent $12b-021799$ Percent Moisture	A-4	12b-021748	Hd	7.38	0.2		pH Units	9.4-10.4	6/23/2004
12b-021749 Percent Moisture 22.1 0.1 Percent Percent 12b-021749 Total Organic Carbon 20800 128 mg/kg mg/kg 12b-021750 Percent Moisture 33.3 0.1 Percent pH Units 12b-021750 Percent Moisture 33.3 0.1 Percent pH Units 12b-021750 Percent Moisture 33.3 0.1 Percent pH Units 12b-021750 Total Organic Carbon 44100 150 pH Units Percent 12b-021750 Percent Moisture 33.3 0.1 Percent pH Units 12b-021790 Percent Moisture 47.4 0.1 Percent pH Units 12b-021799 Percent Moisture 8.7 0.2 pH Units Percent 12b-021799 Total Organic Carbon 93800 190 pm Wig Percent 12b-021799 Total Organic Carbon 8.7 0.2 PH Units Percent 12b-021814 Percent Moisture 14.2 0.1<									
	A-5	12b-021749		22.1	0.1		Percent	10.4-11.4	6/23/2004
	A-5	12b-021749	Total Organic Carbon	20800	128		mg/kg	10.4-11.4	6/23/2004
12b-021750 Percent Moisture 33.3 0.1 Percent Percent 12b-021750 Total Organic Carbon 44100 150 Percent Percent 12b-021750 Total Organic Carbon 44100 150 Percent Percent 12b-021790 Total Organic Carbon 44100 150 Percent Percent 12b-021799 Percent Moisture 47.4 0.1 Percent Percent 12b-021799 Total Organic Carbon 93800 190 Percent Percent 12b-021799 Total Organic Carbon 93800 190 Percent Percent 12b-021799 Total Organic Carbon 8.7 0.2 PHUnits Percent 12b-021814 Percent Moisture 14.2 0.1 Percent Percent 12b-021814 Percent Moisture 14.2 0.1 Percent Percent 12b-021814 Percent Moisture 14.2 0.1 Percent Percent 12b-021814 Percent Moisture 14.2 <	A-5	12b-021749	Hq	7.29	0.2		pH Units	10.4-11.4	6/23/2004
	A-6	12b-021750		33.3	0.1		Percent	5.9-7.9	6/25/2004
12b-021750 pH bet bet pH bet 12b-021799 Percent Moisture 47.4 0.1 Percent Percent 12b-021799 Total Organic Carbon 93800 190 Percent Percent 12b-021799 Total Organic Carbon 93800 190 Percent Percent 12b-021799 Percent Moisture 8.7 0.2 pH Units Percent 12b-021799 Percent Moisture 14.2 0.2 pH Units Percent 12b-021814 Percent Moisture 14.2 0.1 pH pH Percent 12b-021814 Percent Moisture 14.2 0.1 pH pH pH 12b-021814 Percent Moisture 14.2 0.1 pH pH pH 12b-021814 Total Organic Carbon 7.34 0.2 pH pH pH 12b-021814 pH pH pH pH pH pH pH pH 12b-021814 pH pH pH pH	A-6	12b-021750	Total Organic Carbon	44100	150		mg/kg	5.9-7.9	6/25/2004
12b-021799 Percent Moisture 47.4 0.1 Percent 12b-021799 Total Organic Carbon 93800 190 mg/kg 12b-021799 Total Organic Carbon 93800 190 mg/kg 12b-021799 Total Organic Carbon 93800 190 mg/kg 12b-021814 Percent Moisture 14.2 0.2 pH Units 12b-021814 Percent Moisture 14.2 0.1 percent 12b-021814 Percent Moisture 14.2 0.1 mg/kg 12b-021814 Total Organic Carbon 4850 117 mg/kg 12b-021814 pH 7.34 0.2 pH Units	A-6	12b-021750	ΡH	6.9	0.2	-	pH Units	5.9-7.9	6/25/2004
12b-021799 Percent Moisture 47,4 0.1 Percent 12b-021799 Total Organic Carbon 93800 190 mg/kg mg/kg 12b-021799 Total Organic Carbon 93800 190 pH Units mg/kg 12b-021799 pH 0.2 0.2 pH Units mg/kg mg/kg 12b-021814 Percent Moisture 14.2 0.1 percent mg/kg mg/kg 12b-021814 Total Organic Carbon 4850 117 percent mg/kg mg/kg 12b-021814 Total Organic Carbon 7.34 0.2 0.1 percent mg/kg									
12b-021799 Total Organic Carbon 93800 190 mg/kg 12b-021799 pH mg/r 0.2 pH Units 12b-021799 pH 8.7 0.2 pH Units 12b-021814 percent Moisture 14.2 0.1 percent 12b-021814 percent Moisture 14.2 0.1 percent 12b-021814 Total Organic Carbon 4850 117 mg/kg 12b-021814 pH 7.34 0.2 pH Units	A-7	12b-021799	Percent Moisture	47.4	0.1	-	Percent	9-11	6/21/2004
12b-021799 pH B.7 0.2 pH Units 12b-021814 Percent Moisture 14.2 0.1 Percent 12b-021814 Percent Moisture 14.2 0.1 Percent 12b-021814 Total Organic Carbon 4850 117 mg/kg 12b-021814 Ph 7.34 0.2 Ph Units	A-7	12b-021799	Total Organic Carbon	93800	190		mg/kg	9-11	6/21/2004
12b-021814 Percent Moisture 14.2 0.1 Percent 12b-021814 Total Organic Carbon 4850 117 mg/kg 12b-021814 Total Organic Carbon 4850 117 mg/kg 12b-021814 pH 7.34 0.2 pH Units	A-7	12b-021799	Hq	8.7	0.2		pH Units	9-11	6/21/2004
12b-021814 Percent Moisture 14.2 0.1 Percent 12b-021814 Total Organic Carbon 4850 117 mg/kg 12b-021814 Total Organic Carbon 7.34 0.2 pH Units									
12b-021814 Total Organic Carbon 4850 117 mg/kg 12b-021814 pH 7.34 0.2 pH Units	A-8	12b-021814		14.2	0.1		Percent	11.2-12.4	6/25/2004
12b-021814 pH 7.34 0.2 pH Units	A-8	12b-021814	Total Organic Carbon	4850	117		mg/kg	11.2-12.4	6/25/2004
	A-8	12b-021814	Ηq	7.34	0.2		pH Units	11.2-12.4	6/25/2004

2004-09 SSL-dft-00

Table D-1 Physical Parameter Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

Boring	S&W Lab Sample ID	Analysis Name	Result	Detection Limit	Result Qualifier	Unit of Measure	Depth of Measure (ft bgs)	Collection Date:
B-1	12b-021751	Percent Moisture	11.9	0.1		Percent	12.4-13.4	6/23/2004
В -1	12b-021751	Total Organic Carbon	514	114		mg/kg	12.4-13.4	6/23/2004
р 1-	12b-021751	ΡH	8.37	0.2		pH Units	12.4-13.4	6/23/2004
B-3	12b-021753	Percent Moisture	35.7	0.1		Percent	7.8-9	6/23/2004
В-3	12b-021753	Total Organic Carbon	30900	156		mg/kg	7.8-9	6/23/2004
в-3	12b-021753	На	7.4	0.2		pH Units	7.8-9	6/23/2004
B-4	12b-021754	Percent Moisture	27.7	0.1		Percent	10-11.3	6/22/2004
B-4	12b-021754	Total Organic Carbon	29500	138		mg/kg	10-11.3	6/22/2004
B-4	12b-021754	РН	6.7	0.2		pH Units	10-11.3	6/22/2004
B-5	12b-021817	Percent Moisture	49.3	0.1		Percent	12.4-14.4	6/25/2004
B-5	12b-021817	Total Organic Carbon	6350	197		mg/kg	12,4-14,4	6/25/2004
B-5	12b-021817	рН	6.83	0.2		pH Units	12.4-14.4	6/25/2004
B-5	12b-021755	Percent Moisture	9.6	0.1		Percent	15.7-17.7	6/22/2004
B-5	12b-021755	Total Organic Carbon	589	111		mg/kg	15.7-17.7	6/22/2004
B-5	12b-021755	Нq	7.48	0.2		pH Units	15.7-17.7	6/22/2004
B-6	12b-021756	Percent Moisture	37.3	0.1		Percent	7.8-8.8	6/22/2004
B-6	12b-021756	Total Organic Carbon	59800	159		mg/kg	7.8-8.8	6/22/2004
B-6	12b-021756	Hq	7.61	0.2		pH Units	7.8-8.8	6/22/2004
B-7	12b-021752	Percent Moisture	58.3	0.1		Percent	8.1-9.1	6/23/2004
B-7	12b-021752	Total Organic Carbon	41100	240		mg/kg	8.1-9.1	6/23/2004
B-7	12b-021752	Ηq	7.26	0.2		pH Units	8.1-9.1	6/23/2004
5 2	12b-021757	Percent Moisture	13.6	0.1		Percent	10.2-11.2	6/24/2004
<u>5</u>	12b-021757	Total Organic Carbon	1940	116		mg/kg	10.2-11.2	6/24/2004
<u>6-</u>	12b-021757	РН	8.29	0.2		pH Units	10.2-11.2	6/24/2004

2004-09 SSL-dft-00

Į

Table D-1 Physical Parameter Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

Boring	S&W Lab Sample ID	Analysis Name	Result	Detection Limit	Result Qualifier	Unit of Measure	Depth of Measure (ft bgs)	Collection Date:
C-2	12b-021758	Percent Moisture	13.4	0.1		Percent	8.6-10.6	6/24/2004
C-2	12b-021758	Total Organic Carbon	4540	115		mg/kg	8.6-10.6	6/24/2004
C-2	12b-021758	рН	7.55	0.2		pH Units	8.6-10.6	6/24/2004
C-3	12b-021759	Percent Moisture	15.3	0.1		Percent	9.6-10.6	6/24/2004
C-3	12b-021759	Total Organic Carbon	1470	118		mg/kg	9.6-10.6	6/24/2004
C-3	12b-021759	рН	8.11	0.2		pH Units	9.6-10.6	6/24/2004
C-5	12b-021761	Percent Moisture	13.5	0.1		Percent	8.6-9.6	6/24/2004
C-5	12b-021761	Total Organic Carbon	6540	116		mg/kg	8.6-9.6	6/24/2004
C-5	12b-021761	Hq	8.18	0.2		pH Units	8.6-9.6	6/24/2004
C-6	12b-021762	Percent Moisture	13.9	0.1		Percent	12.6-13.6	6/24/2004
C-6	12b-021762	Total Organic Carbon	531	116		mg/kg	12.6-13.6	6/24/2004
C-6	12b-021762	рН	8.77	0.2		pH Units	12.6-13.6	6/24/2004
	-							
C-7	12b-021760	Percent Moisture	18.5	0.1		Percent	7.6-8.6	6/25/2004
C-7	12b-021760	Total Organic Carbon	15700	123		mg/kg	7.6-8.6	6/25/2004
C-7	12b-021760	Hd	8.08	0.2		pH Units	7.6-8.6	6/25/2004
C-8 C	12b-021811	Percent Moisture	14.6	0.1		Percent	4.7-6.2	6/25/2004
C-8	12b-021811	Total Organic Carbon	12800	117		mg/kg	4.7-6.2	6/25/2004
အ ပ	12b-021811	Hd	8.07	0.2		PH Units	4.7-6.2	6/25/2004

Notes:

mg/kg = Milligrams per Kilogram ft bgs = Feet below ground surface

Table D-2 Antimony SPLP Results

Appendix D Draft Rev. 00 September 2004

	Averge Leachate Concentration (ug/L)	QN				QN				Q				Q				QN				1.70				13.33				QN				
	Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	
	Depth of Measure (ft bgs)	13.4-15.4	13.4-15.4	13.4-15.4	13.4-15.4	6.3-7.1	6.3-7.1	6.3-7.1	6.3-7.1	6.3-8.3	6.3-8.3	6.3-8.3	6.3-8.3	9.4-10.4	9.4-10.4	9.4-10.4	9.4-10.4	10.4-11.4	10.4-11.4	10.4-11.4	10.4-11.4	5.9-7,9	5.9-7.9	5.9-7.9	5.9-7.9	9-11	9-11	9-11	9-11	11.2-12.4	11.2-12.4	11.2-12.4	11.2-12.4	
	Unit of Measure	mg/kg	ng/L	ng/L	ng/L	mg/kg	ug/L	ng/L	ngAL	mg/kg	ng/L	ug/L	ng/L	mg/kg	ug/L	ng/L	ug/L	mg/kg	ug/L	ng/L	ug/L	mg/kg	ng/L	ng/L	ng/L	mg/kg	ng/L	ug/L	ug/L	mg/kg	ng/L	ng/L	ug/L	
	Result Qualifier	R	n	n	л	R,	D	D	ŋ	æ	D	∍	D	5	5	5	∍	П	D	D	D	m	J	þ	D	ď				ſ'n	n	n	n	
Wood, NJ	Detection Limit	1.1	2	2	2	1.4	2	2	2	0.96	2	~	2	1.4	2	4	4	1.4	2	4	4	1.4	2	4	4	2.1	2	2	2	1.3	2	4	4	
uperfund Site, May	Result	1.1	2	2	2	1.4	2	2	2	96'0	2	2	2	 1.4	2	4	4	 1.4	2	4	4	1.4	1.7	4	4	2.1	10.2	15.4	14.4	1.3	2	4	4	
FUSRAP Maywood Superfund Site, Maywood, NJ	Analysis Name	Antimony. Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony. Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	
	Sample Type ID	0	0	1	-	0	0	-	-	 0	0	-	-	0	0		~	0	0	1	-	0	0	-	-	 0	0	-	-	0	0	1 1	-	
	S&W Lab Sample ID	12b-021745	12b-021745	12b-021763	12b-021764	12b-021746	12b-021746	12b-021766	12b-021765	12b-021747	12b-021747	12b-021767	12b-021768	12b-021748	12b-021748	12b-021769	12b-021770	12b-021749	12b-021749	12b-021772	12b-021771	12b-021750	12b-021750	12b-021773	12b-021774	12b-021799	12b-021799	12b-021800	12b-021801	12b-021814	12b-021814	12b-021816	12b-021815	
	Boring	A-1	A-1	A-1	A-1	A-2	A-2	A-2	A-2	A-3	A-3	A-3	A-3	A-4	A-4	A-4	A-4	A-5	A-5	A-5	A-5	A-6	A-6	A-6	A-6	A-7	A-7	A-7	A-7	A-8	A-8	A-8	A-8	

2004-09 SSL dft-00

1 of 42

Table D-2 Antimony SPLP Results

Appendix D Draft Rev. 00 September 2004

	Averge Leachate Concentration (ug/L)	QN				7.77				-	1.40				 1.60				ΩN				3.37				2.10				ŊŊ				
	Collection Date	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	
	Depth of Measure (ft bgs)	12.4-13.4	12.4-13.4	12.4-13.4	12.4-13.4	7.8-9	7.8-9	7.8-9	7.8-9		10-11.3	10-11.3	10-11.3	10-11.3	12,4-14,4	12.4-14.4	12.4-14.4	12.4-14.4	15.7-17.7	15.7-17.7	15.7-17.7	15.7-17.7	7,8-8,8	7,8-8,8	7,8-8,8	7.8-8.8	8.1-9.1	8.1-9.1	8,1-9,1	8.1-9.1	10.2-11.2	10.2-11.2	10.2-11.2	10.2-11.2	
	Unit of Measure	mg/kg	ng/L	ng/L	ng/L	mg/kg	ug/L	ug/L	ng/L		mg/kg	ug/L	ug/L	ng/L	mg/kg	ug/L	ug/L	ng/L	mg/kg	ng/L	ug/L	ng/L	mg/kg	ug/L	ug/L	rg/L	mg/kg	ng/L	ug/L	ug/L	mg/kg	ug/L	ug/L	ng/L	
	Result Qualifier	n	n	n	D	n					œ	7	>	∍	ß	-	∍	5	£	D	D	Э	æ				Ŋ		D	2	IJ	D	U	∍	
wood, NJ	Detection Limit	1.3	2	4	4	1.5	2	4	4		1.4	2	2	2	1.8	2	4	4	0.86	2	2	2	1.6	2	2	2	2.1	2	4	4	1.2	N	4	4	
perfund Site, May	Result	1.3	2	4	4	1.5	7.6	6.5	9.2		1,4	1.4	2	2	1.8	1.6	4	4	0.86	2	2	7	1.6	3.5	3.5	3.1	2.1	2.1	4	4	1.2	2	4	4	
FUSRAP Maywood Superfund Site, Maywood, NJ	Analysis Name	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	 Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate		Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	 Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	 Antimony, Total	Antimony, SPLP Leachate	Antimony, SPLP Leachate	Antimony, SPLP Leachate	
	Sample Type ID	0	0	1	-	0	0	-	-		0	0	-	-	 0	0	-	1	0	0	+	-	0	0	-	-	 0	a	-	-	 0	0	-	-	_
	S&W Lab Sample ID	12b-021751	12b-021751	12b-021776	12b-021775	12b-021753	12b-021753	12b-021780	12b-021779		12b-021754	12b-021754	12b-021781	12b-021782	12b-021817	12b-021817	12b-021819	12b-021818	12b-021755	12b-021755	12b-021784	12b-021783	12b-021756	12b-021756	12b-021785	12b-021786	12b-021752	12b-021752	12b-021777	12b-021778	12b-021757	12b-021757	12b-021788	12b-021787	
	Boring	8-1	8-1	8-1	8-1	B-3	8-3 2	8-3	8-3		8-4	8-4	B-4	B-4	B-5	B-5	B-5	B-5	B-5	B-5	B-5	8-5	B-6	B-6	B-6	B-6	B-7	B-7	B-7	B-7	c-1	C-1	с <u>1</u>	<u>6</u> -	

2004-09 SSL dft-00

2 of 42

Table D-2 Antimony SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

Notes

ug/L = Micrograms per Liter mg/kg = Milligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely J = Estimated Concentration R = Rejected Data UJ = Estimated Non-Detect U and ND = Non Detect

Table D-2 Arsenic SPLP Resufts

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration (ug/L)	1.11				12.03				1, 01	10.17				1.40				4.60				44.20					1003.33				1.10					Q				440	41,40			
Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	61041004	arz 1/2004	6/21/2004	6/21/2004	100711700	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/21/2004	6/21/2004	6/21/2004		6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	610010004	0123/2004	6/23/2004	6/23/2004	
Depth of Measure (ft bgs)	13.4-15.4	13.4-15.4	13.4-15.4	13.4-15.4	6.3-7.1	6.3-7.1	6.3-7.1	6.3-7.1	0 0 0 0	0.0-0.0	0.3-8.3 6.9.6.9	6.9.6.6	2.2.2	9.4-10.4	9.4-10.4	9.4-10.4	9.4-10.4	10.4-11.4	10.4-11.4	10.4-11.4	10.4-11.4	5.9-7.9	5.9-7.9	5.9-7.9	5.9-7.9		9-11	9-1-1	9-11	:	11.2-12.4	11.2-12.4	11.2-12.4	11.2-12.4		12.4-13.4	12.4-13.4	12.4-13.4	12.4-13.4	0.01	R-0'	6-0')	0-0-1	2
Unit of Measure	mg/kg	ng/L	ng/L	ng/L	mg/kg	ug/L	ug/L	ug/L	444 44	LII GYYG	ngv	- ave	1.67	mg/kg	1/6n	ng/L	ng/L	mg/kg	ng/L	ng/L	ng/L	mg/kg	ug/L	ng/L	ng/L	1	mg/kg	- 1/6n	uo/L	i F	mg/kg	ug/L	ug/L	ng/L		mg/kg	ng/L	ug/L	ug/L	adlam	119/69	ug/L	101	14/1
Result Qualifier			ر									T		5		⊃	5															7	Þ	5		5	5	Þ	∍					
Detection Limit	1.1	2	2	2	1.5	2	2	2	,	- <	26	•	4	1.5	2	2	7	1.5	2	2	N	1.5	2	2	~		2.3	~ ~	2		1.4	и	2	2		1.4	2	2	2	4	<u>,</u> ,	7 0	-	-
Result	2.2	1.4	0.62	1.3	41.7	9.1	12.7	14.3	011	2.44 . 44	34 5	99.6	2.22	1.5	1.4	2	2	 13.6	3.2	2	5.6	122	37	48.8	46.8		292	1250	1310		3,9	1.1	2	2		1.4	2	2	2	E2 7	1.00	42	42.5	2
Analysis Name Result Linut	Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arnania Tatal		Arsenic, SPLP Leachate Arsenin SOLD Leachate	Arsenic SPI P Leachate		Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate		Arsenic, Total	Arsenic, SFLF Leadriale Arsenic, SDI D Leachate	Arsenic, SPLP Leachate		Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate		Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arconic Total	Arranta SDI DI accheta	Arsenic, SPLP Leachate Arsenic, SPLP Leachate	Arsenic SPI P Leachate	
Sample Type ID	0	0	1	-	0	0	~-	-	-			-	-	0	0	1	-	•	0		-	0	0	1	÷		0 0	2 -			0	•	-	-			-	-						
<u>e</u>	12b-021745	12b-021745	12b-021763	12b-021764	12b-021746	12b-021746	12b-021766	12b-021765	194 094717	120-021	12D-UZ1/4/	12h-021768		12b-021748	12b-021748	12b-021769	12b-021770	12b-021749	12b-021749	12b-021772	12b-021771	12b-021750	12b-021750	12b-021773	12b-021774		12b-021799 425 021790	120-021/33	12b-021801		12b-021814	12b-021814	12b-021816	12b-021815		120-021	12b-021751	12b-021776	12b-021775	10h_001753	100 101750	12b-021/33	12h-021779	
Boring	A-1	A-1	A-1	A-1	A-2	A-2	A-2	A-2	•	2	A-3	A-3	2	A4	A4	A-4	A-4	A-5	A-5	A-5	A-5	A-6	A-6	A-6	A-6	,	A-7	A-7	A-7		A-8	A-8	A-8	A-8	,		÷.	8-1-	B-1	6,0	200	2 6	9 19 19)

Table D-2 Arsenic SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

Averge Leachate Concentration (uo/L)	3.33	2212				2.35					0.83				1 10	2.1				0 79				3.13				0.63				0.88					0.59				1 20	1.20			
	04	04	04	4		04	04	04	8		8	04	04	8			5 5	5 5	5	70	6	64	04	04	04	04	04	04	5	04	64	14	5	04	64		64	54	40	64		5 2	5 2	5	44
Collection Date	6/22/2004	6/22/2004	6/22/2004	6/22/2004		6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/22/2004	6/22/2004	6/22/2004	6/22/2004	FOODCOLO	CICCICCIC	1000/00/3	1/2/2/2004	02/22/0	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004		6/24/2004	6/24/2004	6/24/2004	6/24/2004			012412004	0124/20	6/24/2004
Depth of Measure (ft bos)	10-11.3	10-11.3	10-11.3	10-11.3	1	12.4-14.4	12.4-14.4	12.4-14.4	12.4-14.4		15.7-17.7	15.7-17.7	15.7-17.7	15.7-17.7	7000	00002	0.0-0.1	0.0-0.1	0'0-0'1	8 1-9 1	8.1-9.1	8.1-9.1	8.1-9.1	10.2-11.2	10.2-11.2	10.2-11.2	10.2-11.2	8.6-10.6	8.6-10.6	8.6-10.6	8.6-10.6	96-106	9.6-10.6	9.6-10.6	9.6-10.6		8.6-9.6	8.6-9.6	8.6-9.6	8.6-9.6	101.00	9 6 4 9 6 4	12.0-13.0	0.01-0.21	12.6-13.6
Unit of Measure	ma/ka	na/L	ua/L	ng/L		mg/kg	ng/L	ng/L	ng/L		mg/kg	γðn	ng/L	ng/L	nd) nm	Buißit	- ngr	1011	ngr	ma/ka	na/L	ng/L	ug/L	mg/kg	ng/L	ng/L	ng/L	mg/kg	ng/L	ng/L	ng/L	mo/ka	ng/L	ng/L	ng/L	1	mg/kg	ng/L	ug/L	ug/L	and the	Ruffin	ng/r	- adr	ng/t
Result Qualifier							n				- -	-,		-								5	Э						5	Ð	5		5	¬	∍			-	D	∍		-	- -	5	5
Detection Limit	1.5	2	0	7		2	2	2	2		0.92	2	2	~	4 7		4 0	4 0	1	23	2	2	2	1.2	2	2	2	1.6	2	2	2	13	2	2	2	1	1.5	7	2	2	ç,	4 0	4 0	7	7
Result	42	3.5	2.5	4		9.8	2	2.2	2.5		1.4	0.96	0.65	0.87	75	2 e			2	8.2	0.79	2	2	2.6	2.7	3.3	3.4	2.4	0.63	2	2	2.9	0.88	2	2		6.2	0.59	2	2	20	1.7	4 0	7 4	N
Analvsis Name	Arsenic. Total	Arsenic. SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate		Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate		Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arcanic Total	Arcenic SOID Leachate	Arcanic, Of LF Leaviate Arcanic, SDI D Lachate	Arcenic, SCLT Leaduale Arcenic SDLD Leachate		Arsenic. Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, Total	Arsenic, SPLP Leachate	υĪ	Arsenic, SPLP Leachate	Arsenic. Total	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate		Arsenic, lotal	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arsenic, SPLP Leachate	Arcanio Total	Arconic CDI D L conhate	Arcanic, SF LF Leaviate Arcanic, SDI D Lacrhola		Alsellic, OFLF Leadingle
Sample Type ID	0	•	1	-		0	0	-	-		0	0	-	-	c			- +	-	0	0	1	1	0	0		+	 •	0	-	-	0	0	1	-	-	0	0	-	-	-	,	-	-	-
S&W Lab Sample ID	12b-021754	12b-021754	12b-021781	12b-021782		12b-021817	12b-021817	12b-021819	12b-021818		120-021/50 121-021/50	44/1ZD-021	120-021/84	120-021/83	10h-001756	12h_021756	12h-021785	12h-D21786		12b-021752	12b-021752	12b-021777	12b-021778	12b-021757	12b-021757	12b-021788	12b-021787	12b-021758	12b-021758	12b-021789	12b-021790	12b-021759	12b-021759	12b-021792	12b-021791		12D-021 /61	12b-021761	12b-021796	12b-021795	12h-021769	12h-021762	12h-021202	101 70-701	120-021
Boring	84 8	B4	8	84		B-5	B-5	B-5	B-5	1	с 1 1 1	с-н	с-н	¢-9	a a	9 8	998			8-7	B-7	B-7	B-7	<u>5</u>	<u>5</u>	5	2	5	5	C-2	5.2	63	C.3	C-3	C3	1	3	<u>ب</u>	C-5	C-5	a C				2

2004-09 \$\$L dft-00

Table D-2 Arsenic SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

	6/25/2004	4.7-5.2	ug/L		2	g'7	Arsenic, SPLP Leachate	_	C10170-071	5
	6/25/2004	4.7-6.2	ng/L		2	3.3	Arsenic, SPLP Leachate	-	12b-021812	ဗီ
	6/25/2004	4.7-6.2	ug/L		2	3.3	Arsenic, SPLP Leachate	¢	12b-021811	ဗီ
3.13	6/25/2004	4.7-6.2	mg/kg		1.3	3.9	Arsenic, Total	0	12b-021811	8 0
	6/25/2004	7.6-8.6	ug/L	ſ	2	1.2	Arsenic, SPLP Leachate	-	12b-021794	C-7
	6/25/2004	7.6-8.6	ng/L	D	2	2	Arsenic, SPLP Leachate	~	12b-021793	C-7
	6/25/2004	7.6-8.6	ng/L	D	2	2	Arsenic, SPLP Leachate	¢	12b-021760	C-7
1.20	6/25/2004	7.6-8.6	mg/kg	D	1.5	1.5	Arsenic, Total	0	12b-021760	C-7
(ng/L)	Date	(th bgs)	Unit of Measure	Qualifier	Limit	Result	Analysis Name	Sample Type ID	Q	Boring
Averge Leachate Concentration	0	Depth of Measure		Result	Detection				S&W Lab Sample	

Notes

ug/L = Micrograms per Liter mg/kg = Milligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect UJ = Estimated Non-Detect J = Estimated Concentration

,

Table D-2 Barium SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superiund Site, Maywood, NJ

Averge Leachate Concentration (ug/L)	70.75				47.90					QN					46.13					42,20				7.45				199.00				9.85				63.04	44,00		1		29.90				
Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004		6/21/2004	6/21/2004	6/21/2004	6/21/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	0001000	6/23/2004 6/23/2004	0123/2004	+002/202/0	0/23/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	 6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	eroshon.	+002/02/0	012312004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	
Depth of Measure (ft bgs)	13.4-15.4	13,4-15,4	13.4-15.4	13.4-15.4	6.3-7.1	6.3-7.1	6.3-7.1	6.3-7.1		6.3-8.3	6.3-8.3	6.3-8.3	6.3-8.3		9.4-10.4	9,4-10.4	9.4-10.4	9.4-10.4		10.4-11.4	40.4 41.4	t t - C -	10.4-11.4	5.9-7.9	5.9-7.9	5.9-7.9	5.9-7.9	9-11	9-11	9-11	9-11	11.2-12.4	11.2-12.4	11.2-12.4	11.2-12.4	10140	+ 01 - + 71	+101-4-21	12.4-13.4	12.4-13.4	7.8-9	7.8-9	7.8-9	7.8-9	
Unit of Measure	mg/kg	-1/6n	ng/L	ug/L	ma/ka	non	T/bn	ng/L	>	mg/kg	ug/L	ng/L	ng/L	1	mg/kg	ug/L	ng/L	ng/L		mg/Kg	ug/L		ng/L	ma/ka	ua/L	-2- na/L	ng/L	mg/kg	ug/L	ng/L	ug/L	ma/ko	ug/L	1/gn	1/6n	mailte	111G/NU	ng/L	ug/L	<u>1/6n</u>	mg/kg	ng/L	Yôn	ηg/L	
Result Qualifier			5		- -	,	5	5		- -	Э	þ	5							T					=	,		ſ					5										5	5	
Detection Limit	0.17	200	200	200	0.23	200	200	200		0.15	200	200	200		0.22	200	200	200		57.0 000	002	002	200	0.23	200	200	200	0.34	200	1000	1000	0.2	200	200	200	100	1.2.0	200	200	200	0.24	200	200	200	
Result	45.2	85.4	34.4	56.1	42.B	47.9	33.6	31.4		33.1	20.2	28.7	30.8		25.9	37.6	51.9	48.9	;	41.4	42 0	2 5	48.7	21	7.1	7.3	7.6	92.9	198	243	156	30.7	14.8	10.7	σ	100	00	6.14	37.6	42.7	30.8	29.9	6.5	6.2	
Analysis Name	Barium. Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium Total	Barium SPI P Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate		Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate		Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate		Banum, Iotal	Bartum, SPLP Leachate		Banum, SPLP Leachate	Barium Total	Barium SPI P I eachate	Barium. SPLP Leachate	Barium, SPLP Leachate	Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Baritun Total	Barium. SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Design Tatel		Banum, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	
Sample Type ID	0	0	1	۰	c	, -	,	. 4-		0	0	•	-		0	0	÷	***		•				c	• c	, .	-	0	0	1	F	c	0	-	1		-		-	-	0	0	-	1	
S&W Lab Sample ID	12b-021745	12b-021745	12b-021763	12b-021764	12h-021746	12h-021746	12b-021766	12b-021765		12b-021747	12b-021747	12b-021767	12b-021768		12b-021748	12b-021748	12b-021769	12b-021770		12b-021749	120-021/49	777120-021	177120-021	124-021750	12h-021750	12b-021773	12b-021774	12b-021799	12b-021799	12b-021800	12b-021801	12b-021814	12b-021814	12b-021816	12b-021815	405 0047F4	101120-021	16/170-071	12b-021776	12b-021775	12b-021753	12b-021753	12b-021780	12b-021779	
Boring	A-1	A-1	A-1	A-1	6-4	2-4	A-2	A-2		A-3	A-3	A-3	A-3		A-4	A-4	A-4	A-4		A-5	ç, ı	C-4	ę-A	A-6	A-6	A-6	A-6	A-7	A-7	A-7	A-7	A-8	A-8	A-8	A-8					B-1	B-3	B-3	B-3	B-3	

2004-09-SSL dft-00

Table D-2 Barium SPLP Resufts

Appendix D Draft Rev. 00 September 2004

	Averge Leachate Concentration (uo/l)	51 00				12.10				A1 17				53.60				00.00	40.2U				165.43				44.80				84.60				56.53	****				44.13			
	Collection Date	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	612212004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	1000000	6/23/2004	6/23/2004	012012004	6/Z3/Z004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	0/24/2004	612412004		6/24/2004	6/24/2004	6/24/2004	6/24/2004	612412004	6/24/2004	6/24/2004	6/24/2004		6/24/2004	6/24/2004	6/24/2004	6/24/2004
	Depth of Measure (ft bos)	10-11.3	10-11.3	10-11.3	10-11.3	12.4-14.4	12.4-14.4	12.4-14.4	12.4-14.4	15 7-17 7	15 7-17 7	15.7-17.7	15.7-17.7	7.8-8.8	7.8-8.8	7.8-8.8	7.8-8.8		1.0-1.0	0.1-0.1	1.9-1.0	8.1-9.1	10.2-11.2	10.2-11.2	10.2-11.2	10.2-11.2	8.6-10.6	0.0-10.0	8.6-10.6	200	9.6-10.6	9.6-10.6	9.6-10.6	9.6-10.6	86-96	86.96	8.6-9.6	8.6-9.6		12.6-13.6	12.6-13.6	12.6-13.6	12.6-13.6
	Unit of Measure	maíka	uq/L	ng/L	ng/L	mg/kg	ug/L	ng/L	ng/L	mo/ka	l'on	- nov	- 1/Bn	mg/kg	ng/L	ug/L	ng/L		nadi 1	ug/L	ng/L	ug/L	mg/kg	ng/L	ug/L	ug/L	mg/kg	ug/L		j D	mg/kg	ng/L	ug/L	ug/L	malka	1011	ua/L	uo/L	l b	mg/kg	ug/L	ug/L	ug/L
	Result Oualifier	-					n			-	,			,													=	5				Þ										ſ	
N , N J	Detection	0.22	200	200	200	0.29	200	200	200	014	2002	200	200	0.26	200	200	200		400	000	202	200	0.19	200	200	200	0.24	002	202	224	0.2	200	200	200	0.23	200	200	200		0.18	200	200	200
perfund Site, May	Result	103	30.6	55.6	66.8	243	12.7	11.8	12.4	35.7	41	39,6	42.9	127	54.3	59.6	46.9	4	DC1	7.00	7.61	15.7	239	91.3	172	233	14.3	00.00	59.2	1	142	26.5	83.2	86	916	55.9	53.3	60.4		67	48	48.7	35.7
FUSRAP Maywood Superfund Site, Maywood, NJ	Analvsis Name	Banum. Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, Total	Baríum, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Rarium Total	Baritm SPI P I eachate	Bartum, SPLP Leachate	Barium, SPLP Leachate	Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate		Darlum, Total Darium Critin Locabete	barum, SPLP Leagaale bari m SPLD Loophate	Daltum, OPLP Leaguate	Barrum, SPLP Leachate	Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Banum, Total	Barlum, SPLP Leachate Booker SPI DI contate	Barlun, SEEF Leaulate Barlum SDI D1 eachate		Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Raritum Total	Barium SPI P Leachate	Barium, SPLP Leachate	Barium. SPLP Leachate		Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate
	Samole Tvoe (D	0	0	1	1	0	0	-	-		,0	,	-	0	0	-	-				-	-	0	0	-	Ŧ	0 0	> *		-	0	D	1	~	c	, c	, -	-		0	0		~
	S&W Lab Sample	1754	12b-021754	12b-021781	12b-021782	12b-021817	12b-021817	12b-021819	12b-021818	12h-021755	12h-021755	12b-021784	12b-021783	12b-021756	12b-021756	12b-021785	12b-021786	101-001-100	120-021702	120-021/32	111170-071	12b-021778	12b-021757	12b-021757	12b-021788	12b-021787	12b-021758	120-021730	12h-021790	201 10 27	12b-021759	12b-021759	12b-021792	12b-021791	126-021761	12h-021761	12b-021796	12b-021795		12b-021762	12b-021762	12b-021797	12b-021798
	Borina	B-4	B4	B-4	B-4	B-5	B-5	B-5	B-5	8-5	8-5 1	о сл о сл	9-9-	9-8 8	9-8	B-6	8-6	1		0		B-7	2- 2-	C-1	ې 1	с <u>-</u> 1	C-2	2.2	50	4	с С	с; С	C-3	S	55	22	220	5		C-6	C-6	9 0	C-6

2004-09-SSL dft-00

Table D-2 Barium SPLP Results

Appendix D Draft Rev. 00 September 2004

	Averge Leachate Concentration	17.95				QN			
	Collection Date	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004
	Depth of Measure (# hos)		7.6-8.6	7.6-8.6	7.6-8.6	4.7-6.2	4.7-6.2	4.7-6.2	4.7-6.2
	Linit of Measure	mg/kg	ng/L	ng/L	, J/gu	mg/kg	ng/L	ng/L	ng/L
	Result Oualifier		þ				∍	∍	∍
ywoad, NJ	Detection	0.23	200	200	200	0.2	200	200	200
erfund Site, Ma	Result	255	21.4	16.7	19.2	28.1	2.6	4.9	3.7
FUSRAP Maywood Superfund Site, Maywood, NJ	Analvsis Name	Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, Total	Barium, SPLP Leachate	Barium, SPLP Leachate	Barium, SPLP Leachate
	Sample Type ID	0	0	1		0	0	-	-
	S&W Lab Sample ID	12b-021760	12b-021760	12b-021793	12b-021794	12b-021811	12b-021811	12b-021812	12b-021813
	Boring	C-7	C-7	C-7	C-7	ວຶ	8° ک	C-8	8°0

Notes

ug/L = Micrograms per Liter mg/kg = Mitigrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect U = Estimated Non-Detect J = Estimated Concentration

Table D-2 Beryllium SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration (uo/L)	Q				g				4					QN									QN				QN				QN				Q					QN			
Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6101 10001	4005/1675	400011012	0/21/2004	0/Z 11Z004	6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/23/2004	6/23/2004	0123/2004	4002/02/0	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/23/2004	6/23/2004	6/23/2004	
Depth of Measure (ft bas)	13.4-15.4	13.4-15.4	13.4-15.4	13.4-15.4	6.3-7.1	6.3-7.1	6.3-7.1	6.3-7.1	0000	0.0-0.0	0.0-0.0	0.0-0.0	0.0-0.0	9.4-10.4	9.4-10.4	9.4-10.4	9.4-10.4		10.4-11.4	10.4-11.4	10 4-11 4	10,4-11,4	5,9-7,9	5.9-7.9	5.9-7.9	5.9-7.9	9-11	9-11	9-11	9-11	11.2-12.4	11.2-12,4	11.2-12,4	11.2-12.4	12.4-13.4	12.4-13.4	12.4-13.4	12.4-13.4		7.8-9	7.8-9	6-8.7	
Unit of Measure	mg/kg	ng/L	ng/L	ug/L	mg/kg	ng/L	ug/L	rg/L		1119/A9	ug/L	4 <u>9</u> /L	цул	mg/kg	ng/L	ng/L	ng/L		mg/Kg	ug/L 	ug/L	цĝг	mg/kg	Чбл	ug/L	ug/L	mg/kg	лgЛ	ng/L	ng/L	ma/ka	ng/L	ng/L	ug/L	mg/kg	ug/L	ug/L	T/6n		mg/kg	T/6n	ng/L ug/L	
Result Qualifier	5	5	ъ	Þ	5	D	n	2	=	5=	5 =	5 =	5	5	5	5	Э	-	5	- -		5	5	5	ŋ	D	5	_	5	5		D	D	5	 þ	D	∍	D		:	- -		
Detection	0.47	2	2	2	0.62	2	2	2	0 4 0	74-O	v c	v c	7	0.6	2	2	2		0.63	7	v (7	0.62	2	2	2	0.94	2	2	2	0.56	2	2	2	0.56	2	2	2		0.66	7	2	
Result	0.47	2	2	2	0.62	2	2	2	67.0	2+7 C	N C	7 6	7	0.6	2	2	2		0.63	2	v (7	0.62	2	2	2	0.94	2	7	2	0.56	2	2	7	0.56	2	2	2	1	1.5	2 0	5 F	
Analysis Name	Beryllium, Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, Total	Beryllium, SPLP Leachate	Beryflium, SPLP Leachate	Beryłlium, SPLP Leachate	Boodition Total	Benillium SDI D I eachate	Dervillium SDI D Lanchate	Detrylliutit, OF LF LEGUIGIE Benvillium SDI D Lesshote		Beryllium, Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate		Beryllium, Total	Becyllium, SPLP Leachate	Deryllium, Of LF Leachale	Delyman, Srtr reachate	Berytlium, Total	Beryllium, SPLP Leachate	Beryłlium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, Total	Berylium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Bervlium. Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	 Beryllium, Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate		Beryllium, Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate Beryllium, SPLP Leachate	
Sample Type ID	0	0	1	~	0	0	ſ	-	4			- +	-	0	0	4	Ŧ	4		5,		-	°	0	1	÷	0	0	-	-	0	0	1	÷	0	0	-	-	,	0	5 -		_
S&W Lab Sample ID	12b-021745	12b-021745	12b-021763	12b-021764	12b-021746	12b-021746	12b-021766	12b-021765	40P-004747	120-021747	120-021747	101-021701 10H-00176B	001120-021	12b-021748	12b-021748	12b-021769	12b-021770	40F 001740	120-021749	64/120-021	404 001774	11170-021	12b-021750	12b-021750	12b-021773	12b-021774	12b-021799	12b-021799	12b-021800	12b-021801	12b-021814	12b-021814	12b-021816	12b-021815	 12b-021751	12b-021751	12b-021776	12b-021775		12b-021753	120-021/53	12b-021779	
Boring	A-1	A-1	A-1	A-1	A-2	A-2	A-2	A-2	C V	5-0	6.4	5-4	2	A-4	A-4	A-4	A-4		ņ. v	A-5 A -5	2-2 2 4	2	A-6	A-6	A-6	A-6	A-7	A-7	A-7	A-7	A-8	A-8	A-8	A-8	а т	8-1	B-1			27 C	6-9 6-0	6.6	

2004-09 SSL dft-00

10 of 42

Table D-2 Beryllium SPLP Results

Appendix D Draft Rev. 00 September 2004 .

Averge Leachate Concentration (ug/L)	QN				Q									2.00				4	N				QN												Q				Q	2		
Collection Date	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	610100A	012212004	6/22/2004	6/22/2004		6/22/2004	6/22/2004	6/22/2004	6/22/2004	1000000	5/23/2004	6/23/2004	6/23/2004	612312004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	NUNCIACIA	6/24/2004	6/24/2004	6/24/2004	EPARDONA	100211210	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004
Depth of Measure (ft bgs)	10-11.3	10-11.3	10-11.3	10-11.3	12.4-14.4	12.4-14.4	12.4-14.4	12.4-14.4	45 7 47 7	1.1-1.01	15.7-17.7	15.7-17.7		7.8-8.8	7.8-8.8	7.8-8.8	7.8-8.8		8.1-9.1	8.1-9.1	0.1-3.1	a, 1-4, 1	10.2-11.2	10.2-11.2	10.2-11.2	10.2-11.2	8 6 10 G	8.6-10.6	8.6-10.6	8.6-10.6	08-108	0.0-0.0	9.6-10.6	9.6-10.6	8.6-9.6	8.6-9.6	8.6-9.6	8.6-9.6	12.6-13.6	12.6-13.6	12.6-13.6	12.6-13.6
Unit of Measure	ma/ka	ng/L	ng/L	ng/L	mg/kg	ug/L	ng/L	ug/L	-4-1	LIIGING	ng/L	Tion	2	mg/kg	ug/L	ug/L	ng/L		mg/kg	۳.eu	ng/L	ngvr	mg/kg	ug/L	ug/L	ug/L	- Caller	uq/L	ng/L	ng/L	n di na	Rugin		-1/6n	mg/kg	ug/L	ug/L	ug/L	ma/ka	naA	ng/L	T/6n
Result Qualifier	1	5	5	Э		5	5	5	-	5						Þ	∍		:	5:	-))	n D	D D	Þ	>	=	> >	D	∍	=		> =	, _	b	ŋ	n	>	5		n	ъ
Detection Limit	0.61	7	2	2	0.8	2	2	2	000	00	10	10		0.71	N	2	2	100	0,34		v c	7	0.51	2	2	2	0 CE	2	01	2	0.66	<u></u>	40	2	0.61	2	2	2	0.48	2	2	2
Result	0.61	2	2	2	6.3	5	5	~		00.0	× 6	~	- - - -	1.8	~	2	7				v c	N	0.51	2	2	2	0.66	20.2	~	2	330	<u> </u>	4 0	1 ~	0.61	2	2	7	0.48	0	2	2
Analysis Name	Bervilium, Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Bassilium Total		Bervlium, SPLP Leachate Bervlium, SPLP Leachate	Bervlium, SPLP Leachate	the second second second second second second second	Beryllium, Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate		Beryllium, total	Beryllum, SPLP Leachate	Bondii Im SDI DI pachato	Delyllum, SPLF Leachale	Beryllium, Total	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Banditum Total	Bervlium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Bendlium Total	Bondhim CDI D1 sochate	Berdhim SPI P Leachate	Beryllium, SPLP Leachate	Beryllium, Total	Beryflium, SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate	Bervlium. Total	Bervillum. SPLP Leachate	Beryllium, SPLP Leachate	Beryllium, SPLP Leachate
Sample Type ID	0	0	1	-	0	0	1	-						0	٥	-	1					-	0	0	£	-		, 0					I		0	0	-	-	0	0	-	-
S&W Lab Sample ID	12b-021754	12b-021754	12b-021781	12b-021782	12b-021817	12b-021817	12b-021819	12b-021818	10h.001766	140-04175	120-021784	12b-021783		12b-021756	12b-021756	12b-021785	12b-021786		20/1ZD-0Z1	120-021/52	1717120-021	0//IZD-071	12b-021757	12b-021757	12b-021788	12b-021787	47h_074769	12b-021758	12b-021789	12b-021790	124.021760	120-021100 13h-031760	12h-021133	12b-021791	12b-021761	12b-021761	12b-021796	12b-021795	12b-021762	12b-021762	12b-021797	12b-021798
Boring	8-4	84	84	B-4	B-5	B-5	B-5	8-2	ų		5-6	- S		B-6	8-6 6	8-6	B-6	1	- 1	7 7		<u>}</u>	0-1	<u>5</u>	<u>5</u>	ې 1	د ر	C-2	C-2	C-2	e c	36	32	33	C-5	C-5	C-5	C-5	90	90	90	မှ

2004-09 SSL dft-00

•

Table D-2 Berylijum SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

	S&W Lab Sample	Comula Tuno ID			Detection	Result	Result	Dept	Collection	Averge Leachate Concentration
C-7	12b-021760		Beryllium, Total	0.61	0.61		UIII UI Measure	7.6-8.6	6/25/2004	(TIGN)
C-7	12b-021760	0	Beryllium, SPLP Leachate	2	2	þ	ng/L	7.6-8.6	6/25/2004	
C-7	12b-021793	٢	Beryllium, SPLP Leachate	2	2	D	ng/L	7.6-8.6	6/25/2004	
C-7	12b-021794	1	Beryllium, SPLP Leachate	2	2	n	ng/L	7.6-8.6	6/25/2004	
6-8 C	12b-021811	0	Beryllium, Total	0.55	0.55	D	mg/kg	4.7-6.2	6/25/2004	QN
6-8 C	12b-021811	0	Beryllium, SPLP Leachate	2	2	D	ng/L	4.7-6.2	6/25/2004	
8-0 0	12b-021812	1	Beryllium, SPLP Leachate	2	2	5	ng/L	4.7-6.2	6/25/2004	
6-8- C-8	12b-021813	1	Beryllium, SPLP Leachate	2	2	D	ug/L	4.7-6.2	6/25/2004	

Notes

ug/L = Micrograms per Liter mg/kg = Miligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect J = Estimated Non-Detect J = Estimated Concentration

Table D-2 Boron SPLP Results

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration (ug/L)	Q				ç					9					QN				UN	2			QN				883.00	20,200			CIA CIA	2				2			ND				QN
Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	EUDODODA	-1000000	PIZZIZU04	5122/2014	6/22/2004	E10410004	6/2/1/2004	6/21/2004	6/21/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	RI2312004	6/23/2004	6/23/2004	6/23/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/21/2004	8/21/2004	6/21/2004	6/21/2004	CUEDO04	6/25/2004	6/25/2004	6/25/2004	100010013	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/22/2004
Depth of Measure (ft bgs)	13.4-15.4	13.4-15.4	13.4-15.4	13.4-15.4	69.74	1.1-0.0	0.0-1.1	0.4-(-1	6.3-7.1	0003	0.0-0.0	63-63	6.3-8.3		9.4-10.4	9.4-10.4	9.4-10.4	9.4-10.4	10.4-11.4	10 4-11 4	10.4-11.4	10.4-11.4	5.9-7.9	5.9-7.9	5.9-7.9	5.9-7.9	<u>0.11</u>	0.11	9-11	9-11	11 2 42 4	11.2-12.4	11.2-12.4	11.2-12.4		12 4-13 4	12.4-13.4	12.4-13.4	 7.8-9	7.8-9	7.8-9	7.8-9	10-11.3
Unit of Measure	mg/kg	ng/L	ng/L	ng/L		By By	ng/L	ng/L	ng/L	matha	Ruffin	100	ng/L		mg/kg	, ng/L	ng/L	ng/L	nalba	full	na/L	ng/L	mg/kg	ug/L	ug/L	ng/L	malka	- I'm	na/L	ng/L	matha	no/L	ng/L	ng/L		Bu/Bill	ua/L	ng/L	mg/kg	ug/L	T/Bn	ng/L	mg/kg
Result Qualifier	5	n	5	5	=	5	5		5	=	>=		Ŭ		5	5	5	5	=	>=	∍⊃	n	 D	D	D	5					=		D	5	=	>=		5	J	D	5	5	D
Detection	5800	200	200	200	1000	Dep /	700		007	6940	000	2002	200		7470	200	200	200	7830	2002	202 201	200	7750	200	200	28	11600	2000	1000	1000	000	200	200	200	6030	000	200	200	8200	200	200	200	7550
Result	5.8	102	59.7	35	7 20		R	04.4	65.6	10	-77 23 E	513	63.5	-	7.47	78.7	91.3	63.3	7 83	88.2	77.4	82.2	7.75	41.8	49.4	57.1	50	03E	891	823	0	3.5	45.3	58	C u	1.95	38.4	37	đ	62.5	77.2	82.8	7,55
Analysis Name Result Limit	Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Doron Total			BOTON, SPLP LEACHATE	Boron, SPLP Leachate	Barna Tatal	Boron Sol D Leachate	Boron SPI P Leachate	Boron, SPLP Leachate		Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron Total	Borron SPI P I eachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron Total	Bown SDI D Learhate	Boron, SPLP Leachate	Boron, SPLP Leachate	Dorna Total	Boron. SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	latet and	Boron SPI PI eachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, Total
Sample Type ID	0	0	-	-					-	•		, -	1		0	0	-	-	-	, c	<u>,</u>	1	0	0	•	-		, c	,	-		0	-	۴	-	bc	s ~	-	0	0	-	-	0
S&W Lab Sample	12b-021745	12b-021745	12b-021763	12b-021764	40h 001746	120-021740	062,100-107	120-021/00	12b-021/65	40h 001717	120-021747	125-021767	12b-021768		12b-021748	12b-021748	12b-021769	12b-021770	1.0h_0.07.40	12h-021749	12b-021772	12b-021771	12b-021750	12b-021750	12b-021773	12b-021774	12h-021799	12h-M21700	12b-021800	12b-021801	125.021814	12b-021814	12b-021816	12b-021815	40h 004754	12h-021/31	12b-021776	12b-021775	12b-021753	12b-021753	12b-021780	12b-021779	12b-021754
Boring	A-1	A-1	A-1	A-1		2-2	A-4	A-2	A-2	•	6.4	A-3	A-3		¥.	A4	A-4	A-4	A_6	A-5	A-5	A-5	A-6	A-6	A-6	A-6	A-7	-7 -7	A-7	A-7	4	8-8	A-8	A-8	0	- - -	, d	1	В .3	<mark>Р</mark> 3	2	B-3	B-4

Table D-2_Merged Analytical Validated Data

13 of 42

2004-09 SSL dft-00

Table D-2 Boron SPLP Results

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration (ug/L)				4	ND					RU			QN				G					R			Q				Q				Q				Q				040.00
Collection Date	6/22/2004	6/22/2004	6/22/2004	0.001	4002/192/19	6/25/2004	6/25/2004	6/25/2004	-100/001	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	CIN LINCOL	6/24/2004	EP4P004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	enemon4
Depth of Measure (ft bgs)	10-11.3	10-11.3	10-11.3		12.4-14.4	12.4-14.4	12.4-14.4	12.4-14.4	1 1 1 1	15.7-17.7	15.7-17.7	15.7-17.7	7.8-8.8	7.8-8.8	7.8-8.8	7.8-8.8	8.1-9.1	8.1-9.1	8.1-9.1	8.1-9.1	40.54.0	10.2-11.2	10 2-11 2	10.2-11.2	8.6-10.6	8.6-10.6	8.6-10.6	8.6-10.6	9.6-10.6	9.6-10.6	9.6-10.6	9.6-10.6	8.6-9.6	8.6-9.6	8.6-9.6	8.6-9.6	12.6-13.6	12.6-13.6	12.6-13.6	12.6-13.6	0 0 0 T
Unit of Measure	ng/L	ng/L	ng/L		mg/Kg	ng/L	ug/L	ng/L		110/Kg	1/01	ng/L	mg/kg	ug/L	ng/L	ug/L	ma/ka	ng/L	Ng/L	ng/L		mg/kg	101	ng/L	mg/kg	1/6n	ng/L	ng/L	mg/kg	ng/L	ug/L	ug/L	mg/kg	ng/L	ng/L	ug/L	ma/ka	ng/L	1/6n	ηgν	
Result Qualifier	þ	n	5	=		5	5	5	-	=				5	5	5		n	n	Э	-	=)=		∍	Þ	5:	5	n	5	∍	∍	n	D	Þ	D	5	5	D	Э	:
Detection Limit	200	200	200	0000	8830	200	200	200	4000	200	200	200	8770	200	200	002	11600	200	200	200	0000	200	200	500	8060	200	200	200	6780	200	200	200	7590	200	200	200	5920	200	200	200	
Result	94.9	102	84	8	0.2.2	41.4	51.1	53.2	A CC	4 ^{.60}	40.4	36.6	20.6	<u>1</u> 00	82.7	92.1	24.3	62	74.8	70.7	6.33	113	116	119	8.06	30.3	48.8	48.7	6.78	38.1	64.7	74.6	7.59	36.1	72.2	57.9	5.92	43.4	46	62.8	
Analysis Name	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	1111 F 1112		Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Dama Tatal	Boron SPI P Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron. Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Borro Totol	BOIDII, I UIAI BOIDII SPI P Leachate	Bomn SPI P I eachate	Boron, SPLP Leachate	Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	BOTON, SPLP Leacrate	Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, Total	Boron, SPLP Leachate	Boron, SPLP Leachate	Boron, SPLP Leachate	
Sample Type ID	0	+	~		-	0	-		-			1	0	0		-	0	0	1	~			, , ,		0	0			0	0	-	-	0	0	1 1		0	0	1	-	•
pie		12b-021781	12b-021782	425 024047	10120-021	120-02181/	12b-021819	12b-021818	40h 001766	12b-021755	12b-021784	12b-021783	12b-021756	12b-021756	120-021785	98/120-071	12b-021752	12b-021752	12b-021777	12b-021778	40h.004767	12b-021/57	12b-021788	12b-021787	12b-021758	12b-021758	12b-021789	06/120-dZL	12b-021759	12b-021759	12b-021792	12b-021791	12b-021761	12b-021761	12b-021796	12b-021795	12b-021762	12b-021762	12b-021797	12b-021798	101 101
Boring	B-4	B-4	B-4	u		с- 1	B-5	B-5	4	0 40	5	B-5	8-9	φ	9-6	9-5	B-7	B-7	B-7	B-7	ī	512	5	5	C-2	5	C-2	27	5 C	с С	C-3	5 S	C-5	C-5	C-5	5 2	မှုပ်	C.6	ငို	ő	ľ

2004-09 SSL dft-00

14 of 42

Table D-2 Boron SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

	S&W Lab Sample				Detection	Result		Depth of Measure		Averge Leachate Concentration
Boring	۵	Sample Type ID	Analysis Name	Result	Limit	Qualifier	Unit of Measure		Collection Date	(ng/L)
0-7	12b-021793	1	Boron, SPLP Leachate	237	200	5	ng/L	7.6-8.6	6/25/2004	
C-7	12b-021794	1	Boron, SPLP Leachate	278	200	ר	ng/L	7.6-8.6	6/25/2004	
6-8 0-8	12b-021811	0	Boron, Total	6.82	6820	n	mg/kg	4.7-6.2	6/25/2004	Q
0-8	12b-021811	0	Boron, SPLP Leachate	33	200	n	ng/L	4.7-6.2	6/25/2004	
ဗို	12b-021812	+	Boron, SPLP Leachate	63	200	2	ng/L	4.7-6.2	6/25/2004	
89 0	12b-021813	-	Boron, SPLP Leachate	58.3	200	5	ng/L	4.7-6.2	6/25/2004	

Notes

ug/L = Micrograms per Liter ug/kg = Micrograms Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect U a Estimated Non-Detect J = Estimated Concentration

.

Table D-2_Merged Analytical Validated Data

Table D-2 Cadmium SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

Averge Leachate Concentration (uq/L)	0.084					Q				GN				QN					g				0000	0.200				0,600	0.00				QN					Q				0.360				9
Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004		6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/96/90A	012312004	+002/2010	6/25/2004	6/25/2004	6/04/2004	012112004	6/21/2004	6/21/2004		6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/22/2004
Depth of Measure (ft bgs)	13.4-15.4	13.4-15.4	13.4-15.4	13.4-15.4		6.3-7.1	6.3-7.1	6.3-7.1	6.3-7,1	63.83	62.83	6.3-8.3	6.3-8.3	9.4-10.4	9.4-10.4	9.4-10.4	9.4-10.4		10.4-11.4	10.4-11.4	10.4-11.4	10.4-11.4	50.70	5.7-0-1 0-1-0-1	0.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	9.4-7.9 0.1.0 1	5.4-7.9	0.11		114	9-11		11.2-12.4	11.2-12.4	11.2-12.4	11.2-12.4		12.4-13.4	12.4-13.4	12.4-13.4	12.4-13.4	7.8-9	7.8-9	7.8-9	7.8-9	10-11.3
Unit of Measure	mg/kg	ng/L	ug/L	ng/L	,	mg/kg	ug/L	ug/L	ηθγΓ	malka	E LOI	na/L	ng/L	mg/kg	ug/L	ng/L	ng/L		mg/kg	ng/L	ng/L	ug/L	udibra	64/611	181	","	ng/L	malka	Running I	- navr	חמיך	i b	mg/kg	ug/L	ng/L	ng/L		mg/kg	ug/L	ngrL	1/bn	ma/ka	uo/l-	na/L	ug/L	mg/kg
Result Qualifier	5		D	Э	1	5	∍	n	5	=			5	Э	∍	Э	þ	:	-	5			=					=	,				n	n	D	D	;	5	-	5	5	-				∍
Detection Limit	0.94	4	4	4		1.2	4	4	4	0.84	P	4	4	1.2	4	4	4		1.3	4	4	4	61	4	+ •	4	4	9	2 ~	2 4	4		1.1	4	4	4		1.1	4	4	4	1.3	4	4	4	1.2
Result	0.94	0.084	4	4	•	1.2	4	4	4	0.84	4	4	4	1.2	4	4	4	-	1.3	4	4	4	1 2	71		0.23	11.0 1	19		0.81	0.7		1.1	4	4	4		<u></u>	4	4	4	1.3	0.48	0.3	0.3	1.2
Analysis Name	Cadmium, Total	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate		Cadmium, Lotai	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium. Total	Cadmium SPLP Leachate	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium, Total	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate		Cadmium, Total	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium Total	Cadminum SDI D I aachate		Caumium, SPLP Leagnate	vaqmum, Srur Leachate	Cadmium Total	Cadmium CDI D1 acchate	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate		Cadmlum, Total	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium, SPLP Leachate		Cadmium, lotal	Cadmium, SPLP Leachate	Cadmium, SPLP Leachare	Cadmium, SPLP Leachate	Cadmium, Total	Cadmium. SPLP Leachate	Cadmlum, SPLP Leachate	Cadmium, SPLP Leachate	Cadmium, Total
Sample Type ID	0	0	+				0	-	-	0	0	-	-	 0	0	1	-		0			-	0		, -		_	c	, c) -	-		0	0	-	-				_	-	0	0	-	-	 0
ple	12b-021745	12b-021745	12b-021763	12b-021764	07-200-107	120-021 / 46	12b-021746	12b-021766	12b-021765	12b-021747	12b-021747	12b-021767	12b-021768	12b-021748	12b-021748	12b-021769	12b-021770		1ZD-0Z1/49	1/20-021/48	7//IZN-071	1//120-021	12h-021750	124-021750	101 101 100	C//IZD-071	+1170-071	12h-021799	12h 021700	12b-021800	12b-021801		12b-021814	12b-021814	12b-021816	12b-021815	101	10/170-071	120-021/51	9/1/071	12b-021775	12b-021753	12b-021753	12b-021780	12b-021779	12b-021754
Boring	A-1	A-1	A-1	A-1		A-2	A-2	A-2	A-2	A-3	A-3	A-3	A-3	A-4	A-4	A-4	A-4		C-A	C-H	C-4	6-A	A-6	4.6	0	0-V	0-4	A-7	A-7	A-7	A-7		A-8	A-8	A-8	A-8				-	8- 	B-3	B-3	B-3	B-3	B4

2004-09 SSL dft-00

Table D-2 Cadmium SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

But we have have have have have have have hav											
12007171 0 Continuity SPU Intention 4 0 </th <th>Boring</th> <th>S&W Lab Sample ID</th> <th>Sample Type ID</th> <th>Analysis Name</th> <th>Result</th> <th>Detection Limit</th> <th>Result Qualifier</th> <th>Unit of Measure</th> <th></th> <th>Collection Date</th> <th>Averge Leachate Concentration (ug/L)</th>	Boring	S&W Lab Sample ID	Sample Type ID	Analysis Name	Result	Detection Limit	Result Qualifier	Unit of Measure		Collection Date	Averge Leachate Concentration (ug/L)
1 prot 771 1 0 0pt 0pt<	8-4-0	12b-021754	0	Cadmium, SPLP Leachate	4	4	5	ng/L		6/22/2004	
17-00173 1 Caratinan SPL Jaachasis 4 4 0 <th< td=""><td>84 4</td><td>12b-021781</td><td>1</td><td>Cadmium, SPLP Leachate</td><td>4</td><td>4</td><td>n</td><td>ng/L</td><td>10-11.3</td><td>6/22/2004</td><td></td></th<>	84 4	12b-021781	1	Cadmium, SPLP Leachate	4	4	n	ng/L	10-11.3	6/22/2004	
(10-0018) (10-0010) (10-0010) (10-0010) (10-0010) (12-014)	8-4	12b-021782		Cadmium, SPLP Leachate	4	4	Þ	ug/L	10-11.3	6/22/2004	
15-02(16) 0 Canton, SPP Leachine 4 4 0 0pL 12-1414 0622004 12-02(16) 1 Canton, SPP Leachine 4 0 0pL 12-1414 0622004 12-02(16) 1 Canton, SPP Leachine 4 0 0pL 12-1414 0622004 12-02(15) 0 Canton, SPP Leachine 4 0 0pL 12-1414 0222004 12-02(15) 1 Canton, SPP Leachine 4 0 0pL 15-1717 0222004 12-02(15) 1 Canton, SPP Leachine 4 4 0 0pL 15-1717 0222004 12-02(17) 0 Canton, SPP Leachine 1 4 0 0pL 15-1717 0222004 12-02(17) 0 Canton, SPP Leachine 1 4 0 0pL 15-117 0222004 12-02(17) 0 Canton, SPP Leachine 0.1 0pL 0pL 15-117 0222004 12-02(17) 0	B-5	12b-021817	0	Cadmium. Total	1.6	1.6		ma/ka	12.4-14.4	6/25/2004	QN
12-02(16) 1 Continue, SPP Leaseline 4 0 0 g/g, status 12-14.44 0.522004 12-02(15) 0 Centinue, SPP Leaseline 0.75	- 	12b-021817	0	Cadmium, SPLP Leachate	4	4		ng/L	12.4-14.4	6/25/2004	
12-020136 1 Cantinn, Total 1/2 Cantinn, Total Cantinn, SteP Leachen 4 1 1/2	<u>В</u> 5	12b-021819	-	Cadmium, SPLP Leachate	4	4	0	ng/L	12.4-14.4	6/25/2004	
12:0:02175 0 Catemian Teal 0.75 0.75 0.75 0.75 0.75 0.75 0.77 0.222004 12:0:02175 1 Continui SP1 election 1 0 mpla 157.17 0.222004 12:0:02176 1 Continui SP1 election 0 mpla 157.17 0.222004 12:0:02176 1 Continui SP1 election 0.71 4 0 mpla 157.17 0.222004 12:0:02176 1 Continui SP1 election 0.71 4 0 mpla 157.11 0.222004 12:0:02176 1 Continui SP1 election 0.71 4 0 mpla 16.1 0.222004 12:0:02177 1 Continui SP1 election 0.71 4 0 mpla 16.1 0.222004 12:0:02177 1 1 Continui SP1 election 0.71 4 0 mpla 16.1 0.222004 12:0:02177 1 1 1 1 1 1	B-5	12b-021818	-	Cadmium, SPLP Leachate	4	4	5	ng/L	12.4-14.4	6/25/2004	
15.02113 0 Community Ple Method 1.1 <th1.1< th=""> 1.1 <th1.1< th=""></th1.1<></th1.1<>	U	101 001766		Andreit Tatal	24	1	=		45 7 47 7	100001012	4
72607739 7 10 00011 577713 6222004 72607739 1 00011 577713 6222004 6222004 72607739 0 000111 577713 6222004 6222004 72607739 0 000111 577713 6222004 6222004 72607739 0 000111 57810 6222004 6222004 72607739 0 000111 57810 000111 57810 6222004 72607739 0 0001111 0001111 $921001000000000000000000000000000000000$	о 1 1	120-021			e/.n	e) 'n		шд/кд	19./-1/./	0/22/2004	NN
120-027156 1 Cadimin SPD Leachance 4 4 0 wg/L 155-17.7 pe222004 120-027156 0 Cadimin SPD Leachance 0.13 4 0 wg/L 758-0 9222004 120-027156 1 Cadimin SPD Leachance 0.13 4 0 wg/L 758-0 9222004 120-027156 1 Cadimin SPD Leachance 0.13 4 0 wg/L 758-0 9222004 120-027157 0 Cadimin SPD Leachance 0.13 4 0 wg/L 758-0 9222004 120-027179 0 Cadimin SPD Leachance 1 1 wg/L 758-0 9222004 120-027179 0 Cadimin SPD Leachance 1 1 wg/L 622004 120-027179 1 Cadimin SPD Leachance 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>8-5 R-5</td><td>12b-021/55 12h-021784</td><td>0</td><td>Cadmium, SPLP Leachate Cadmium SPI PI eachate</td><td>4 4</td><td>44</td><td>=</td><td>rio/L</td><td>15.7-17.7</td><td>6/22/2004</td><td></td></t<>	8-5 R-5	12b-021/55 12h-021784	0	Cadmium, SPLP Leachate Cadmium SPI PI eachate	4 4	44	=	rio/L	15.7-17.7	6/22/2004	
SD-201766 0 Cadmiun, Total 14 14 14 14 14 14 15 552004 55200	8-5	12b-021783		Cadmium, SPLP Leachate	r 🔻			ral	15.7-17.7	6/22/2004	
T2b207756 0 Canfinant Total 1.4 1.4 0 mg/n 7.84.6 5622004 T2b207765 1 Canfinant SPP Leanate 0.19 4 0 mg/n 7.84.6 5622004 T2b207765 1 Canfinant SPP Leanate 0.17 4 0 mg/n 7.84.6 5622004 T2b207765 0 Canfinant Total 11 0 mg/n 7.84.8 5622004 T2b207775 0 Canfinant Total 1 0 mg/n 81.91 922004 T2b207775 0 Canfinant Total 1 1 0 mg/n 81.91 922004 T2b207776 1 Canfinant SPL Leachted 4 4 0								1			
12-021716 0 Cardinini SPP Learbleic 0.2 4 U U/L 7.8-6.5 6.222004 12-021716 1 Cardinini SPP Learbleic 0.17 4 U U/L 7.8-6.5 6.222004 12-021716 1 Cardinini SPP Learbleic 0.17 4 U U/L 7.8-6.5 6.222004 12-02172 0 Cardinini SPP Learbleic 1 U U/L 7.8-6.5 6.222004 12-02173 1 U U/L U U/L 7.8-6.5 6.222004 12-02173 1 U U/L U U/L 6.24000 12-02176 0 Cardinin SPP Learbleic 4 U U/L 6.24000 12-02176 1 1 U U/L 1 6.24000 12-02176 1 1 U U/L 0 6.42004 12-02176 1 1 U U/L 1 6.24000 12-02176 1 <	B-6	12b-021756	0	Cadmium, Total	1.4	1.4	_	mg/kg	7.8-8.8	6/22/2004	Q
12b-021756 1 Cadminr, SPLP Learblein 0.19 4 U U/L 7.8-6.6 6.222004 12b-021725 0 Cadminr, SPLP Learblein 0.17 4 U U/L 7.8-6.6 6.222004 12b-021725 0 Cadminr, SPLP Learblein 1 1 U U/L 7.8-6.6 6.222004 12b-02175 0 Cadminr, SPLP Learblein 4 U U/D U/L 1.8-6.11 6.223004 12b-021757 0 Cadminr, SPLP Learblein 4 U U/D U/D 1.0-111 6.243004 12b-021757 0 Cadminr, SPLP Learblein 4 U U/D U/D 1.0-1112 6.243004 12b-021767 1 0 U/D U/D U/D U/D 1.0-1112 6.243004 12b-021767 1 1 1 1 U/D U/D U/D 1.0-112 6.24004 12b-021769 1 1 1 1 U/D U/D	B-6	12b-021756	0	Cadmium, SPLP Leachate	0.2	4	þ	ng/L	7.8-8.8	6/22/2004	
12-02176 1 Cadmiun: SPL leaches 0,17 4 U UP/L 78-63 6222004 12-02173 0 Codmiun: SPL leaches 4 U U MP/G 8.1-31 6222004 12-02173 1 Cadmiun: SPL leaches 4 U U MP/G 8.1-31 6222004 12-02173 1 Cadmiun: SPL leaches 4 U U MP/G 8.1-31 6222004 12b-02179 0 Cadmiun: SPL leaches 4 U U MP/G 8.1-31 6222004 12b-02179 0 Cadmiun: SPL leaches 4 U U MP/G 6224004 12b-02179 0 Cadmiun: SPL leaches 4 U U MP/G 6224004 12b-02179 0 Cadmiun: SPL leaches 4 U U U U U 0241004 12b-02179 1 Cadmiun: SPL leaches 4 U U U U U U <	9-8 8-0	12b-021785	-	Cadmium, SPLP Leachate	0.19	4	5	ng/L	7.8-8.8	6/22/2004	
12b-021752 0 Cadmum, Total 1,3 1,3 1,3 1,4 62/2004 12b-021772 0 Cadmum, SIPL Leachate 4 4 0 0 0,1 61,61 61,232004 12b-021775 1 Cadmum, SIPL Leachate 4 4 0 0 0,1 61,61 61,232004 12b-021775 0 Cadmum, SIPL Leachate 4 4 0 0,0	B-6	12b-021786	-	Cadmium, SPLP Leachate	0.17	4	5	ηđy	7.8-8.8	6/22/2004	
12-021772 0 Cadmiun, SPP Leachate 4 4 0 ugh. 81-91 67232004 12-021773 1 Cadmiun, SPP Leachate 4 4 0 ugh. 81-91 67232004 12-02173 0 Cadmiun, SPP Leachate 4 4 0 ugh. 81-91 67232004 12-02173 0 Cadmiun, SPP Leachate 4 4 0 ugh. 81-91 67242004 12-02173 1 0 ugh. 01-112 67242004 1 12-02178 0 Cadmiun, SPP Leachate 4 4 0 ugh. 102-112 67242004 12-02178 0 Cadmiun, SPP Leachate 4 4 0 ugh. 102-112 67242004 12-02178 1 Cadmiun, SPP Leachate 4 4 0 ugh. 102-112 67242004 12-02178 0 Cadmiun, SPP Leachate 4 4 0 ugh. 102-112 67242004	B-7	12b-021752	0	Cadmium, Total	1.9	1.9	5	mg/kg	8,1-9,1	6/23/2004	Ð
12-021717 1 Cadmiun, SPP Leachate 4 0 ug/L 81-91 6732004 12-021737 0 Cadmiun, SPP Leachate 4 0 ug/L 81-91 6732004 12-021737 0 Cadmiun, SPP Leachate 4 0 ug/L 012-11.2 6242004 12-021737 0 Cadmiun, SPP Leachate 4 0 ug/L 012-11.2 6242004 12-021738 1 0 ug/L 012-11.2 6242004 6442004 12-021738 0 Cadmiun, SPP Leachate 4 4 0 ug/L 012-11.2 6242004 12-021793 0 Cadmiun, SPP Leachate 4 4 0 ug/L 61-10.6 6242004 12-021793 1 Cadmiun, SPP Leachate 4 4 0 ug/L 61-10.6 6242004 12-021794 1 11 11 11 11 11 11 12-01.6 6242004 12-02.01.6 6242004 12-02.01.6	B-7	12b-021752	0	Cadmium, SPLP Leachate	4	4	Ð	ng/L	8.1-9.1	6/23/2004	
12b:02778 1 Cadmiun. SPP Leachate 4 U Ug/L 8.1-9.1 6.232004 12b:02778 0 Cadmiun. SPP Leachate 4 U Ug/L 10.2-11.2 6.242004 12b:02778 1 0 Cadmiun. SPP Leachate 4 U Ug/L 10.2-11.2 6.242004 12b:02778 1 0 Cadmiun. SPP Leachate 4 4 U Ug/L 10.2-11.2 6.242004 12b:02778 0 Cadmiun. SPP Leachate 4 4 U Ug/L 10.2-11.2 6.242004 12b:02779 0 Cadmiun. SPP Leachate 4 4 U Ug/L 6.5-10.6 6.242004 12b:02779 0 Cadmiun. SPP Leachate 4 4 U Ug/L 6.5-10.6 6.242004 12b:02779 1 Cadmiun. SPP Leachate 4 4 U Ug/L 6.5-10.6 6.242004 12b:02779 1 Cadmiun. SPP Leachate 4 4 U Ug/L	B-7	12b-021777	1	Cadmium, SPLP Leachate	4	4	∍	ng/L	8.1-9.1	6/23/2004	
12b-021757 0 Cadmium, Total 1 1 0 mgrkg 102-11.2 62/42004 12b-021757 1 0 00L 102-11.2 62/42004 12b-021757 1 0 00L 10.01L 62/42004 12b-021757 1 0 00L 10.01L 62/42004 12b-021758 0 0 00L 10.01L 62/42004 12b-021758 0 0 00L 0.01L 0.211.2 62/42004 12b-021759 0 0 0 0.0 0.01L 0.0211.2 62/42004 12b-021769 0 0 0 0.0 0.0 0.01L 0.011.2 0.0 0.011.2 0.0 0.0121.2 62/42004 0.0 0.0121.2 62/42004 0.0 0.0121.2 62/42004 0.0 0.0121.2 62/42004 0.0 0.0121.2 62/42004 0.0 0.0121.2 62/42004 0.0 0.0121.2 62/42004 0.0 0.0 0.0121.1	B-7	12b-021778	-	Cadmium, SPLP Leachate	4	4	∍	ng/L	8.1-9.1	6/23/2004	
12b-021757 0 Cadmium, SPLP Leachate 4 4 0 upf. 10.2-11.2 6624/2004 12b-021758 1 Cadmium, SPLP Leachate 4 4 0 upf. 10.2-11.2 6624/2004 12b-021758 0 Cadmium, SPLP Leachate 4 4 0 upf. 10.2-11.2 6624/2004 12b-021758 0 Cadmium, SPLP Leachate 4 4 0 upf. 10.2-11.2 6624/2004 12b-021758 0 Cadmium, SPLP Leachate 4 4 0 upf. 86-10.6 624/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 0 upf. 86-10.6 624/2004 12b-021792 0 Cadmium, SPLP Leachate 4 4 0 upf. 86-10.6 624/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 0 upf. 86-10.6 624/2004 12b-021792 0 Cadmium, SPLP Leachate 4 4 <t< td=""><td>5</td><td>12b-021757</td><td>0</td><td>Cadmium. Total</td><td>-</td><td>-</td><td></td><td>mo/ka</td><td>10.2-11.2</td><td>6/24/2004</td><td>QN</td></t<>	5	12b-021757	0	Cadmium. Total	-	-		mo/ka	10.2-11.2	6/24/2004	QN
	5	12b-021757	0	Cadmium, SPLP Leachate	4	4	D	ng/L	10.2-11.2	6/24/2004	
(12b-021787) 1 Cadmium. SPLP Leachate 4 0 Ug/L 10.2-11.2 6/24/2004 12b-021786 0 Cadmium. SPLP Leachate 1.3 1.3 U mg/kg 8.6-10.6 6/24/2004 12b-021780 0 Cadmium. SPLP Leachate 4 4 U U/U 8.6-10.6 6/24/2004 12b-021780 1 Cadmium. SPLP Leachate 4 4 U U/U 8.6-10.6 6/24/2004 12b-021780 0 Cadmium. SPLP Leachate 4 4 U U/U 8.6-10.6 6/24/2004 12b-021780 0 Cadmium. SPLP Leachate 4 4 U U/U 8.6-10.6 6/24/2004 12b-021781 1 Cadmium. SPLP Leachate 4 4 U U/U 0/L 8.6-10.6 6/24/2004 12b-021781 1 Cadmium. SPLP Leachate 4 U U/U U/U 0/L 9.6-10.6 6/24/2004 12b-021782 1 Cadmium. SPLP Leachate 4 <td>2</td> <td>12b-021788</td> <td>+</td> <td>Cadmium, SPLP Leachate</td> <td>4</td> <td>4</td> <td>Э</td> <td>ug/L</td> <td>10.2-11.2</td> <td>6/24/2004</td> <td></td>	2	12b-021788	+	Cadmium, SPLP Leachate	4	4	Э	ug/L	10.2-11.2	6/24/2004	
12b-021756 0 Cadmiun, SPLP Leachate 1.3 1.3 0.1 mg/kg 86-10.6 6/24/2004 12b-021756 0 Cadmiun, SPLP Leachate 4 0 ug/L 86-10.6 6/24/2004 12b-021759 1 Cadmiun, SPLP Leachate 4 4 0 ug/L 86-10.6 6/24/2004 12b-021759 0 Cadmiun, SPLP Leachate 4 4 0 ug/L 86-10.6 6/24/2004 12b-021793 0 Cadmiun, SPLP Leachate 4 4 0 ug/L 86-10.6 6/24/2004 12b-021793 1 Cadmiun, SPLP Leachate 4 4 0 ug/L 86-10.6 6/24/2004 12b-021793 1 Cadmiun, SPLP Leachate 4 4 0 ug/L 86-10.6 6/24/2004 12b-021793 1 Cadmiun, SPLP Leachate 4 4 0 ug/L 86-9.6 6/24/2004 12b-021793 1 0 ug/L 86-9.6 6/24/2004 0	2	12b-021787		Cadmium, SPLP Leachate	4	4	D	ug/L	10.2-11.2	6/24/2004	
12b-021738 0 cadmium, SPLP Leachaile 1.3 1.3 0 mgrig 8.5-10.6 bi247004 12b-021736 1 Cadmium, SPLP Leachaile 4 4 0 ug/L 8.6-10.6 bi247004 12b-021739 1 Cadmium, SPLP Leachaile 4 4 0 ug/L 8.6-10.6 bi247004 12b-021739 0 Cadmium, SPLP Leachaile 4 4 0 ug/L 8.6-10.6 bi247004 12b-021791 1 U ug/L 9.6-10.6 bi247004 bi247004 12b-021792 0 Cadmium, SPLP Leachaile 4 4 0 ug/L 9.6-10.6 bi247004 12b-021791 1 U ug/L 9.6-10.6 bi247004 bi247004 12b-021792 0 Cadmium, SPLP Leachaile 4 4 0 ug/L 9.6-10.6 bi247004 12b-021795 1 0 ug/L 9.6-10.6 bi247004 bi247004 bi247004 12b-02176											
12b-021799 1 Cadmium, SPLP Leachaile 4 4 0 ug/L 6.10.6 6/24/2004 12b-021790 1 Cadmium, SPLP Leachaile 4 4 0 ug/L 6.5.0.6 6/24/2004 12b-021790 1 Cadmium, SPLP Leachaile 4 4 0 ug/L 6.5.0.6 6/24/2004 12b-021791 0 Cadmium, SPLP Leachaile 4 4 0 ug/L 6.5.0.6 6/24/2004 12b-021792 0 Cadmium, SPLP Leachaile 4 4 0 ug/L 9.6-10.6 6/24/2004 12b-021792 1 Cadmium, SPLP Leachaile 4 4 0 ug/L 9.6-10.6 6/24/2004 12b-021761 0 Cadmium, SPLP Leachaile 4 4 0 ug/L 9.6-10.6 6/24/2004 12b-021761 0 Cadmium, SPLP Leachaile 4 4 0 ug/L 8.6-9.6 6/24/2004 12b-021761 1 1 0 ug/L 8.6-9.6 <td>32</td> <td>120-021</td> <td></td> <td>Cadmium SDI D Leschote</td> <td><u>.</u></td> <td><u>5</u></td> <td>∍</td> <td>mg/Kg</td> <td>8.0-10.0 8.6-10.6</td> <td>6/24/2004</td> <td>RU</td>	32	120-021		Cadmium SDI D Leschote	<u>.</u>	<u>5</u>	∍	mg/Kg	8.0-10.0 8.6-10.6	6/24/2004	RU
17b-021790 1 Cadmium, SPLP Leachate 4 4 0 ug/L 86-10.6 6/24/2004 12b-021793 0 Cadmium, SPLP Leachate 4 1 1 0 ug/L 96-10.6 6/24/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 0 ug/L 96-10.6 6/24/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 0 ug/L 96-10.6 6/24/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 0 ug/L 96-10.6 6/24/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 0 ug/L 9.6-10.6 6/24/2004 12b-021795 1 Cadmium, SPLP Leachate 4 4 0 ug/L 9.6-10.6 6/24/2004 12b-021795 1 0 ug/L 9.6-10.6 6/24/2004 0 12b-021795 1 0 ug/L 0 ug/L 0 0 <	52	12b-021789	~~~	Cadmium SPIP Leachate	7	7	=	- All	86-10.6	612412004	
12b-021759 0 Cadmium, Total 1.1 1.1 U mg/kg 9.6-10.6 6/24/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 U ug/L 9.6-10.6 6/24/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 U ug/L 9.6-10.6 6/24/2004 12b-021792 1 Cadmium, SPLP Leachate 4 4 U ug/L 9.6-10.6 6/24/2004 12b-021791 0 Cadmium, SPLP Leachate 4 4 U ug/L 9.6-10.6 6/24/2004 12b-021791 0 Cadmium, SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 12b-021795 1 Cadmium, SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 12b-021795 1 Cadmium, SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 12b-021762 0 Cadmium, SPLP Leachate 4 4	C-5	12b-021790		Cadmium, SPLP Leachate	4	4		1/6n	8.6-10.6	6/24/2004	
12b-021739 0 Cadmium, SPLP Leachate 1.1 0 mgNg 36-10.6 6/24/2004 12b-021791 1 Cadmium, SPLP Leachate 4 4 0 ug/L 36-10.6 6/24/2004 12b-021792 1 U ug/L 36-10.6 6/24/2004 1 12b-021791 1 Cadmium, SPLP Leachate 4 4 U ug/L 36-10.6 6/24/2004 12b-021761 0 Cadmium, SPLP Leachate 4 4 U ug/L 36-10.6 6/24/2004 12b-021761 0 Cadmium, SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 12b-021795 1 Cadmium, SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 12b-021762 0 Cadmium, SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 12b-021762 1 0 ug/L 8.6-9.6 6/24/2004 12 12b-021762	ć	175 021750		Codminum Total	•	•	-		06406	610410004	4
12b-021192 1 Cadmiun, SPLP Leachate 4 0 ug/L 95-10.6 6242004 1 12b-021791 1 Cadmiun, SPLP Leachate 4 4 0 ug/L 96-10.6 6/24/2004 1 12b-021761 0 Cadmiun, SPLP Leachate 4 4 0 ug/L 9.6-9.6 6/24/2004 1 12b-021761 0 Cadmiun, SPLP Leachate 4 4 0 ug/L 8.6-9.6 6/24/2004 1 12b-021795 1 0 ug/L 8.6-9.6 6/24/2004 1 1 12b-021795 1 0 ug/L 8.6-9.6 6/24/2004 1 12b-021797 1 0 ug/L 8.6-9.6 <t< td=""><td>36</td><td>12b-02133</td><td></td><td>Cadmine SPI P Leachate</td><td>•</td><td>•</td><td>=</td><td>Fußin</td><td>96-10.6</td><td>6/24/2004</td><td>2</td></t<>	36	12b-02133		Cadmine SPI P Leachate	•	•	=	Fußin	96-10.6	6/24/2004	2
12b-021791 1 Cadmium. SPLP Leachate 4 4 U Ug/L 9.6-10.6 6/24/2004 1 12b-021761 0 Cadmium. SPLP Leachate 1.2 1.2 U mg/kg 8.6-9.6 6/24/2004 1 12b-021761 0 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 1 12b-021795 1 0 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 1 12b-021795 1 0 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 1 12b-021795 0 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 126/21/2004 126-21762 6/24/2004 1 <td< td=""><td>- - - - - - - - - - - - - - - - - - -</td><td>12b-021792</td><td>,-</td><td>Cadmium, SPLP Leachate</td><td>4</td><td>4</td><td></td><td>na/L</td><td>9.6-10.6</td><td>6/24/2004</td><td></td></td<>	- - - - - - - - - - - - - - - - - - -	12b-021792	,-	Cadmium, SPLP Leachate	4	4		na/L	9.6-10.6	6/24/2004	
12b-021761 0 Cadmium. SPLP Leachate 1.2 1.2 U mg/kg 8.6-9.6 6/24/2004 1 12b-021761 0 Cadmium. SPLP Leachate 4 1.2 U ug/L 8.6-9.6 6/24/2004 1 12b-021795 1 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 1 12b-021795 1 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 1 12b-021762 0 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 1 12b-021762 0 Cadmium. SPLP Leachate 4 4 U ug/L 12-13.6 6/24/2004 1 12-13.6 6/24/2004 1 12-13.6 6/24/2004 1	6-3	12b-021791	-	Cadmium, SPLP Leachate	4	4	D	T/6n	9.6-10.6	6/24/2004	
12b-021761 0 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 5 12b-021796 1 Cadmium. SPLP Leachate 4 4 U ug/L 8.6-9.6 6/24/2004 6/2 6/24/2004 1/2 6/2 6/24/2004 6	0-5 C	12b-021761	0	Cadmium. Total	1.2	1.2	5	ma/ka	8.6-9.6	6/24/2004	Q
12b-021796 1 Cadmium. SPLP Leachate 4 4 0 ug/L 8.6-9.6 6/24/2004 6/24/2004 1 12b-021795 1 Cadmium. SPLP Leachate 4 4 0 ug/L 8.6-9.6 6/24/2004 6/2 6/24/2004 6/2	C-5	12b-021761	•	Cadmium, SPLP Leachate	4	4	D	ng/L	8.6-9.6	6/24/2004	
12b-021795 1 Cadmium. SPLP Leachate 4 4 0 ug/L 8.6-9.6 6/24/2004 2 12b-021762 0 Cadmium. SPLP Leachate 0.96 0 0 126-021765 6/24/2004 6/24/2004 1 12b-021762 0 Cadmium. SPLP Leachate 4 0 0 00/L 12.6-13.6 6/24/2004 1 12b-021762 0 Cadmium. SPLP Leachate 4 4 0 00/L 12.6-13.6 6/24/2004 1 12b-021797 1 0 U/U U/U U/U 12.6-13.6 6/24/2004 1 12b-021798 1 0 U/U U/U U/U 12.6-13.6 6/24/2004 1 12b-021798 1 0 U/U U/U 12.6-13.6 6/24/2004 1 12b-021798 1 1 U/U U/U 12.6-13.6 6/24/2004 1 12b-021798 1 1 1 1 1 1	C-5	12b-021796		Cadmium, SPLP Leachate	4	4	n	ng/L	8.6-9.6	6/24/2004	
12b-021762 0 Cadmium. Total 0.96 0.36 U mg/kg 12s-13.6 6/24/2004 1 12b-021762 0 Cadmium. SPLP Leachate 4 4 U ug/L 12.5-13.6 6/24/2004 6/24/2004 1 12b-021792 1 Cadmium. SPLP Leachate 4 4 U ug/L 12.5-13.6 6/24/2004 1 12b-021793 1 Cadmium. SPLP Leachate 4 4 U ug/L 12.5-13.6 6/24/2004 1 12b-021798 1 U ug/L 12.6-13.6 6/24/2004 1 1 1 1 1 0 1	С ₅	12b-021795	~	Cadmium, SPLP Leachate	4	4	ŋ	ng/L	8.6-9.6	6/24/2004	
12b-021752 0 Cadmium, SPLP Leachate 4 4 0 ught 12b-13.6 6/24/2004 12b-021797 1 Cadmium, SPLP Leachate 4 4 U ught 12b-13.6 6/24/2004 12b-021797 1 Cadmium, SPLP Leachate 4 4 U ught 12.5-13.6 6/24/2004 12b-021798 1 Cadmium, SPLP Leachate 4 4 U ught 12.5-13.6 6/24/2004 12b-021708 0 Cadmium, SPLP Leachate 4 4 U ught 12.5-13.6 6/24/2004 12b-021700 0 Cadmium, SPLP Leachate 1.2 1.2 U ught 7.5.6.6 6/24/2004 12b-021700 0 Cadmium, Total 1.2 1.2 U ught 7.5.6.6 6/24/2004 12b-021760 0 0 1.2 1.2 1.2 6/24/2004 1	6.6	12h-021762	c	Cadminm Total	900	0 96	=	ma/ka	12 6-13 G	6/24/2004	CN
12b-021797 1 Cadmium. SPLP Leachate 4 4 U Ug/L 12b-13.6 6/24/2004 12b-021798 1 Cadmium. SPLP Leachate 4 4 U ug/L 12b-13.6 6/24/2004 12b-021798 1 0 U ug/L 12.6-13.6 6/24/2004 12b-021700 0 Cadmium. SPLP Leachate 4 4 U ug/L 12.6-13.6 6/24/2004 12b-021760 0 0 Cadmium. Total 1.2 1.2 U mg/R 7.6-8.6 6/25/2004 13b-021750 0 Cadmium. SPLP Leachate 4 1.2 1.2 U mg/R 7.6-8.6 6/25/2004	200	12b-021762		Cadmium SPLP Leachate	4	4	,=	noff.	12.6-13.6	6/24/2004	
12b-021798 1 Cadmium, SPLP Leachale 4 U ug/L 12.6-13.6 6/24/2004 12b-021760 0 Cadmium, Total 1.2 U mg/kg 7.6-8.6 6/25/2004 12b-021760 0 Cadmium, Total 1.2 1.2 U mg/kg 7.6-8.6 6/25/2004 12b-021760 0 Cadmium SDI PI Leachale 4 4 1 1.0 1.01 1.01 6/25/2004	۹ ن	12b-021797	-	Cadmium, SPLP Leachate	4	4		ng/L	12.6-13.6	6/24/2004	
12b-021760 0 Cadmium, Total 1.2 U mg/kg 7.6-8.6 6/25/2004 12b-021760 0 Cadmium SDI D learbate 4 4 1.1 1.1 7.6-8.6 6/25/2004	မှ ပ	12b-021798	-	Cadmium, SPLP Leachate	4	4	5	'l/bn	12.6-13.6	6/24/2004	
120-21100 0 0 024/milling 104 12 0 110/mg 10-00 002004 12 10 110/mg 10-000 002004 10 110/mg 10-0000 002004 10 100/mg 10-00004 10 100/mg 10-0000	~ ~ ~	12h 021760		Codmine Total	¢.	;		maller	7606	C/DE/DOA	
	5	120-021750		Cadmium CDI D1 coshoto		2		5y/Atl	7 6 9 5	1002/2020	

2004-09 SSL dft-00

Table D-2 Cadmium SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Supertund Site, Maywood, NJ

	6/25/2004	4.7-6.2	ng/L	D	4	4	Cadmium, SPLP Leachate	1	12b-021813	C-8
	6/25/2004	4.7-6.2	ng/L	D	4	4	Cadmium, SPLP Leachate	+	12b-021812	సి
	6/25/2004	4.7-6.2	ng/L	n	4	4	Cadmium, SPLP Leachate	0	12b-021811	6-8 C-8
Q	6/25/2004	4.7-6.2	mg/kg	n	1.1	1.1	Cadmium, Total	0	12b-021811	0-8 C-8
	6/25/2004	76-86	1307	11	4	7	Cadmium, SPLP Leachate		12b-021794	0-7
	6/25/2004	7.6-8.6 6/2	ng/L	n	4	4	Cadmium, SPLP Leachate	1	12b-021793	C-7
(ng/L)	Collection Date	(ft bgs)	Qualifier Unit of Measure	Qualifier	Limit	Result	Analysis Name	Sample Type ID	٥	Boring
Averge Leachate Concentration		Depth of Measure		Result	Detection				S&W Lab Sample	

Notes

ug/L = Micrograms per Liter mg/kg = Miltigrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect U = Estimated Non-Detect J = Estimated Concentration

`

Table D-2 Chromium SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

ple Sample Type ID	Analysis Name		Result	Datection Limit	Resuft Qualifier	Unit of Measure	Depth of Measure (ft bgs)	Collection Date	Averge Leachate Concentration (ug/L)
0		Chromium, Total	242	0.32		mg/kg	13.4-15.4	6/21/2004	52.30
12b-021763 1 Chronic Chronic	Chro	Chromium, SPLP Leachate	19.3	20		ug/L	13.4-15.4	6/21/2004	
7	Chrom	ium, SPLP Leachate	23.6	6		ng/L	13.4-15.4	6/21/2004	
12b-021746 0 Cr	5	Chromium, Total	6	0.42		mg/kg	6.3-7.1	6/22/2004	ND
0	Chromì	Chromium, SPLP Leachate	1.1		D	ng/L	6.3-7.1	6/22/2004	
-	Chromi	um, SPLP Leachate	10	₽	D	цgЛ.	6.3-7.1	6/22/2004	
-	Chromlt	um, SPLP Leachate	9	10	Þ	ng/L	6.3-7.1	6/22/2004	
12b-021747 0 Ch	ម	Chromium, Total	10	0.29		mg/kg	6.3-8.3	6/21/2004	ND
0	Chromiu	Chromium, SPLP Leachate	1,4	¢	5	ng/L	6.3-8.3	6/21/2004	
		m, SPLP Leachate	0.67	<u>p</u> (-	ng/L	6.3-6.3	6/21/2004	
	Curomiun	n, SPLP Leachate	0	2	5	ngrL	0.3-0.3	6/21/2004	
0	Chro	Chromium, Total	7.6	0.41	ſ	mg/kg	9.4-10.4	6/23/2004	ND
0	Chromium,	SPLP Leachate	2.5	10	U	ug/L	9.4-10.4	6/23/2004	
	Chromium,	Chromium, SPLP Leachate	1.9	10	D	ug/L	9.4-10.4	6/23/2004	
	Chromium, S	SPLP Leachate	0.92	₽	n	ug/L	9.4-10.4	6/23/2004	
125-021749 0 Chromi	Chromi	Chromium Total	6.2	0.43	-	maíka	10.4-11.4	6/23/2004	GN
, o	Chromium.	SPLP Leachate	10	10		ug/L	10.4-11.4	6/23/2004	2
	Chromium,	SPLP Leachate	0.96	ę	5	na/L	10.4-11.4	6/23/2004	
12b-021771 1 Chromium,	Chromium,	Chromium, SPLP Leachate	1.3	10	n	ng/L	10.4-11.4	6/23/2004	
135 031760 0	mord C	Chromium Total	030	670	_	maika	5070 5070	RIJEIDUNA	
	Chromium	SPi P I eachate	2 C	10	1	l/on	5.9-7.9	6/25/2004	
• • • • • • • • • • • • • • • • • • •	Chromium	Chromium, SPLP Leachate	0.67	10		ng/L	5.9-7.9	6/25/2004	
12b-021774 1 1 Chromiun	Chromiun	Chromium, SPLP Leachate	0.78	10	5	ng/L	5.9-7.9	6/25/2004	
			100	200		mailee	1	100011012	100 67
		Chromium, Total	103	0.04 40 4		und/Kg	- + a	8/04/00/4	10.022
	Chromiur	n, SPLP Leachate n. SPLP Leachate	319	2 9		ng/L	9 11	6/21/2004	
	Chromiu	Chromium, SPLP Leachate	364	50		ng/L	9-11	6/21/2004	
0	Ċ	hromium, Total	7.6	0.38	7	mg/kg	11.2-12.4	6/25/2004	9
0	Chromiu	Chromium, SPLP Leachate	10	0	D	ng/L	11.2-12.4	6/25/2004	
~	Chromiu	Chromium, SPLP Leachate	0.71	6	D	ng/L	11.2-12.4	6/25/2004	
12b-021815 1 Chromiun	Chromiun	n, SPLP Leachate	10	10	þ	ng/L	11.2-12.4	6/25/2004	
						:			
0	Chro	Chromium, Total	6	0.38	,	mg/kg	12.4-13.4	6/23/2004	QN
0	Chromiun	SPLP Leachate	0	10	D	ng/L	12.4-13.4	6/23/2004	
1	Chromiur	n, SPLP Leachate	10	10	0	ug/L	12,4-13,4	6/23/2004	
12b-021775 1 Chromiun	Chromiun	Chromium, SPLP Leachate	0.68	10	þ	ug/L	12.4-13.4	6/23/2004	
	ā				-	1	4	1 00010010	!
0	5	hromium, Total	8.6	0.45	-	mg/kg	7.8-9	6/23/2004	QN
0	Chron	Chromium, SPLP Leachate	9	9	-	ng/L	7.8-9	6/23/2004	
	Chron	nium, SPLP Leachate	10	9	-	ng/L	7.8-9	6/23/2004	
12b-021//9 1 Chron	Chron	num, SPLP Leachate	0.62	0	-	ng/L	1.8-9	6/23/2004	
12b-021754 0 C		Chromium, Total	10.5	0.41		tmg/kg	10-11.3	6/22/2004	g

2004-09 SSL dft-00

Table D-2 Chromium SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

S&W Lab Sample Sample Type ID 12b-021154 0 12b-021181 1 12b-021182 1 12b-02181 1 12b-021817 0 12b-021819 1 12b-021819 1 12b-021819 1 12b-021819 1 12b-021819 1 12b-021819 1 12b-021813 1 12b-021755 0 12b-021755 <td< th=""><th>ID Analysis Name Chromium, SPLP Leachate Chromium, SPLP Leachate</th><th>Result 10</th><th>Detection Limit</th><th>Result Qualifier</th><th></th><th>Depth of Measure</th><th>Collection Date</th><th>Averge Leachate Concentration</th></td<>	ID Analysis Name Chromium, SPLP Leachate Chromium, SPLP Leachate	Result 10	Detection Limit	Result Qualifier		Depth of Measure	Collection Date	Averge Leachate Concentration
	Chrom	10	ç		Unit of Measure			
	Chromium, SPLP Leachate		2	D	ng/L		6/22/2004	1-18-1
		3.2	10	þ	ng/L	10-11.3	6/22/2004	
	Chromium, SPLP Leachate	10	10	D	ug/L	10-11.3	6/22/2004	
	Chromium, Total	18.4	0.54	-	mg/kg	12.4-14.4	6/25/2004	QN
	Chromium, SPLP Leachate	9	0	J	ug/L	12.4-14.4	6/25/2004	
	Chromium, SPLP Leachate	10	9	D	ng/L	12.4-14.4	6/25/2004	
	Chromium, SPLP Leachate	10	10	∍	ug/L	12.4-14.4	6/25/2004	
	Chromères Total	4	90.0			46.7.47.7	61221004	2
		n, c	0.20		111G/KG	1.11-1.61	6/22/2004	P
	Chromium CDI 010111	2	⊇ \$		ug/L	1.11-1.61	612212UU4	
	Chromium Col O Loochato	<u>p</u> , -	2 Ç		ngr.	13.1-11.1	9122/2004	
		-	2		ng/L	1-1-1	01222004	
	Chromium. Total	26.4	0.48		ma/ka	7.8-8.8	6/22/2004	QN
	Chromium. SPLP Leachate	5	1 0	>	ua/L	7.8-8.8	6/22/2004	
	Chromium, SPLP Leachate	0	10	D	ng/L	7.8-8.8	6/22/2004	
	Chromium, SPLP Leachate	- 5	10	5	ng/L	7,8-8.8	6/22/2004	
	Chromium, Total	152	0.64	ſ	mg/kg	8.1-9.1	6/23/2004	DN
	Chromium, SPLP Leachate	0.73	10	D	ng/L	8.1-9.1	6/23/2004	
	Chromium, SPLP Leachate	10	10	D	ug/L	8.1-9.1	6/23/2004	
12b-021778 1	Chromium, SPLP Leachate	1.1	10	Þ	ng/L	8.1-9.1	6/23/2004	
12b-021757 0	Chromium. Total	14.8	0.35	-	ma/ka	10.2-11.2	6/24/2004	12.80
	Chromium, SPLP Leachate	2.6	10	D	na/L	10.2-11.2	6/24/2004	
	Chromium, SPLP Leachate	12	10		ng/L	10.2-11.2	6/24/2004	
12b-021787 1	Chromium, SPLP Leachate	13.6	10		ng/L	10.2-11.2	6/24/2004	
12b-021758 0	Chromium, Total	9.4	0.44	-	mg/kg	8.6-10.6	6/24/2004	Q
	Chromium, SPLP Leachate	5	9	J	ug/L	8.6-10.6	6/24/2004	
12b-021789 1	Chromium, SPLP Leachate	10	10	þ	ng/L	8.6-10.6	6/24/2004	
12b-021790 1	Chromium, SPLP Leachate	1.8	10	∍	'Vôn	8.6-10.6	6/24/2004	
12b-021759 0	Chromium. Total	16.1	0.37	_	ma/ka	9.6-10.6	6/24/2004	QN
	Chromium, SPLP Leachate	10	10	5	ng/L	9.6-10.6	6/24/2004	
	Chromium, SPLP Leachate	1.2	10	5	ng/L	9.6-10.6	6/24/2004	
12b-021791 1	Chromium, SPLP Leachate	1,4	10	D	7/6n	9.6-10.6	6/24/2004	
12b-021761 0	Chromium. Total	56.4	0.42	-	ma/ka	86-96	6/24/2004	5 20
	Chromium. SPLP Leachate	1.3	9	D	na/L	8.6-9.6	6/24/2004	
	Chromium, SPLP Leachate	5.2	10		ng/L	8.6-9.6	6/24/2004	
12b-021795 1	Chromium, SPLP Leachate	1,5	10	n	ng/L	8.6-9.6	6/24/2004	
-								
12b-021762 0	Chromitum, Total	8.1	0.32	-	mg/kg	12.6-13.6	6/24/2004	QN
	Chromium, SPLP Leachate	6	ç	∍	ng/L	12.6-13.6	6/24/2004	
12b-021797 1	Chromium, SPLP Leachate	ę	10	U	ng/L	12.6-13.6	6/24/2004	
1 12b-021798 1	Chromium, SPLP Leachate	0	9	D	Лgu	12.6-13.6	6/24/2004	
12b-021760 0	Chromium. Total	11.8	0.42	7	ma/ka	7.6-8.6	6/25/2004	GN
12h-021760 0	Chromium SPI P I eachate		Ę	1	JULI JULI	76.86	6/26/2004	

L

Table D-2 Chromium SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

	S&W Lab Sample				Detection	Result		Depth of Measure		Averge Leachate Concentration
Boring	Ð	Sample Type ID	Analysis Name	Result	Limit	Qualifier	Unit of Measure	(ft bgs)	Collection Date	(ng/L)
C-7	12b-021793	F	Chromium, SPLP Leachate	2	10	Þ	ng/L	7.6-8.6	6/25/2004	
C-7	12b-021794	1	Chromium, SPLP Leachate	2.9	10	n	ug/L	7.6-8.6	6/25/2004	
8°	12b-021811	0	Chromium, Total	12.8	0.37	ſ	By/6w	4.7-6.2	6/25/2004	Q
с. 8-С	12b-021811	0	Chromium, SPLP Leachate	10	10	n	ղինո	4.7-6.2	6/25/2004	
မီ	12b-021812	+	Chromium, SPLP Leachate	1.2	10	2	ng/L	4.7-6.2	6/25/2004	
မီ	12b-021813	-	Chromium, SPLP Leachate	1.3	10	n	ng/L	4.7-6.2	6/25/2004	

Notes

ug/L = Micrograms per Liter mg/kg = Mitligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect UJ = Estimated Non-Detect Estimated Concentration

,

Table D-2 Copper SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Boring	S&W Lab Sample ID	Sample Type ID	Analysis Name	Result	Detection Limit	Result Oualifier	Unit of Measure	Depth of Measure	Collection Date	Averge Leachate Concentration
A-1	12b-021745	0	Copper, Total	15.3	0.75	,	ma/ka		6/21/2004	4.60
A-1	12b-021745	0	Copper, SPLP Leachate	4.7	25		ng/L	13.4-15.4	6/21/2004	
A-1	12b-021763	1	Copper, SPLP Leachate	25	25	5	ng/L	13.4-15.4	6/21/2004	
A-1	12b-021764	+	Copper, SPLP Leachate	4.5	25		J/Bn	13.4-15.4	6/21/2004	
A-2	12b-021746	0	Copper. Total	7.1	66.0		ma/ka	63-71	6/22/2004	UN
A-2	12b-021746	0	Copper. SPLP Leachate	25	25	, 5	- Port	63-71	6/22/2004	
A-2	12b-021766	-	Copper, SPLP Leachate	25	25		ng/L	6.3-7.1	6/22/2004	
A-2	12b-021765	-	Copper, SPLP Leachate	25	25	5	ng/L	6.3-7.1	6/22/2004	
	101. 001717				!					
A-3	12b-021747	0 (Copper, Total	6.5	0.67	. ,	mg/kg	6.3-8.3	6/21/2004	42.70
A-3	12b-021/4/	0,	Copper, SPLP Leachate	83.1	52	-	ng/L	6.3-8.3	6/21/2004	
2-Y	120-021707	- ,	Copper, SPLP Leachate	8	នុង		ng/L	6.3-8.3	6/21/2004	
A-3	120-021	-	Copper, SPLP Leachate	2.3	ŝ	~	ng/L	6.3-8.3	6/21/2004	
A-4	12b-021748	0	Copper, Total	4.2	0.96		ma/ka	9.4-10.4	6/23/2004	4.55
A-4	12b-021748	0	Copper, SPLP Leachate	25	25	þ	ng/L	9.4-10.4	6/23/2004	
A-4	12b-021769	-	Copper, SPLP Leachate	5.7	25		ng/L	9.4-10.4	6/23/2004	
A-4	12b-021770	-	Copper, SPLP Leachate	3.4	25		ng/L	9.4-10.4	6/23/2004	
4	104 001740	c	Conner Tetal	4					100000	1
3-4	120-021743 43h-034740		Conner SOLE Lanchate	0 30	- 4	-	mg/kg	6'11-6'NI	6/23/2004	R
A-5	12b-021772) -	Conner SPI P Leachate	24	22	5=	ng/L	10.4-11.4	6/23/2004	
A-5	12b-021771	-	Copper, SPLP Leachate	25	22		ua/L	10.4-11.4	6/23/2004	
A-6	12b-021750	0	Copper, Total	426	+		mg/kg	5.9-7.9	6/25/2004	14.70
A-6	12b-021750	0	Copper, SPLP Leachate	1.7	25	∍	ug/L	5.9-7.9	6/25/2004	
9-9	12b-021773		Copper, SPLP Leachate	25	25	D	ug/L	5.9-7.9	6/25/2004	
A-6	12b-021774	-	Copper, SPLP Leachate	14.7	25		ng/L	5.9-7.9	6/25/2004	
A-7	12b-021799	0	Copper. Total	195	1.5	_	malka	<u>6</u> 11	612412004	971 E7
A-7	12b-021799	0	Copper. SPLP Leachate	152	25		l/on	9-11	6/21/2004	21.1.2
A-7	12b-021800		Copper, SPLP Leachate	358	125		ng/L	9-11	6/21/2004	
A-7	12b-021801	-	Copper, SPLP Leachate	305	125		ug/L	9-11	6/21/2004	
av	10h 001014	6	Conner Tatal	907	000				100012010	
0-V	120-021014 435 034844		Coupter, Lotal	5.0 DF	0.03 PC	-	mg/kg	11.2-12.4	6/25/2004	N
A-8	12b-021816) -	Conner SPI P Leachate	8 2	27 26) =	no/l	4.2-211 1.2-12	6/25/2004	
A-8	120-021815	-	Copper, SPLP Leachate	25	25	>=		11 2-12 4	6/25/2004	
							ļ,			
Р -1	12b-021751	0	Copper, Total	5.6	0.89		mg/kg	12.4-13.4	6/23/2004	15.60
<u>в</u>	12b-021751	0	Copper, SPLP Leachate	25	25	n	ng/L	12.4-13.4	6/23/2004	
8- 	12b-021776	-	Copper, SPLP Leachate	15.6	25		ug/L	12.4-13.4	6/23/2004	
B-1	12b-021775	-	Copper, SPLP Leachate	25	25	5	ug/L	12.4-13.4	6/23/2004	
B-3	12b-021753	0	Copper, Total	69.4	1.1		mg/kg	7.8-9	6/23/2004	1.40
8-3	12b-021753	0	Copper, SPLP Leachate	1.3	25	ŝ	ng/L	7.8-9	6/23/2004	
B-3	12b-021780	-	Copper, SPLP Leachate	1.4	25	۔	ug/L	7.8-9	6/23/2004	
B-3	12b-021779	-	Copper, SPLP Leachate	1.4	25	ſ	ug/L	7.8-9	6/23/2004	
B-4	12h-021754	c	Conner Total	35	0 07	-	maller	40.44.2	100010013	
ž		-		~~~	10'0]	шдлд	10-11.0	400717710	NN

2004-09 SSL dft-00

Table D-2 Copper SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

	S&W Lab Sample				Detection	Result		Dept		Averge Leachate Concentration
Boring	٩	Sample Type ID	Analysis Name	Result	Limit	Qualifier	Unit of Measure		ŏ	(ng/L)
44	12b-021754	0	Copper, SPLP Leachate	25	25	>	ng/L	10-11.3	6/22/2004	
B-4	12b-021781	1	Copper, SPLP Leachate	25	25	U	ug/L	10-11.3	6/22/2004	
84 4	12b-021782	-	Copper, SPLP Leachate	25	25	þ	ug/L	10-11.3	6/22/2004	
1				-						
B-5	12b-021817	0	Copper, Total	72.1	1.3		mg/kg	12.4-14.4	6/25/2004	85.75
B-5	12b-021817	0	Copper, SPLP Leachate	25	25	>	ng/L	12,4-14,4	6/25/2004	
B-5	12b-021819		Copper, SPLP Leachate	4.5	25		ug/L	12.4-14.4	6/25/2004	
B-5	12b-021818	-	Copper, SPLP Leachate	167	25		ng/L	12.4-14.4	6/25/2004	
1		,		-						
8-2	12b-021755	0	Copper, Total	6.1	0.6		mg/kg	15.7-17.7	6/22/2004	4.20
B-5	12b-021755	0	Copper, SPLP Leachate	4.2	25		ug/L	15.7-17.7	6/22/2004	
B-5	12b-021784	~	Copper, SPLP Leachate	25	25	∍	ng/L	15.7-17.7	6/22/2004	
B-5	12b-021783		Copper, SPLP Leachate	25	25	∍	ng/L	15.7-17.7	6/22/2004	
B-6	12b-021756	0	Copper, Total	159	1,1	~	mg/kg	7.8-8.8	6/22/2004	QN
B-6	12b-021756	0	Copper, SPLP Leachate	25	25	5	ug/L	7.8-8.8	6/22/2004	
B-6	12b-021785	-	Copper, SPLP Leachate	25	25	n	ug/L	7.8-8.8	6/22/2004	
B-6	12b-021786		Copper, SPLP Leachate	25	25	n	ng/L	7.8-8.8	6/22/2004	
B-7	12b-021752	0	Copper, Total	96.2	1.5		mg/kg	8.1-9.1	6/23/2004	25.00
B-7	12b-021752	0	Copper, SPLP Leachate	25	25	U.	ug/L	8.1-9.1	6/23/2004	
B-7	12b-021777	-	Copper, SPLP Leachate	25	25	þ	ug/L	8.1-9.1	6/23/2004	
B-7	12b-021778	-	Copper, SPLP Leachate	25	25		ng/L	8.1-9.1	6/23/2004	
ļ	40h.0047E7		Conner Total		69.0			10 2 11 2	CLANDOA	
33	101120-021		Conner Cel E I conheite	20	0.02	-	mg/kg	211-2-01	6/24/2004	N
33	151120-021	5.	Conner SDI D Leachate	Q r	5 Y	> =	ומו	10.2-11.2	612412004	
5	120-021100 19h 091707		Conner ODI D I conhete	24	22	2=	191 191	10.511.5	EIOAIDADA	
5	101120-1121	-	Copper, artr readiate	0.4	8		ngrL	711-7-01	012412004	
C-2	12b-021758	0	Copper. Total	17			ma/ka	8.6-10.6	6/24/2004	QN
5	12b-021758	0	Copper. SPLP Leachate	25	25	5	na/L	8.6-10.6	6/24/2004	
5	12b-021789	-	Copper, SPLP Leachate	1.4	25	b	ng/L	8.6-10.6	6/24/2004	
5 5	12b-021790		Copper, SPLP Leachate	25	25	Э	цgЛ,	8.6-10.6	6/24/2004	
03	12b-021759	•	Copper, Total	8.7	0.87		mg/kg	9.6-10.6	6/24/2004	QN
r S	12b-021759	0	Copper, SPLP Leachate	22	25)	ng/L	9.6-10.6	6/24/2004	
	12b-021792	-	Copper, SPLP Leachate	2.4	25		ng/L	9.6-10.6	6/24/2004	
5 2	12b-021791	~	Copper, SPLP Leachate	25	25	5	ng/L	9.6-10.6	6/24/2004	
55	12h-021761	c	Conner Total	60.7	0.98		ma/ku	8 6-9 G	6/24/2004	4 90
0-5 0-5	12b-021761	0	Copper, SPLP Leachate	4.9	25		na/F	8.6-9.6	6/24/2004	
5-0 0-5	12b-021796	+	Copper, SPLP Leachate	2.4	25	¬	ng/L	8.6-9.6	6/24/2004	
C-5	12b-021795	1	Copper, SPLP Leachate	1.6	25	n .	ug/L	8.6-9.6	6/24/2004	
မှုပ်	12b-021762	0	Copper, Total	3	0.76		by/bu	12.6-13.6	6/24/2004	QN
9 C	12b-021762	0	Copper, SPLP Leachate	25	25	n	ղյեր	12.6-13.6	6/24/2004	
C-6	12b-021797	•	Copper, SPLP Leachate	25	25	n	ug/L	12.6-13.6	6/24/2004	
9 0	12b-021798	ţ	Copper, SPLP Leachate	25	25	D	ng/L	12.6-13.6	6/24/2004	
		•								
6-7	12b-021760		Copper, Total	5.5	0.98	-	mgrkg	7.6-8.6	6/25/2004	4.00
27	12b-021760	0	Copper, SPLP Leachate	25	25	2	Ц,бп	7.6-8.6	6/25/2004	

2004-09 SSL dft-00

Table D-2 Copper SPLP Results

FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration (1/6n)

Collection Date

6/25/2004 6/25/2004

38,90

6/25/2004 6/25/2004 6/25/2004 6/25/2004

Depth of Measure (ft bgs) 7.6-8.6 7.6-8.6 4.7-6.2 4.7-6.2 4.7-6.2 4.7-6.2 Unit of Measure ng/L ug/L mg/kg 1/Bn Result Qualifier ⊃ Detection Limit 0.88 25 25 25 <u>52</u> 52 Result 263 36.8 38.9 25 4 Analysis Name Copper, SPLP Leachate Copper, SPLP Leachate Copper, Total Copper, SPLP Leachate Copper, SPLP Leachate Copper, SPLP Leachate Sample Type ID 00 S&W Lab Sample 12b-021811 12b-021811 12b-021812 12b-021813 12b-021793 12b-021794 ≙ Boring စိုစိုစိုစို 55

Notes

ug/L = Micrograms per Lifer mg/kg = Milligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect U and ND = Non Detect J = Estimated Concentration

Table D-2 Lead SPLP Results

FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration	(ug/L)				DN				9				!	Q					Q					Q				 439.67					2					Q					Q				QN
Colloction Date		012112004	5/21/2004	6/21/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004		6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/22/2004
Depth of Measure	10 10 10	10.4-10.4	13.4-10.4	13.4-15.4	6.3-7.1	6.3-7.1	6.3-7.1	6.3-7.1	6.3-8.3	6.3-8.3	6.3-8.3	6.3-8.3		9.4-10.4	9.4-10.4	9.4-10.4	9,4-10,4		10.4-11.4	10.4-11.4	10.4-11.4	10.4-11.4		5.9-7.9	5.9-7.9	5.9-7.9	5.9-7.9	9-11	9-11	9-11	9-11		11.2-12.4	11.2-12.4	11.2-12.4	11.2-12.4		12.4-13.4	12.4-13.4	12.4-13.4	12.4-13.4		7.8-9	7.8-9	7.8-9	7.8-9	10-11.3
l fait of Maneure		,, c.,	101	ug/L	mg/kg	ug/L	ug/L	ug/L	mg/kg	ng/L	ug/L	ng/L		mg/kg	ug/L	ug/L	۳g/L		mg/Kg	Tigu	ug/L	ng/L		mg/kg	J/Bn	ng/L	-1/Bn	mg/kg	ug/L	ng/L	ng/L	1	mg/kg	ng/L	ug/L	ug/L		mg/kg	ug/L	ug/L	ug/L	1	mg/kg	Jlgu	-1/Gn	1/6n	mg/kg
Result	Cualities	-		5		∍	C	ח		∍	∍	∍			5	S	З			D	5	n			5		∍							5	D	5			5	3	з			Ъ	m	З	
Detection	0.74	2'0	,	о с о	0.94	S	5	2	0.64	5	5	2		0.92	S	S	S		0.96	2	5	5	100	0.95	5	3	5	1.4	5	25	25	10.0	0.83	5	5	5		0.85	ĉ	5	5		-	5	5	5	0.93
# 50 0		2.0	מי	2	6.6	5	5	5	11.5	5.4	5	6	1	7.3	2	S	5	1	o;)	5	շ	5	ļ	47,9	5	S	5	739	230	540	549	1	9.0	2.1	5	5	1	9.6	<u>م</u> ا	n	5	;	41.6	9	5	s	11.3
Δnelveis Nema	Land Total	l and CDLD1 contrato	Lead SDI P Leachate	Lead, SPLP Leachate	Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate		Lead Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate	1.1.1 B (1.1.1.1	Lead, lotal	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate		Lead. otal	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate			Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate		Lead, Iotal	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate		Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, Total
Samula Two ID			, .		0	0		~	 0	0	-	-			0	v 1	-	4	-	0		4	d		0			0	0	-	-	c	5		-	-		-			-	ľ	0	0		-	0
S&W Lab Sample	12h.031746	40h-001745	12h-021763	12b-021764	 12b-021746	12b-021746	12b-021766	12b-021765	12b-021747	12b-021747	12b-021767	12b-021768		120-021/48	12b-021748	12b-021769	12b-021770	40F 004740	64/170-071	12b-021749	1Zb-0Z1772	12b-021771	404 004310	09/120-971	12b-021/50	12b-021773	12b-021774	12b-021799	12b-021799	12b-021800	12b-021801	105 00101	100-02101	120-021814	12b-021816	12b-021815		120-02175	10/120-071	9//LZD-0Z1	12b-021775	101-001770	12b-021/53	12b-021753	12b-021780	12b-021779	12b-021754
Borio	A-1	4	A-1	A-1	A-2	A-2	A-2	A-2	A-3	A-3	A-3	A-3		A4	A-4	A-4	A-4		6-4	¢-	A-5	A-5		A-6	A-6	A-6	A-6	A-7	A-7	A-7	A-7	4	A-0	A-8	A-8	A-8			<u>.</u>	'n	8-1		р-13-1	8-3	83	8-3	B -4

2004-09 SSL dft-00

Table D-2 Lead SPLP Resufts FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration	(ng/L)				ND					QN				!	9				QN				4	צח				Q				QN				QN								4	R
	Collection Date	6/22/2004	6/22/2004	6/22/2004	C)51/004	6/25/2004	6/25/2004	6/25/2004	100310310	6/22/2004	6/22/2004	6/22/2004	6/22/2004		6/22/2004	6/22/2004	6/22/2004	+007770	6/23/2004	6/23/2004	6/23/2004	6/23/2004	61041004	0/24/2004	6/24/2004	6/24/2004		6/24/2004	6/24/2004	6/24/2004	612412004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	2/2E/00/1	
asure		10-11.3	10-11.3	10-11.3	A 44 A	12 4-14 4	12 4-14 4	12 4-14 4		15.7-17.7					7.8-8.8	7.8-8.8	7.0.0.0	0,0-0,1	8.1-9.1	8.1-9.1	8.1-9.1	8.1-9.1	10.0 11.0	10.2-11.2	102.11.2	10.2-11.2		8.6-10.6	8.6-10.6	8.0-10.0 9.6.40.6	0.01-0.0	9.6-10.6	9.6-10.6	9.6-10.6	9.6-10.6	8.6-9.6	8.6-9.6	8.6-9.6	8.6-9.6	17 6-13 F	12 6-13 6	12.6-13.6	12.6-13.6	100	0.0-0.7
	Unit of Measure	ng/L	ng/L	ng/L	nalta	- By/Bill	ugit	uart	נמ	mg/kg	η _θ η	ng/L	Ъ		mg/kg	ng/L	ng/L	ng/r	mg/kg	ng/L	ng/L	ug/L			ug/L	7,65	,	mg/kg	ng/L		ngrL	mg/kg	J/gu	ng/L	ng/L	ma/ka	ua/E	na/L	-1/6n	maika	Ry/Rit	uari	-du -du		II INTEN
	Qualifier	5	5	∍		=)=)=	,		þ	þ	∍		:			5		5	IJ	IJ		=	5		3		<u> </u>	33	3		D	IJ	З		5	3	З		=		3		-
Detection	Limit	5	S	ъ	-	<u>י</u> ג	2		,	0.57	ŝ	5	5		++	<u>,</u>	"	.	1.4	ъ	5	5		11.0	n w	2	,	0.99	ۍ <i>د</i>	0	0	0.83	5	5	£	0.93	2	c,	5	0.73	270	5	2	600	0.40
·	Result	2.2	£	2	36.1	+	, c	4.6		4.4	S	5	5		255	2			29.7	£	5	5	•	0 4	•••	2.6	1	13.2	0.97	n 4	0	9	5	5	5	17.9	S	ι Ω	5			5 60	5		0.0
	Analysis Name	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead. SPLP Leachate	Leed Total	Lead, 10tat I ead SPI P I eachate	Lead SPI P Leachate	Lead SPI P Leachate		Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate		Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachare		Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate	L and Takal	Leau, I Mai Laad SDI Di sachate	Leau, SPLF Leadiale Lead SDID Leachate	Lead SPLP Leachate		Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachale	Lead, SMLM Leadnate	Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, Total	Lead. SPLP Leachate	Lead. SPLP Leachate	Lead, SPLP Leachate	l earl Total	I and SPI PI eachate	Lead SPLP Leachate	Lead, SPLP Leachate	L and Tabel	רבקה' והוסו
1	Sample Type ID	0			-		,			0	0	1	-		0	-		_	0	0	1	1						0	0,	_	-	0	0	-	-	0	0	1	÷	-	> c	,	-		>
Sample		12b-021754	12b-021781	12b-021782	10h.001817	12h-021017	12h-021819	126-021818		12b-021755	12b-021755	12b-021784	12b-021783		12b-021756	12b-021756	59/120-d21	120-021	12b-021752	12b-021752	12b-021777	12b-021778	106 0017E7	120-021/3/	12b-021/3/ 12b-021788	12b-021787		12b-021758	12b-021758	120-021/89	06/170-071	12b-021759	12b-021759	12b-021792	12b-021791	12b-021761	12b-021761	12b-021796	12b-021795	12h-021762	121-021762	12b-021797	12b-021798	40h 004760	
	Boring	B-4	8-4	B 4	40			1-2-2-	2	B-5	B-5	B-5	B-5		99	9	ο 20 0	2	B-7	B-7	8-7	8-7		52	52	5	,	C-2	6.5	220	3	દુ	C.3	5 S	C-3		C-9	0-5 C	C-5	e U	2.9	90	90	<u>۲</u>	_ ז

Table D-2 Lead SPLP Results

Appendix D Draft Rev. 00 September 2004

	Averge Leachate Concentration (uq/L)			¢			
	Collection Date	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004
	Depth of Measure (ft bgs)	7.6-8.6	7.6-8.6	4.7-6.2	4.7-6.2	4.7-6.2	4.7-6.2
	Unit of Measure	ng/L	ug/L	. 6y/6w	ng/L	ng/L	ng/L
	Result Qualifier	C	D		D		D
aywood, NJ	Detection Limit	5	5	0.84	5	ŝ	5
perfund Site, M	Result	ۍ	5	193	2.2	10	2.7
FUSRAP Maywood Superfund Site, Maywood, NJ	Analysis Name	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, Total	Lead, SPLP Leachate	Lead, SPLP Leachate	Lead, SPLP Leachate
	Sample Type ID	1	-	0	0	1	1
	S&W Lab Sample ID	12b-021793	12b-021794	 12b-021811	12b-021811	12b-021812	12b-021813
	Boring	C-7	C-7	C-8	C-8	ဗီ	C-8

Notes

ug/L = Micrograms per Liter mg/kg = Milligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect UJ = Estimated Non-Detect J = Estimated Concentration

.

Table D-2 Lithium SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

Averge Leachate Concentration (ug/L)	51.10				108 ED	00,001				77.03				224.33				249.33				92.97					1086.00				102 17					61.83				as an	20.00		Γ	
Collection C. Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	100000	400212210	6/22/2004	6/22/2004	6/22/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004		b/23/2004	6/23/2004	6/23/2004	6/23/2004	6/93/2004	6/23/2004	6/23/2004	6/23/2004	122210210
Depth of Measure (ft bgs)	13.4-15.4	13.4-15.4	13.4-15.4	13.4-15.4	6.2.7.4	1.1-0.0	6.3-7.1	6.3-7.1	6.3-7.1	63-8.3	6.3-8.3	6.3-8.3	6.3-8.3	9.4-10.4	9.4-10.4	9.4-10.4	9.4-10.4	10.4-11.4	10.4-11.4	10.4-11.4	10.4-11.4	5.9-7.9	5.9-7.9	5.9-7.9	5.9-7.9		9-11	9-11	9-11	9- <u>11</u>	11 2-12 4	11.2-12.4	11.2-12.4	11.2-12.4		12.4-13.4	12.4-13.4	12.4-13.4	12.4-13.4	78-0	78-9	78-9	7.8-9	>
Duit of Measure	ma/ka	ng/L	ng/L	ng/L	maika	- Fuiding	ng/L	ug/E	ug/L	ma/ka	ua/L	ng/L	ug/L	mg/kg	ug/L	ug/L	ug/L	mg/kg	ug/L	ug/L	ng/L	mg/kg	ng/L	ng/L	T/Bn		mg/kg	ng/L	ng/L	"/bn	ma/ka	ng/L	ng/L	-T/6n		<u>mg/Kg</u>	ng/L	ng/L	n9/L	ma/ka	llou	na/i	uo/L	1
Result Qualifier	1		л	n										 ſ				 ۔ ا				-									-				-	-				-				
Detection Limit	5.6	50	50	50	8.4	*	ទ	20	20	5.8	20	50	50	6.1	50	50	50	 6.4	50	50	20	35.3	50	20	20		9.5 -	20	250	250	5.9	50	50	50	ľ	7.0	2	<u>6</u>	20	~	20	20	50	
Result	12.6	51.1	35.1	35.2	138		159	84.6	81.9	37.3	82.3	56.9	91.9	 98.2	237	220	216	95.1	403	171	174	132	81.5	102	95.4		194	1280	1010	968	40.9	122	94.9	89.6	1 07	10.4	67.1	58.2	60.2	368	94.2	96.96	9 9 ,6	
Anatysis Name	Lithium, Total	Lithlum, SPLP Leachate	Lithlum, SPLP Leachate	Lithium, SPLP Leachate	I thinm Total		Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium. Total	Lithium. SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	- 14.5		Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium. Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	46 i.m. Total		Linum, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium Total	Lithium. SPLP Leachate	Lithium. SPLP Leachate	Lithium, SPLP Leachate	
Sample Type ID	0	0	1	+	c	>	2	-	-	0	0	1	-	0	0	-	-	0	0	-	-	 0	0		-	•				1	0	0			c		- -	-	-	0	0	-	1	
S&W Lab Sample ID	12b-021745	12b-021745	12b-021763	12b-021764	12h-021746	01120 101	12b-021/46	12b-021/66	12b-021765	12b-021747	12b-021747	12b-021767	12b-021768	12b-021748	12b-021748	12b-021769	12b-021770	12b-021749	12b-021749	12b-021772	12b-021771	12b-021750	12b-021750	12b-021773	12b-021774	405.004700	REJ 170-071	12b-021799	12D-021800	12b-021801	12b-021814	12b-021814	12b-021816	12b-021815	126 021751	101 201 201	10/120-071	120-021//6	12b-021775	12b-021753	12b-021753	12b-021780	12b-021779	
Boring	A-1	A-1	A-1	A-1	6-4	4 4	A-2	A-2	A-2	A-3	A-3	A-3	A-3	A-4	A-4	A-4	A-4	A-5	A-5	A-5	A-5	A-6	A-6	A-6	A-6	7		A-/	A-/	A-7	A-8	A-8	A-8	A-8	a		- 0		8-1	83	B-3	8-3 8-3	8-3	

2004-09-SSL dft-00

Table D-2 Lithium SPLP Resutts

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration (ug/L)	16.00				204.67				00 50	07.62				516.33					144.33				157.00				or 10	54.50				126.00				63.50				140.67	10:01			
Collection Date	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/04/04		6/22/2004	6/22/2004		6/22/2004	6/22/2004	6/22/2004	6/22/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004		5/24/2004	612412004	6/24/2004		6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	KUDCI KCI B	6/24/2004	6/24/2004	6/24/2004	
Depth of Measure (ft bgs)	10-11.3	10-11.3	10-11.3	10-11.3	12,4-14,4	12.4-14.4	12.4-14.4	12.4-14.4	46 7 47 7	1.1-1.61	1.1-1.01	15.7-17.7		7.8-8.8	7.8-8.8	7.8-8.8	7.8-8.8		8.1-9.1	8.1-9.1	8.1-9.1	8.1-9.1	10.2-11.2	10.2-11.2	10.2-11.2	10.2-11.2	00700	0'0-0'0 0'0'-0'0	8.6-10.6	8.6-10.6		9.6-10.6	9.6-10.6	9.6-10.6	9.6-10.6	8.6-9.6	8.6-9.6	8.6-9.6	8.6-9.6	126-13 E	12 6-13 6	12.6-13.6	12.6-13.6	2/21-2/171
Unit of Measure	ma/ka	ng/L	ng/L	ug/L	mg/kg	ug/L	ug/L	ng/L		10/49	ug/L	uo/L	J Ď	mg/kg	ug/L	ug/L	ug/L		mg/kg	ug/L	ug/L	ug/L	mg/kg	ng/L	ug/L	ug/L		mg/kg	ug/L Ital	- Ad	l D	mg/kg	ug/L	ug/L	J/gu	mg/kg	ng/L	ng/L	ng/L	maika	Ruffill	- Tyon	na/L	4 31 F
Result Qualifier			∍	Л	ſ				-	-	=) =	,						,				7				-	-				ſ				7				-	>			
Detection Limit	6.3	50	50	50	9.2	50	50	50	5.6	0'0	30	50	22	8	50	50	50		11	20	20	5	5.9	50	50	50	c 1	0.0 0	39	20		9	50	20	50	5.9	50	50	20	a v	50	203	20	23
Result	37.5	16	15.7	12.7	511	199	206	209		3.6	48 5	17.4		1700	567	490	492		889	158	142	133	26.9	145	162	164	ç	07	63	71.3		49.5	125	129	124	22	60.5	68.6	61.4	30 E	140	145	137	
Analysis Name	Lithium. Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	l Shire Total	LIGNUM, FOGAL Laterer EDF D L coopete	LATINITI, SPLP LEGGTAGE Lithium SDLD Leachate	Lathium, SPLP Leachafe		Lithium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate		Lthium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	1.56.5	LIGNIUM, LOTAL Lablest COLO Locatato	Lithium SPI P Leachate	Lithium. SPLP Leachate		Lithium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, Total	Lithium, SPLP Leachate	Lithium, SPLP Leachate	Lithium, SPLP Leachate	l thùm Trial	I thium SPI P Leachate	Lithium SPLP Leachate	Lithium. SPLP Leachate	
Sample Type ID	0	0	1		0	0	1	-	-				-	0	0	~	*	-	0	0	-	-	0	0	1	-		-				0	0	-		0	0	-	+	-				-
S&W Lab Sample ID	12b-021754	12b-021754	12b-021781	12b-021782	12b-021817	12b-021817	12b-021819	12b-021818	40F 0047EE	00/170-071	120-021/00	12b-021783		12b-021756	12b-021756	12b-021785	12b-021786		12b-021/52	12b-021752	120-021///	12b-021778	12b-021757	12b-021757	12b-021788	12b-021787	101-001170	92/1Z0-0Z1	12b-021/30 12h-021789	12b-021790		12b-021759	12b-021759	12b-021792	12b-021791	12b-021761	12b-021761	12b-021796	12b-021795	19h-031763	12b-021 02 12h-021762	12b-021797	12b-021798	
Boring	4	8-4	4	84 8	8-5	B-5	B-5	B-5	u	n u	0-0 4	8-5		B-6	B-6	B-6	B-6		B-7	8-7	B-7	B-7	2	<u>?</u>	<u>-</u>			2.2	2-2	5-2 C-3	ł	C-3	с. Ч	с С	53	C-5	C-5	C-5	9 12 12	ų	290	90	90	,

2004-09-SSL dft-00

FUSRAP Maywood Superfund Site Contract Number DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Lithium SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

	6/25/2004	4.7-6.2	ng/L		20	53.3	Lithium, SPLP Leachate	-	12b-021813	8-0
	6/25/2004	4.7-6.2	ug/L		50	52.2	Lithium, SPLP Leachate	1	12b-021812	6-8 C
	6/25/2004	4.7-6.2	ug/L		50	49.9	Lithium, SPLP Leachate	0	12b-021811	8 0
51.80	6/25/2004	4.7-6.2	mg/kg	ſ	5.8	67.4	Lithium, Total	0	12b-021811	C-8
	6/25/2004	7.6-8.6	ug/L		50	92.3	Lithium, SPLP Leachate	-	12b-021794	C-7
	6/25/2004	7.6-8.6	ng/L		50	103	Lithium, SPLP Leachate	1	12b-021793	C-7
	6/25/2004	7.6-8.6	l ug/L		50	97.9	Lithium, SPLP Leachate	0	12b-021760	C-7
97.73	6/25/2004	7.6-8.6	mg/kg	ſ	6.1	32.4	Lithium, Total	0	12b-021760	C-7
(ng/L)	Date	(ft bgs)	Unit of Measure	Qualifier	Limit	Result	Analysis Name	Sample Type ID	D	Boring
Averge Leachate Concentration		Depth of Measure		Result	Detection				S&W Lab Sample	

Notes

ug/L = Micrograms per Liter mg/kg = Militgrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect U = Estimated Non-Detect J = Estimated Concentration

FUSRAP Maywood Superfund Site Contract Number DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Mercury SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

,

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration	QN				QN				CN								Q				4	N				0.29					QN				QN								Q
Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004	RIDRIDA	RIJ3/DUA	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	entrood	4002/GZ	5/25/2004	6/25/2004	6/25/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004		6/25/2004	6/25/2004	6/25/2004	+002/02	6/23/2004	6/23/2004	6/23/2004	6/23/2004		5/23/2004	D/23/2004	6/23/2004	6/22/2004
	6/2	6/2	6/2	6 17	6/2	6/2	6/2	6/2	613	612	6/2	6/2	6/8	500	6/2	6/2	6/2	6/2	6/2	6/2	10				0	612	6/2	6/2	6/2		6/2	6/2	10	70	6/2	6/2	6/2	6/2				07	6/2
Depth of Measure (ft bos)	13.4-15.4	13,4-15,4	13.4-15.4	13.4-15.4	6.3-7.1	6.3-7.1	6.3-7.1	6.3-7.1	63-83	6.3-8.3	6.3-8.3	6.3-8.3	7 U1-10	9.4-10.4	9.4-10.4	9.4-10.4	10.4-11.4	10.4-11.4	10,4-11.4	10.4-11.4	60.70	0.7-7.0 0	n h.n.	0.4.0	B.1-B.C	9-11	9-11	9-11	9-11		11.2-12.4	11.2-12.4	4.21-2.11	4'3''-2''	12,4-13,4	12.4-13.4	12.4-13.4	12.4-13.4	001	R-0'	7 8.0	2.8-9	10-11.3
Unit of Measure	mg/kg	ug/L	ug/L	ug/L	mg/kg	1/6n	ug/L	ng/L	ma/kn	uq/L	ng/L	ng/L	ma lka	gun Aufan	na/L	ղնո	mg/kg	ng/L	ng/L	ng/L	mallo	mg/Kg	10/L	ng/L	ng/L	ma/ka	ua/L	ng/L	ug/L	-	mg/kg	ug/L	ug/L #	ugir	ma/ka	ng/L	ng/L	ng/L	2	ng/Kg	- rug/r	ng/L	mg/kg
Result Qualifier	5	Э	<u></u> :	5	Ŀ	∍	D	∍	=		5	Э	-	,=))	n			- -			=	╞	=	5						5	-	5 =	2	5	Э	n	∍		-	╞		
Detection Limit	0.012	2	0.2	Z'N	0.017	2	0.2	0.2	0.012	2	0.2	0.2	0.012	6	2 CV	2	0.016	2	7	2	0.046	0.040	√ (7	7	0.026	~	0.2	0.2	1	0.015	~ ~	v c	,	0.014	2	2	2		77.0	7	4 00	0.02
Result	0.012	2	0.2	7.0	0.02	2	0.2	0.2	0.012	2	0.2	0.2	0.024		• •	2	0.036	2	2	2	0.67	10.0	× (N (7	0.4	0.24	0.35	0.29	1	0.015	7	7 0	7	0.014	2	2	2		C'7	40	- ~	0.046
Analvsis Name	Mercury, Total	Mercury, SPLP Leachate	Mercury, SPLP Leachate	mercury, or Lr Leachaite	Mercury, Total	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Mercury. Total	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Mercury Total	Mercury SPI P Leachate	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Mercury, Total	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Marcinit Total		IVERCULY, SPLFF LEAGRIAUE	Mercury, SPLP Leachate	Mercury, or Lr Leachate	Mercury. Total	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Mercury, SPLP Leachate		Mercury, Total	Mercury, SPLP Leachate	Mercury, SPI D1 and ate		Mercury, Total	Mercury, SPLP Leachate	Mercury, SPLP Leachate	Mercury, SPLP Leachate			Mercury, SPI PI Pachata Mercury, SPI PI Pachata	Mercury, SPLP Leachate	Mercury, Total
Sample Type ID	0	0	v- v	-	0	0	-	-	0	0	1	-	c		•	1	0	0		-	c		-		_	0	0	1	1		•	5,		-	0	0	-	+			- 1		0
S&W Lab Sample ID	12b-021745	12b-021745	12b-021763	120-021	12b-021746	12b-021746	12b-021765	12b-021766	12b-021747	12b-021747	12b-021767	12b-021768	12h-021748	12b-021748	12b-021769	12b-021770	12b-021749	12b-021749	Z//LZD-dZL	1//120-021	12h-021760	120-02120	120-021200	120-021 / 13	120-021114	12b-021799	12b-021799	12b-021801	12b-021800		120-021814	120-021814 425 024845	10120-021		12b-021751	12b-021751	12b-021776	12b-021775	415 A147ED	101 00120	125-021780	12b-021779	12b-021754
Boring	A-1	A-1	A-1	÷	A-2	A-2	A-2	A-2	A-3	A-3	A-3	A-3	A-4	A-4	A-4	A-4	A-5	A-5	6-A	c-A	<u>A-6</u>	0-W	9-V	A-0	0-W	A-7	A-7	A-7	A-7		A-8	8-8 •	0-V		9-1-	B-1	Р -1	P-1	ć		6-4	B-3	B-4

2004-09 SSL dft-00

31 of 42

FUSRAP Maywood Superfund Sile Contract Number DACW41-99-D-9001 Soli Screening Level (SSL) Technical Memorandum

Table D-2 Mercury SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Sample Type ID		Analysis Name	Result	Detection Limit	Result Qualifier	Unit of Measure	Depth of Measure (ft bas)	Collection Date	Averge Leachate Concentration
•		Mercury, SPLP Leachate	2	2	5	ng/L		6/22/2004	1
۱		Mercury, SPLP Leachate	0.2	0.2	D	ng/L	10-11.3	6/22/2004	
+		Mercury, SPLP Leachate	0.2	0.2	∍	γβn	10-11.3	6/22/2004	
•	+	Mercuiry Total	0.067	0.03		- Andrew	4 4 4 4 4	61051004	
0	<u> </u> .	Mercury, SPLP Leachate	5	2	∣∍	ua/L	12.4-14.4	6/25/2004	
-		Mercury, SPLP Leachate	8	2	5	-Ven	12.4-14.4	6/25/2004	
-	\square	Mercury, SPLP Leachate	7	2	5	ng/L	12.4-14.4	6/25/2004	
-	+	Marcine: Total	6700	0100	=		1 1 1 1	1000000	4
	+	Mercuiny SDI D I eschate	710'0	2100	5	mg/Kg	1.11-1.01	6/22/2004	
-	+	Mercury, SPLP Leadate	20 0	202		ng/L	15.1-11.1	6/22/2004	
		Mercury, SPLP Leachate	0.2	02		naft	15.7-17.7	6/22/2004	
0	-	Mercury, Total	1.4	0.026		mg/kg	7.8-8.8	6/22/2004	QN
0		Mercury, SPLP Leachate	2	2	n	ng/L	7.8-8.8	6/22/2004	
-		Mercury, SPLP Leachate	0.2	0.2	n	ng/L	7.8-8.8	6/22/2004	
-		Mercury, SPLP Leachate	0.2	0.2	D	ng/L	7.8-8.8	6/22/2004	
0	-	Mercury, Total	0.2	0.024		mq/ka	8.1-9.1	6/23/2004	Q
0	_	Mercury, SPLP Leachate	2	2	5	ng/L	8.1-9,1	6/23/2004	
-		Mercury, SPLP Leachate	2	2	5	ng/L	8.1-9.1	6/23/2004	
-	+	Mercury, SPLP Leachate	2	2	S	ng/L	8.1-9.1	6/23/2004	
0		Mercury, Total	0.026	0.013	5	mg/kg	10.2-11.2	6/24/2004	g
0		Mercury, SPLP Leachate	2	2	D	ng/L	10.2-11.2	6/24/2004	
	╉	Mercury, SPLP Leachate	2	2	D	ng/L	10.2-11.2	6/24/2004	
-	+	Mercury, SPLP Leachate	7	2	∍	ng/L	10.2-11.2	6/24/2004	
0	-	Mercury, Total	0.05	0.015		mg/kg	8.6-10.6	6/24/2004	Q
0		Mercury, SPLP Leachate	2	2	n	ng/L	8.6-10.6	6/24/2004	
÷		Mercury, SPLP Leachate	2	2	D	ng/L	8.6-10.6	6/24/2004	
-	+	Mercury, SPLP Leachate	2	2	⊐	ug/L	8.6-10.6	6/24/2004	
0	+	Mercury, Total	0.011	0.0097	-	bili	9.6-10.6	6/24/2004	QN
0		Mercury, SPLP Leachate	2	2	n	Jlgu	9.6-10.6	6/24/2004	
~		Mercury, SPLP Leachate	2	2	⊃	ηgh	9.6-10.6	6/24/2004	
-	+	Mercury, SPLP Leachate	2	2	D	ηgΛ	9.6-10.6	6/24/2004	
0		Mercury. Total	0.027	0.015	-	malka	86-96	6/24/2004	CN
0	-	Mercury, SPLP Leachate	2	2		na/L	8.6-9.6	6/24/2004	2
1	\vdash	Mercury, SPLP Leachate	2	2	5	ng/L	8.6-9.6	6/24/2004	
÷		Mercury, SPLP Leachate	2	2	∍	ng/L	8.6-9.6	6/24/2004	
			-						
0	+	Mercury, Total	0.01	0.01	<u> </u>		12.6-13.6	6/24/2004	Q
╞		Mercury, SPLP Leachate	~ ~	71 0		ng/L	12.6-13.6	6/24/2004	
		Mercury, SPLP Leachate	- ⁻ -	4 04		ug/L	12.6-13.6	6/24/2004	
4	+								
-	╀	Mercury, Lotal	0.032	0.013		mg/kg	7.6-8.6	6/25/2004	g
2	-	Intercury, SPLP Leadnale	2	2	5	1/6n	7.6-8.6	6/25/2004	

2004-09 SSL dft-00

FUSRAP Maywood Superfund Site Contract Number DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Mercury SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

g ID Sample Type ID Ar 12b-021793 1 Mercun 12b-021794 1 Mercun 12b-021811 0 Mercun 12b-021811 0 Mercun 12b-021812 1 Mercun	Det	Detection Result		Depth of Measure		Averge Leachate Concentration
12b-021793 1 Mercury. SPLP Leachate 2 12b-021794 1 Mercury. SPLP Leachate 2 12b-02181 0 Mercury. Total 2 12b-021811 0 Mercury. SPLP Leachate 2 12b-021811 0 Mercury. SPLP Leachate 2 12b-021811 0 Mercury. SPLP Leachate 2 12b-021812 1 Mercury. SPLP Leachate 2		_	Qualifier Unit of Measure		Collection Date	(ng/L)
12b-021794 1 Mercury. SPLP Leachate 2 12b-021811 0 Mercury. Total 0.61 12b-021811 0 Mercury. SPLP Leachate 2 12b-021811 0 Mercury. SPLP Leachate 2 12b-021812 1 Mercury. SPLP Leachate 2	2	2 U	''Yôn		6/25/2004	
12b-021811 0 Mercury, Total 0.61 12b-021811 0 Mercury, SPLP Leachate 2 12b-021812 1 Mercury, SPLP Leachate 2	2	2 U	7/6n	7.6-8.6	6/25/2004	
12b-021811 0 Mercury, Total 0.61 12b-021812 0 Mercury, SPLP Leachate 2 12b-021812 1 Mercury, SPLP Leachate 2						
12b-021811 0 Mercur 12b-021812 1 Mercur Mercur		011	mg/kg	4.7-6.2	6/25/2004	QN
1 12b-021812 1 Mercur	2	2 I U	ng/L	4.7-6.2	6/25/2004	
	2	2	ng/L	4.7-6.2	6/25/2004	
	2	5	ng/L	4.7-6.2	6/25/2004	

Notes

ug/L = Micrograms per Liter mg/kg = Milligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect U = Estimated Non-Detect J = Estimated Concentration

FUSRAP Maywood Superfund Site Contract Number DACW41-99-0-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Nickel SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration	1 97	10:1			LE C	77.0				0 RE					1.23				2 42	-			4.63					18.17				1 27	Ì				0.49				16.03					0.71
Collection Date	RP1/2004	6/21/2004	6/21/2004	6/21/2004	10001003	0122/2004	6/22/2004	6/22/2004	6/22/2004	EP112004	6/21/2004	6/21/2004	6/21/2004		6/23/2004	6/23/2004	5/23/2004	6/23/2004	612312004	6/23/2004	6/23/2004	6/23/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/22/2004
Depth of Measure (ft bos)	13 4-15 4	13.4-15.4	13.4-15.4	13.4-15.4	1160	1.1-0.0	6.3-7.1	6.3-1.1	6.3-7.1	63.83	6.3.8.3	6.3-8.3	6.3-8.3		9.4-10.4	9.4-10.4	8.4-10.4 0.4 40.4	8.4-10.4	10.4-11.4	10.4-11.4	10.4-11.4	10.4-11.4	5.9-7.9	5.9-7.9	5.9-7.9	5.9-7.9		е-11-	9-11	9-11	9-11	11.2-12.4	11.2-12.4	11,2-12,4	11.2-12.4		12.4-13.4	12.4-13.4	12.4-13.4	12.4-13.4	7.8-9	7.8-9	7.8-9	7.8-9		10-11.3
Unit of Measure	ma/ka	rl/bn	ng/L	ng/L		111GrKg	- ng/L	ngrt	ng/L	ma/ka	no/L	ng/L	ng/L		mg/kg	ng/L		ng/L	ma/ka	na/L	na/L	ug/L	mg/kg	ug/L	ug/L	ug/L		mg/Kg	ng/L	, ng/L	VBn	ma/ka	ng/L	ng/L	ng/L		mg/kg	, J/Bn	ng/L	ng/L	ma/ka	na/L	ng/L	ng/L		mg/kg
Result Qualifier			ſ	-,					-			-	-																																	
Detection Limit	041	10	10	0	0.55	PR'n	2 9	2	10	0.37	10	10	10		0.53	5 5	2	2	0.56	0	10	10	0.55	10	9	10	000	79'N	10	10	10	0.49	10	10	10	:	0.49	10	10	9	0.58	10	10	10		0.54
Result	er or	4.6	0.62	0.7	u		0'F	0.37	0.34	6.1	0.53	0.35	1.7	l	9.9 9	9.1			5.6	2.6	3.9	0.75	214	4.4	4.8	4.7		13.4	10.4	27.2	22.9	10.2	1.4	1.1	1.3	1	5.C	0.3	0.53	0.63	15.2	18.8	14.3	15		5.7
Analvsis Name	Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel Tetel		NICKEI, SPLP LEACHATE	NICKEI, SPLP LEACHATE	Nickel, SPLP Leachate	Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	and the second	Nickel, iotal	Nickel, SPLP Leachate	Nickel SDID Leachaid	NICKEI, OFEF LEACIALE	Nickel. Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Allalad	NICKEI, I OTAI	Nickel, SPLP Leachate	NICKEI, SPLP Leachate	NICKEI, SPLP LEACHAGE	Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate		Nickel, I otal	Nickel, SPLP Leachate	NICKEI, SPLP LEACHATE	Nickel, SPLP Leachate	Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate		Nickel, Total
Sample Type ID	0	0	4		c					0	0	-	-			- -		-	0	0	-	-	0	0	-	~		- -	0,	-	-	0	0	1	1			0	_	-	0	0	-	-		0
S&W Lab Sample ID	12b-021745	12b-021745	12b-021763	12b-021764	12h-021746	476 024742	120-021/40		12b-021765	12b-021747	12b-021747	12b-021767	12b-021768		12D-UZ1/48	12D-UZ1/48 12h-021760	42h-02170	011170-071	12b-021749	12b-021749	12b-021772	12b-021771	 12b-021750	12b-021750	12b-021773	12b-021774	405 004700	120-021 (35	12b-021799	120-021800	108120-021	12b-021814	12b-021814	12b-021816	12b-021815	142,000 101	10/120-071	12b-021751	9//170-071	12b-021//5	12b-021753	12b-021753	12b-021780	12b-021779		12b-021754
Boring	A-1	A-1	A-1	A-1	A-7	**	A-2	A-2	A-2	A-3	A-3	A-3	A-3	•	44 44	A-4	53	ŧ	A-5	A-5	A-5	A-5	A-6	A-6	A-6	A-6	~ ~		A-7	A-1	A-/	A-8	A-8	A-8	A-8					4-1	B-3	B-3	B-3	B-3	ľ	B4

FUSRAP Maywood Superfund Site Contract Number DACW41-99-D-900f Soil Screening Level (SSL) Technical Memorandum

Table D-2 Nickel SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix -D Draft Rev. 00 September 2004

Averge Leachate Concentration Collection Date (uo/L)		6/22/2004	6/22/2004			6(25/2004	6/25/2004	6/22/2004 2.69	6/22/2004	6/22/2004 6/22/2004		6/22/2004 1.25	6/22/2004	6/22/2004	6/22/2004	6/23/2004 41.17		6/23/2004	6/23/2004	6/24/2004 2.31		6/24/2004	/24/2004	604/0004 0 76		6/24/2004	6/24/2004	6/24/2004 A 10		6/24/2004	6/24/2004	6/24/2004 2.67		6/24/2004	6/24/2004	6/24/2004 1.80	6/24/2004		6/24/2004
Depth of Measure (ft bos) Coll			10-11.3 6/		12,4-14,4 0	-				15.7-17.7 6					7.8-8.8	8.1-9.1 6		8.1-9.1 6	8.1-9.1 6	10.2-11.2 6				86.10.6 6			8.6-10.6 6	a 6.10 6				8.6-9.6			8.6-9.6	12.6-13.6 6	12.6-13.6 6		_
Unit of Measure		ng/L	ug/L		1119/Kg	Juli I	rg/L	mg/kg	rĝ/	ng/L		mg/kg	ug/L	ηg/L	ng/L	mg/kg	ug/L	ng/L	ug/t_	ma/ka	ng/L	-1/6n	1/6n	- Calibra	nd/L	ng/L	n9/L	unitaria and a second	na/L	ng/L	ng/L	ma/ka	Jon	Ъll	ng/L	ma/ka	na/L		ug/L
Detection Result Limit Qualifier		10 J	10 J		1.1	2 €	20	0.33	10		2	0.62	10	5	<u>6</u>	0.82	10	10	10	0.45	10	10	10	0.67	10	10	0	0.48	10	10	10	0.54	10	10	10	0.42	10		10
Result	0.61	1.1	0.41		32.2	73.8	78.1	7.1	7.2	0.52	<u><u></u></u>	36.2	2	0.92	0.83	48.1	45.9	39.8	37.8	3.6	0.82	2.8	3.3		0.54	0,89	0.84		3.6	4.6	4.1	12.6	2.3	3.2	2.5	4.8	1.6		1.8
Analysis Name	Nicket, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	▲ 1.1.1	Nickel, Iotal Nickel Cof of eachers	Nickel, SPI P i eachate	Nickel, SPLP Leachate	Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate		Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel. Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel Trial	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nirkel Trial	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel. Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, Total	Nickel. SPLP Leachate		Nickel, SPLP Leachate
Sample Type ID	0	*-	+					a	0,		-	0	0	-	-	0	0	+	-	0	0	1		c	0	-	£		0	۰.	-	0	0	1		0	0		-
S&W Lab Sample ID	12b-021754	12b-021781	12b-021782	101-00101	120-021817 19h 031817	126-021819	12b-021818	12b-021755	12b-021755	12b-021/84 12b-021/84	C01170-071	12b-021756	12b-021756	12b-021785	12b-021786	12b-021752	12b-021752	12b-021777	12b-021778	12b-021757	12b-021757	12b-021788	12b-021787	126 021758	12b-021758	12b-021789	12b-021790	19h-091759	12b-021759	12b-021792	12b-021791	12b-021761	12b-021761	12b-021796	12b-021795	12b-021762	12b-021762	105 001707	120-021/9/
Boring	B4	84 44	B-4		n u	7 S-8	B-5	B-5	5 i	5-8 4	2	B-6	B-6	8-6	8-6	B-7	B-7	B-7	B-7	2	<u>-</u> -	C-1	<u>5</u>		55	C-2	C-2	ę	500	C-3	с. С	C-5	C-5	C-5	C-5	و ن	9 0		5

2004-09 SSL dft-00

Table D-2 Nickel SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

Aver Col	ate (ug/L) 4		4 3.10		4	**
:	Collection Date 6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004
Depth of Measure	(ft bgs) 7.6-8.6	7.6-8.6	4.7-6.2	4.7-6.2	4.7-6.2	4.7-6.2
	Unit of Measure ua/L	ng/L	mg/kg	ug/L	ng/L	ng/L
Result	Qualifier					
Detection	10 10	10	0.48	10	01	10
:	4.4	4.2	25.5	2.3	4,1	2.9
	Analysis Name Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, Total	Nickel, SPLP Leachate	Nickel, SPLP Leachate	Nickel, SPLP Leachate
<u>-</u>	Sample Type ID	1	0	0	Ļ	•
S&W Lab Sample	1D 12b-021793	12b-021794	12b-021811	12b-021811	12b-021812	12b-021813
	Boring C-7	C-7	с. 8	C-8	89 ت	C-8

Notes

ug/L = Micrograms per Liter mg/kg = Milligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect U = Estimated Non-Detect J = Estimated Concentration

FUSRAP Maywood Superfund Site Contract Nurrber DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Selenium SPLP Results

FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration	UN (12.62)				QN									Q				C,	22				Q					9				QN					9				Q				QN
Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/24/2004	5/21/2004	6/21/2004	6/21/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	PUNCIEGIA	102/2004	6/23/2004	6/23/2004		6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/23/2004	6/23/2004	612312004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/22/2004
Depth of Measure (ft bos)	13.4-15.4	13.4-15.4	13.4-15.4	13.4-15.4	6.3-7.1	6.3-7.1	6.3-7.1	6.3-7.1	6 2 8 3	5 8 8 8 8 8 8 8	6.3-8.3	6.3-8.3		9.4-10.4	9.4-10.4	9.4-10.4	9.4-10.4	40 4 44 4	10:4-11:4	10.4-11.4	10.4-11.4		5.9-7.9	5.9-7.9	5.9-7.9	5.9-7.9		9-11	9-11	9-11	9-11	11.2-12.4	11.2-12.4	11.2-12.4	11.2-12.4		12.4-13.4	12.4-13.4	12.4-13.4	12.4-13.4	7.8-9	7.8-9	7.8-9	7.8-9	10-11.3
Unit of Measure	ma/ka	ug/L	ug/L	ug/L	ma/ka	ug/L	ug/L	ug/L	mollen	Burgin	ua/L	ng/L		mg/kg	ug/L	ng/L	ug/L	malte	- Bulkin	uall		>	mg/kg	ug/L	ug/L	ng/L		mg/kg	ug/L	ng/L	ng/L	ma/ka	ng/L	ng/L	ug/L		mg/kg	ug/L	ugır	ug/L	mg/kg	na/L	ng/L	rg/L	mg/kg
Result Qualifier	D	D	3	3		∍	5	n	=	=	93	n		3	_	5	-		3=		, ,		ß	D	þ	∍	:		5	3	3	n	D	Ð	n		3	╞	5	5	В			∍	D
Detection LImit	1.5	5	5	2	~	5	5	2	4	2	ۍ د	5		1.9	ιΩ I	5	5	¢	1 17		5		2	5	£	S	,	6	Ω	25	25	1.8	ۍ	ъ	5		1.8	0 u	n	2	2.1	5	5	S	1.9
Result	1.5	£	5	£	2	2.6	ъ	ъ	6. T	2	2	5		1.9	ι Ω	D.	'n	•	15	2	2		2	2.4	5	5		°	5	25	25	1.8	5	5	1.5		3.1	0 u		5	2.1	5	1.3	5	1.9
Analysis Name	Selenium, Total	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, Total	Selenium, SPLP Leachate	Setenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium Total	Selentium SPI P Leachate	Selenium, SPLP Leachate	Selenium, SPLP Leachate		Selenium, Total	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium Total	Selentium SPI P Laachata	Selenium. SPLP Leachate	Selenium, SPLP Leachate		Selenium, Total	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, SPLP Leachate		Selenium, Total	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, Total	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, SPLP Leachate		Selenium, Lotal	Selenium, SPLP Leachate		Selenium, SPLP Leachate	Selenium, Total	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, SPLP Leachate	Selenium, Total
Sample Type ID	0	0	-	-	0	0	1	÷	c	0		-	1	0	0,	- ,	-			,	-		0	0	-	-		-	0	-	-	0	0	1	+			- -	_	-	0	0	+	+	0
S&W Lab Sample ID	12b-021745	12b-021745	12b-021763	12b-021764	12b-021746	12b-021746	12b-021766	12b-021765	12h-021747	12b-021747	12b-021767	12b-021768		12b-021748	12b-021748	F9/170-071	0//LZD-07L	12h-021749	126-021749	12b-021772	12b-021771		12b-021750	12b-021750	12b-021773	12b-021774	101 001100	66/LZD-071	12b-021799	12b-021800	120-021801	12b-021814	12b-021814	12b-021816	12b-021815	101.00177	120-021/51	10/170-071	D//IZ0-071	c//1ZD-0Z1	12b-021753	12b-021753	12b-021780	12b-021779	12b-021754
Boring	A-1	A-1	A-1	A-1	A-2	A-2	A-2	A-2	A-3	A-3	A-3	A-3		A-4	A-4	A-4	A-4	4-5	A-5	-9-5	A-5		A-6	A-6	A-6	A-6		A-/	A-7	A-/	A-/	A-8	A-8	A-8	A-8		5	<u> </u>	5	- <u>-</u>	B-3	B-3	B-3	B-3	8 4

2004-09 SSL dft-00

FUSRAP Maywood Superfund Site Contract Number DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Selenium SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Boring	S&W Lab Sample ID	Sample Type ID	Analvsis Name	Result	Detection	Result Oualifier	Unit of Measure	Depth of Measure (ft bos)	Collection Date	Averge Leachate Concentration
B-4	12b-021754	0	Selenium, SPLP Leachate	4.8	2	n	na/L		6/22/2004	(11/2m)
B-4	12b-021781	+	Setenium, SPLP Leachate	2	5	n	ng/L	10-11.3	6/22/2004	
B-4	12b-021782	1	Selenium, SPLP Leachate	5	5	З	ng/L	10-11.3	6/22/2004	
B-5	12b-021817	0	Selenium, Total	2.6	2.6	UJ	mg/kg	12.4-14.4	6/25/2004	QN
8-5 1	12b-021817	0	Selenium, SPLP Leachate	2.1	5	þ	ng/L	12.4-14.4	6/25/2004	
П -5	12b-021819	·	Sefenium, SPLP Leachate	1.8	5	n	ng/L	12.4-14.4	6/25/2004	
B -5	12b-021818		Selenium, SPLP Leachate	5	S	ŋ	ng/L	12.4-14.4	6/25/2004	
	101 001777	•								
6-H-2	12b-021755	0	Selenium, Total	1.2	1.2	∍	mg/kg	15.7-17.7	6/22/2004	Q
8-2 6	12b-021755	0	Selenium, SPLP Leachate	e R	ŝ	∍	ng/L	15.7-17.7	6/22/2004	
9-2 1	12b-021784	.	Selenium, SPLP Leachate	c.	S	IJ	ng/L	15.7-17.7	6/22/2004	
B-5	12b-021783	*-	Selenium, SPLP Leachate	5	2	З	ng/L	15.7-17.7	6/22/2004	
90	10h 001766	c	Colorine Total	6 0	60	=		0 0 1	10000010	4
	120-021/30 13h 031756		Selenting CDI D 1 applied	¢, 1	۲.2 ۲	5	mg/kg	7.0.0.0	6/22/2004	R
0 u	121-021/30		Seletium, SPLP Leachate	n u	ה נ		ng/L	1.8-8.8	6/22/2004	
0	101120-121	- *	Solonium, SPLP LEAGIALE	0 4	n u	3 3		7.0.0.0	6/22/2004	
5	001170-077	-		n 	0	3	ugri	0.0-0.7	012212004	
B-7	12b-021752	0	Selenium, Total	9	e	З	mg/kg	8.1-9.1	6/23/2004	QN
B-7	12b-021752	0	Sefenium, SPLP Leachate	1.7	S	ŋ	ng/L	8.1-9.1	6/23/2004	
B-7	12b-021777	1	Selenium, SPLP Leachate	5	5	n	ug/L	8.1-9.1	6/23/2004	
B-7	12b-021778		Selenium, SPLP Leachate	5	IJ	ŋ	ng/L	8.1-9.1	6/23/2004	
2	12b-021757	0	Selenium. Total	1.6	1.6	m	ma/ka	10.2-11.2	612412004	CN
C-1	12b-021757	0	Selenium, SPLP Leachate	- Cu	5		ng/L	10.2-11.2	6/24/2004	2
	12b-021788	1	Setenium, SPLP Leachate	5	5	n	7/6n	10.2-11.2	6/24/2004	
2	12b-021787	-	Selenium, SPLP Leachate	5	5	5	√gu	10.2-11.2	6/24/2004	
250	120-021/58	5 0	Selenium, Iotal	2.1	2,1	- N	mg/kg	8.6-10.6	6/24/2004	QN
2 0	1001120-0121		Scientium, SPLP Leagnate	n 1	n '	5:	ngu	8.6-10.6	6/24/2004	
	12D-021/89		Selenium, SPLP Leachate Selenium, SPI D I Andrate		n u	5	ng/L	8.6-10.6	6/24/2004	
75	120-021	-	Selelium, SPLP Leachace		n	5	ng/L	8.0-10.0	6/24/2004	
C-3	12b-021759	0	Selenium, Total	1.7	1.7	n	mg/kg	9.6-10.6	6/24/2004	9
C-3	12b-021759	0	Selenium, SPLP Leachate	5	5	n	ng/L	9.6-10.6	6/24/2004	
C-3	12b-021792	-	Selenium, SPLP Leachate	5	5	n	ng/L	9.6-10.6	6/24/2004	
C.3	12b-021791		Selenium, SPLP Leachate	5	5	n	ng/L	9.6-10.6	6/24/2004	
0-5	126-021761	c	Selenium Total	6	•	111	maika	86 <u>-</u> 06	000016019	Q
53	12b-021761	0	Selenium. SPLP Leachate	1 10	4 47	3=	l/Dn	86-96	6/24/2004	2
0-5 0	12b-021796	-	Selenium, SPLP Leachate	5	5		na/L	8.6-9.6	6/24/2004	
C-5	12b-021795	•	Selenium, SPLP Leachate	1.7	ъ	n	ng/L	8.6-9.6	6/24/2004	
9 0 0	12b-021762	•	Selenium, Total	1.5	1.5	B	mg/kg	12.6-13.6	6/24/2004	Q
و د د	120-021/62	-	Selenium, SPLP Leachate	2.4	տու	⇒:	ug/L	12.6-13.6	6/24/2004	
33	12h-021/3/ 12h-021798		Selentium SPLP Leachate	n 4	n u	> =	ng/L	12.0-13.6 17 6-13 6	6/24/2004 5/24/2004	
)	1	2.21 2.21		
C-7	12b-021760	0	Selenium, Total	2	2	m	mg/kg	7,6-8,6	6/25/2004	QN
2	12b-021760	0	Selenium. SPLP Leachate	ŝ	5	5	1/U11	76.86	000012010	

2004-09 SSL dft-00

Table D-2 Selenium SPLP Results

Appendix D Draft Rev. 00 September 2004

FUSRAP Maywood Superfund Site, Maywood, NJ

	6/25/2004	4.7-6.2	ng/L	n	5	1.7	Selenium, SPLP Leachate	1	12b-021813	68 C
	6/25/2004	4.7-6.2	ng/L	þ	5	5	_	1	12b-021812	8° 0
	6/25/2004	4.7-6.2	ug/L	D	5	2.2	Selenium, SPLP Leachate	0	12b-021811	ဗိ
QN	6/25/2004	4.7-6.2	mg/kg	n	1.8	1.8	Selenium, Total	0	12b-021811	ဗီ
:	6/25/2004	7.6-8.6	ng/L	D	5	5	Selenium, SPLP Leachate	-	12b-021794	57 ₽
	6/25/2004	7.6-8.6	ng/L	D	5	5	Selenium, SPLP Leachate	+	12b-021793	C-7
(ng/L)	Collection Date	(th bgs)	Unit of Measure	Qualifier	Limit	Result	Analysis Name	Sample Type ID	٥	Boring
Averge Leachate Concentration		Depth of Measure		Result	Detection				S&W Lab Sample	

Notes

ug/L = Micrograms per Liter mg/kg = Milligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely U and ND = Non Detect U = Estimated Non-Detect J = Estimated Concentration

FUSRAP Maywood Superfund Sile Contract Number DACW41-89-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Thallium SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004 Averge Leachate

Averge Leachate Concentration (ug/L)	Q				QN				G				g				!	Q				CN N]			Q				QN				QN					QN				
Collection Date	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/21/2004	6/21/2004	6/21/2004	6/21/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6124DUM	6/23/2004	6/23/2004	6/23/2004		6/23/2004	6/23/2004	6/23/2004	6/23/2004	
Depth of Measure (ft bgs)	13.4-15.4	13.4-15.4	13.4-15.4	13.4-15.4	6.3-7.1	6.3-7.1	6.3-7.1	6.3-7.1	63-83	6.3-8.3	6.3-8.3	6.3-8.3	9.4-10.4	9.4-10.4	9.4-10.4	9.4-10.4		10.4-11.4	10.4-11.4	10.4-11.4	10.4-11.4	59-79	5.9-7.9	5.9-7.9	5.9-7.9	9-11	9-11	9-11	9-11	11.2-12.4	11.2-12.4	11.2-12.4	11.2-12.4	10 4-13 4	12 4-13 4	12.4-13.4	12.4-13.4		7.8-9	7.8-9	7.8-9	7.8-9	
Unit of Measure	ma/kg	"J/Bn	ng/L	ug/L	mg/kg	ng/L	ng/L	ng/L	ma/ka	na/L	ng/L	ng/L	 mg/kg	ng/L	ng/L	ug/L		mg/Kg	ng/L	ng/L	ng/L	ma/ka	na/L	ng/L	ng/L	 mg/kg	ng/L	ng/L	u9/L	mg/kg	ug/L	ng/L	1/6n	nd/pm	- JUII		na/L	2	mg/kg	ug/L	ng/L	ng/L	
Result Qualifier	5	5	ŋ	U	ŋ	Þ	n	Ð	=		5	Э	C)	D	5	Э		3:	5	5	5	=		∍	5	∍	∍	D	∍	5	Э	þ	5	Ē	3-		5		3	∍	5	∍	
Detection Limit	0.11	2	2	5	0.13	2	2	2	0.17	2	2	5		2	4	4		,	N	4	4	14	2	4	4	0.19	2	2	2	1.2	2	4	4		ĥ	14	4			2	4	4	
Result	0.11	2	2	0.59	0.13	2	2	2	0.12	2	2	2	 0.079	2	4	4		0.083	7	4	4	1 4	2	4	4	0.14	2	2	7	1.2	8	4	4	0.074	1012	14	4		0.1	0.48	4	4	
Analysis Name	Thallium, Total	Thallium, SPLP Leachate		Thallium, SPLP Leachate	Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium Total	Thallium. SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate		Thallium, Total	Thailium, SPLP Leachate	Thallium, SPLP Leachate	Thallum, SPLP Leachate	Thallium Total	Thalium SPLP Leachate	Thalitum, SPLP Leachate	Thallium, SPLP Leachate	Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thailium, SPLP Leachate	Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium Total	Thallium SPI P Leachate	Thallium. SPLP Leachate	Thallium, SPLP Leachate		Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	
Sample Type ID	0	0	-	-	0	0	ţ	~ -	c	0	-	-	0	0	1	-		0	0		~	c		-		0	0	-	-	0	0	1	-	c		, 	-		0	0	-	-	
S&W Lab Sample ID	12b-021745	12b-021745	12b-021763	12b-021764	12b-021746	12b-021746	12b-021766	12b-021765	12h-021747	12b-021747	12b-021767	12b-021768	12b-021748	12b-021748	12b-021769	12b-021770		12b-021749	12b-021749	12b-021772	12b-021771	12h_021750	12b-021750	12b-021773	12b-021774	12b-021799	12b-021799	12b-021800	12b-021801	12b-021814	12b-021814	12b-021816	12b-021815	10h.004754	12h-021751	12b-021776	12b-021775		12b-021753	12b-021753	12b-021780	12b-021779	
Boring	A-1	A-1	A-1	A-1	A-2	A-2	A-2	A-2	6-4	8-9	A-3	A-3	A-4	A-4	A-4	A-4	1	A-5	A-5	A-5	A-5	A.F	A-6	A-6	A-6	A-7	A-7	A-7	A-7	A-8	A-8	A-8	A-8	ď			8-1		B-3	8-3 1	B-3	B-3	

Table D-2_Merged Analytical Validated Data

FUSRAP Maywood Superfund Site Contract Number DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Thallium SPLP Results FUSRAP Maywood Superfund Site, Maywood, NJ

Appendix D Draft Rev. 00 September 2004

Averge Leachate Concentration (ug/L)	QZ				9					n l				Q				Q				1	0.88					NN				QN				GN					Q			
Collection Co Date Co	6/22/2004	6/22/2004	6/22/2004	6/22/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004		6/22/2004	6/22/2004	6/22/2004		6/22/2004	6/22/2004	6/22/2004	6/22/2004	 6/23/2004	6/23/2004	6/23/2004	6/23/2004		6/24/2004	6/24/2004	6/24/2004	6/24/2004	100001	6/24/2004	6/24/2004	6/24/2004		6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004	6/24/2004		6/24/2004	6/24/2004	6/24/2004	6/24/2004
Depth of Measure (ft bgs)	┢			10-11.3	12.4-14.4				╡	15.11.1	+			7.8-8.8			7.8-8.8	 	-	8.1-9.1	8.1-9.1	+	┥	-	1	10.2-11.2			8.6-10.6	╈			_	9.6-10.6		86.96		-		-	-		+	12.6-13.6
Det of Measure	mg/kg	ng/L	ng/L	ng/L	ma/ka	ng/L	ng/L	ng/L		mg/Kg	ug/L			mg/kg	ng/L	ng/L	ng/L	mg/kg	ng/L	ng/L	ng/L		mg/kg	ng/L	ng/L	ug/L		mg/Kg	1,61	-T/on		mg/kg	ug/L	ug/L	ng/L	malka	uq/L	ng/L	ng/L		mg/kg	ng/L	ng/L	ug/L
Result Qualifier		5	5	5	5	D	- D	5		⇒∣=	=) =	,	5	5	5	n	-	þ	þ	∍	:	ß		-	n	=	3:	- -	- -	,	З	∍	∍	5				n		3	5	5	5
Detection Limit	0.13	2	7	2	1.8	2	4	4			× ~	10	1	0.16	8	2	2		~	4	4		1.2	~	4	4	-	Z:L	~~~~	4	-	1.2	2	4	4	1.5	÷~	4	4		1.2	24	4	4
Result	0.13	2	2	2	1.8	6	4	4		6.11	N 0			0.16	2	2	2	0.46	0.9	4	4	:	1.2	0.88	**	4	,	1.2	~~~~	1 4	-	1.2	2	4	4	67	2	4	4		1.2	5	4	1.2
Analysis Name	Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium. Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	÷	Themism Coll Discrete	Thatling SPI P Leaditate	Thallium SPLP Leachate		Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate		Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate			Thailium, SPLP Leachate	Thallium. SPLP Leadnate			Thalium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium Total	Thallium. SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate		Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate
Sample Type ID	0	0	1	-	•	0	1	-				•		0	0	-	1	0	0	-	1	-	0	0	-	-			0,	-		0	0	-		c	0	-	-		0	0	1	-
S&W Lab Sample ID	12b-021754	12b-021754	12b-021781	12b-021782	12b-021817	12b-021817	12b-021819	12b-021818		12D-UZ1/55	12h-021784	12b-021783		12b-021756	12b-021756	12b-021785	12b-021786	12b-021752	12b-021752	12b-021777	12b-021778		12b-021757	12b-021757	12b-021788	12b-021787	401.004750	RC/LZN-DZL	12b-021758 115 001700	12b-021790		12b-021759	12b-021759	12b-021792	12b-021791	12h-021761	12b-021761	12b-021796	12b-021795		12b-021762	12b-021762	12b-021797	120-021798
Boring	B-4	B-4	84	B4	B-5	B-5	B-5	B-5		ο ά				9-8	9-8	98	B-6	B-7	B-7	B-7	B-7					5 <u>-</u>		5	202	33		C.3	S	<u>63</u>	C.3	65	C-5	C-5	C-5		9 0	9 9 0	9 0	9 5

Table D-2_Merged Analytical Validated Data

FUSRAP Maywood Superfund Sile Contract Number DACW41-99-D-9001 Soil Screening Level (SSL) Technical Memorandum

Table D-2 Thallium SPLP Results

Appendix D Draft Rev. 00 September 2004

	Averge Leachate Concentration	(ng/L)	1.2				9			
	Collection	Date	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004	6/25/2004
	Depth of Measure	(tt bgs)	7.6-8.6	7.6-8.6	7.6-8.6	7.6-8.6	4.7-6.2	4.7-6.2	4.7-6.2	4.7-6.2
		Unit of Measure	tmg/kg	ng/L	ng/L	ng/L	mg/kg	ng/L	ng/L	T/ôn
	Result	Qualifier	Ð	∍	∍	r	n	D	n	D
ywood, NJ	Detection	Limit	1.2	2	4	4	1.2	2	4	4
erfund Site, Ma		Result	1.2	2	4	1.2	1.2	2	4	4
FUSRAP Maywood Superfund Site, Maywood, NJ		Analysis Name	Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, Total	Thallium, SPLP Leachate	Thallium, SPLP Leachate	Thallium, SPLP Leachate
		Sample Type ID	0	0	1	-	٥	0	1	1
	S&W Lab Sample	٥	12b-021760	12b-021760	12b-021793	12b-021794	12b-021811	12b-021811	12b-021812	12b-021813
		Boring	C-7	C-7	C-7	6-7	св С	C-8	C-8	C-8

Notes

ug/L = Micrograms per Liter mg/kg = Miligrams Per Kilogram Sample Type ID = 0 denotes sample was analyzed for total and SPLP metals, soil pH, TOC, moisture content and grain size analysis Sample Type ID = 1 denotes sample was analyzed for SPLP metals solely

Table D-2_Merged Analytical Validated Data

APPENDIX E DILUTION ATTENUATION FACTOR (DAF) CALCULATION SENSITIVITY ANALYSIS

This page intentionally left blank.

Sensitivity Analysis to Varying Infiltration Rate and Source Length on the Dilution Attenuation Factor (DAF)

		_		_				
Dilution Attenuation Factor (DAF) *	(unitless)	19.73	10.29		38.46	19.57	13.49	7.19
Infiltration Rate Source Length, Aquifer Thickness, (m/yr) L, (m) D, (m)	(m)	3.00	3.00		3.00	3.00	3.00	3.00
Source Length, L, (m)	(m)	20	20		10	10	30	30
Infiltration Rate (m/yr)	(m/yr)	0.18	0.363	-	0.18	0.363	0.18	0.363
Hydraulic Gradient, I, (m/m)	(ɯ/ɯ)	0.011	0.011		0.011	0.011	0.011	0.011
Hydraulic Conductivity, K (m/yr)	(m/yr)	2043	2043		2043	2043	2043	2043

Soil Screening level Technical Memorandum

Notes:

EPA Default Infiltration Rate = 0.18 m/yr Infiltration Rate Based on NJ Recharge Calculation = 0.363 m/yr (see attachment)

Ground-Water-Recharge Calculation Window V4-0

You may only change the entries in light blue below.

For land use, soil, and either municipality or HUC14, point to that cell to activate the pull down pick list. Then specify the appropriate entry.

Enter the lot size (in acres) if desired. This is not mandatory.

The estimated ground-water recharge for that combination of input

parameters is automatically calculated.

See the Users Guide worksheet for more information.

Parameter	Entry		
Land Use	1 - 2 acre	lots	
Soil	Sandy An	d Silty Land	
How to Specify Location	🖲 Mur	idepaility O Huc	14
Municipality	Bergen C	o., Maywood Boro.	
Lot Size	11.0	acres	
Basin Factor	1.0	calibration factor	
Estimated	rate	14.3	inches/year
ground-water recharge	volume	4,264,532	gallons/year on this lot
Notes:	Method doe	sn't apply to wetlands, open water	and hydric soil.
		· · · · ·	

APPENDIX F NJDEP SPLP-IGWSRS DRAFT PROCEDURE

This page intentionally left blank.

FILE No. 871 05/11 '04 13:06 ID:STONE&WEBSTER MAYWOOD

2012266660

108783.05050000

State of New Jersey Department of Environmental Protection

Bradley M. Campbell Commissioner

James E. McGreevey Governor

May 5, 2004

Allen Roos, Project Manager U.S. Army Corps of Engineers 100 West Hunter Ave. Maywood, NJ 07607

RE: Soil Screening Level Work Plan, Revision 0 Maywood Chemical Superfund/FUSRAP Site Maywood Borough, Bergen County

Dear Mr. Roos:

The New Jersey Department of Environmental Protection (NJDEP) is in receipt of the Soil Screening Level Work Plan, Revision 0 dated January 2004 and received January 28, 2004.

In the Work Plan, USACE proposes to calculate soil screening levels for selected metal contaminants of concern using the methodology described in the Soil Screening Guidance (USEPA 1996). USACE proposes to develop site-specific soil screening levels based upon the calculated dilution attenuation factor (DAF), total metal concentrations in soil and USEPA's Synthetic Precipitation Leaching Procedure (SPLP) metal results.

Upon review, NJDEP finds that USACE's proposal is generally acceptable. However, in addition to following the Soil Screening Guidance, USACE must to follow NJDEP's Draft Procedure for using SPLP results to develop Impact to Ground Water Site-Specific Remediation Standards. A copy of the Draft Procedure is attached for your convenience. Specific comments are discussed below.

Section 5.0 - Data Evaluation

- I. It is stated that a DAF will be calculated using site-specific information. NJDEP has developed a generic DAF, but allows for modifications under certain conditions. Please provide NJDEP with the data that will be used to calculate the DAF as soon as possible to ensure that the data is sufficient and acceptable.
- 2. It is stated that triplicate SPLP sample data will be averaged for each sample. NJDEP does not allow averaging where results vary greatly.
- 3. USACE proposes to use regression analysis to back-calculate soil screening levels. Although regression analysis is allowed, NJDEP requires that at least half of the points used in the calculation lie at or above the midpoint of the range of total soil

Maywood Soil Screening Level WP

. ..

concentrations and that the Target Groundwater Concentrations (TGC) lie within the range of measured leachate concentrations.

4. Please note that the TGC equals the DAF times the health based New Jersey Ground Water Quality Criteria (identified in Table 1 of N.J.A.C. 7:9-6).

If you have any questions regarding this letter, please do not hesitate to contact me at (609) 633-1494.

Sincerely,

onna l'agffique

Donna L. Gaffigan, Case Manager Bureau of Case Management

Enclosure

Steven Byrnes, BEERA C: Swati Toppin, BEERA Greg Rapp, BGWPA Angela Carpenter, USEPA

2

2012266660

Using the SPLP test to develop an alternative number-

The Synthetic Precipitation Leaching Procedure (SPLP, USEPA Method 1312) can be used to determine how much of the contaminant will actually leach from the soll. The conditions of the test are more realistic than the TCLP in that they mimic leachate during acid rain conditions. Since actual contaminated soil from the site is used, the numbers generated using this approach are indeed site specific.

Sampling procedures and numbers required for SPLP.

Discrete samples must be collected for SPLP tests. At least one sample must be taken from each area of concern in question, or if there is only one area of concern, a minimum of 3 samples. Each sample must be analyzed for the contaminants on the site. The samples must be appropriately chosen, such that they represent the highest concentrations of the chemicals for which no further action is proposed. If the soil type varies widely over the site, the results from the samples leading to the most conservative impact to groundwater number must be chosen unless a satisfactory explanation is given.

Since the calculation of a site specific Impact to Ground Water criterion involves knowing the total concentration of the soil sample, it may be time and resource saving to collect soil samples, split them and to analyze one split for SPLP and another for total concentration (of contaminant).

Currently, the SPLP procedure is not recommended for volatile organic compounds.

The sample results must pass all applicable QA/QC. A lab certified for the SPLP method must be used. In particular, leachate minimum detection limits must be below the <u>health based</u> Groundwater Quality Standard (GWQS) for the contaminant of concern.

Using SPLP Results.

The results from the SPLP test may be used in one of two ways:

a). Concentrations of the contaminant in the leachate may be compared to the target groundwater concentration (TGC) for that contaminant, which is the GWQC x DAF. (The GWQC is the health based criterion). A generic DAF may be used. If leachate concentrations are below the TGC, then the total concentration of the contaminant in that sample is acceptable as an impact to groundwater number.

b). If the leachate concentrations are greater than the TGC, then the results may be used to calculate Impact to Ground Water criteria.

Calculation of sample-specific remediation standards from SPLP results

When SPLP results from different samples give differing acceptable cleanup criteria the following guidance may be followed:

For each sample that yields a leachate concentration that is above the MDL, calculate a sample-specific IGWSRS using the following equation:

$$IGWSRS = C_{gw} \left\{ \left[\frac{(C_{\tau}M_{s} - C_{t}V_{t})/M_{s}}{C_{t}} \right] + \frac{\theta_{w} + \theta_{a}H'}{\rho_{b}} \right\} DAF$$

where C_T is the total concentration of the contaminant in soil (µg/gm), M_S is the total weight of the soil sample (gm), C_L is the concentration of contaminant in the leachate (µg/ml), V_L is the volume of the leachate (ml), θ_w is the volume fraction of water in the original soil sample (v/v, assume generic value of 0.23 unless site-specific data indicates otherwise), θ_a is the volume fraction of air in the original water sample (v/v, assume generic value of 0.18 unless site-specific data indicates otherwise), H is the dimensionless Henry's law constant for the contaminant of interest, ρ_0 is the dry bulk density of the soil (1.5 gm/ml), DAF is the dilution-attenuation factor (default = 11), C_{gw} is the health based ground water criteria for the contaminant (µg/ml), not the PQL, and IGWSRS is the soil remediation standard for the soil sample (µg/gm).

Average calculated results

An averaging procedure may be used to calculate a site-specific remediation standard. This procedure requires a minimum of 3 SPLP sample results with leachate concentrations above the MDL. Average all of the sample-specific remediation standards determined above. The averaged result is an acceptable IGWSRS, unless the sample-specific results vary by more than an order of magnitude, which indicates heterogeneous soil conditions. In that case, they may not be averaged. Proceed to the next step.

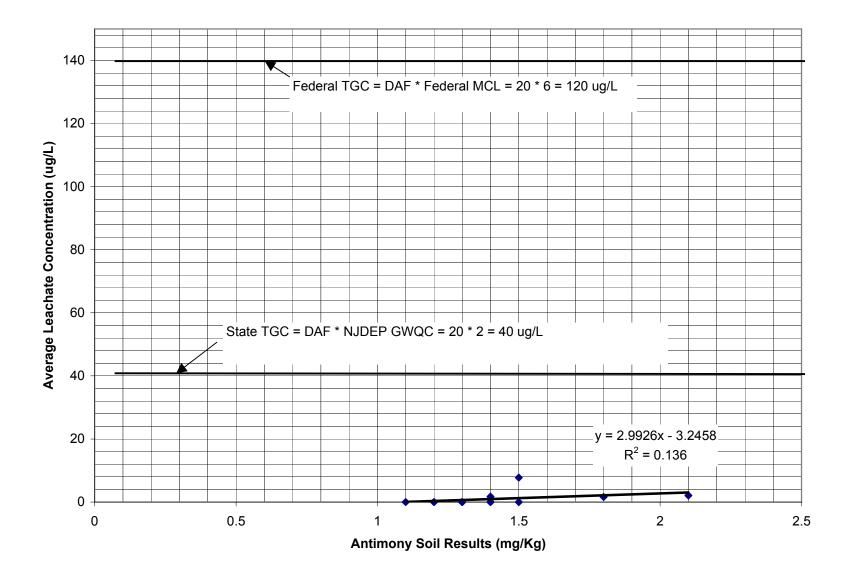
Procedure when SPLP results vary by more than an order of magnitude.

Identify a concentration level in the soil below which all leachate concentrations are at or below the TGC. This concentration may be used as an IGWSRS.

The example results below illustrate this approach.

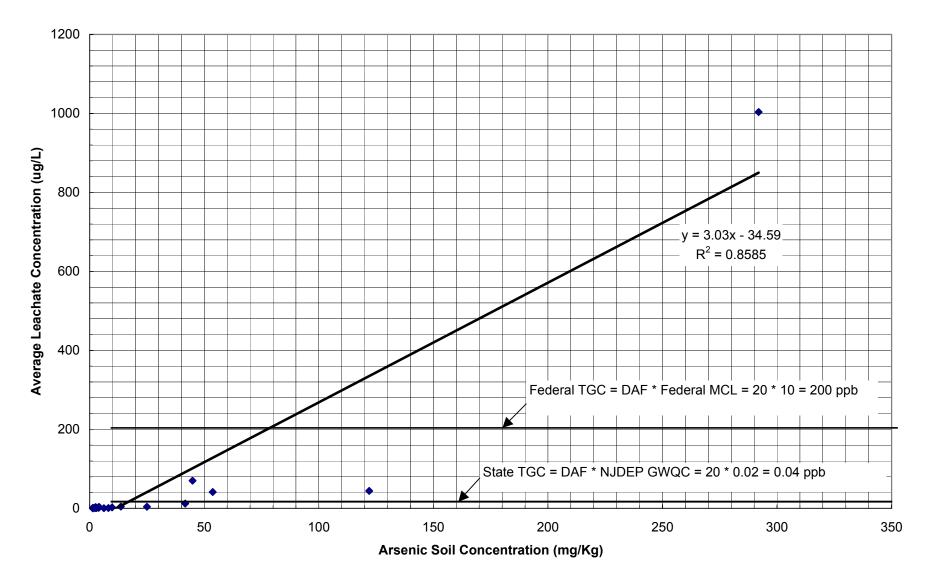
· · ..

Soil Concentration (ppm)	Leachate Concentration (ppm)
5	2
10	3
30	7
50	4
75	17
100	12

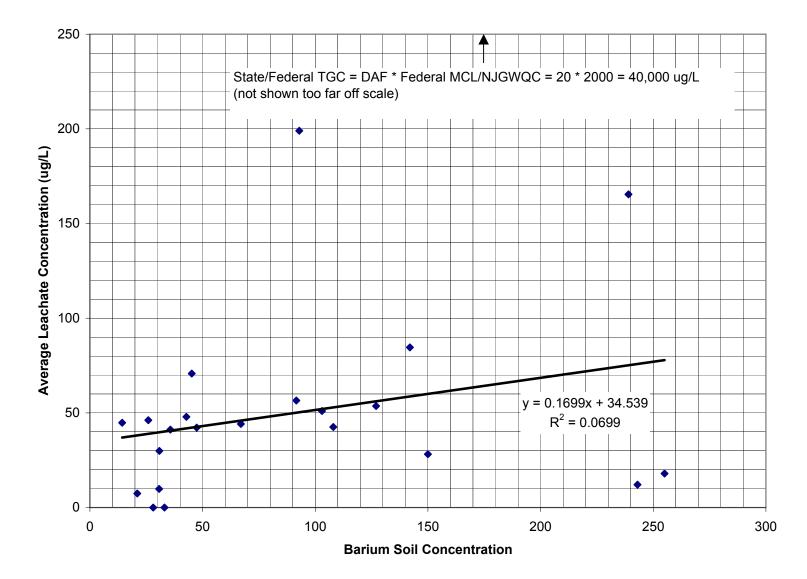

In the above example, if the Target Ground water Concentration is 5 ppm, an acceptable IGWSRS would be 10 ppm. Even though the 50 ppm sample yields acceptable results, the 30 ppm sample does not.

APPENDIX G SPLP CHEMICAL PLOTS

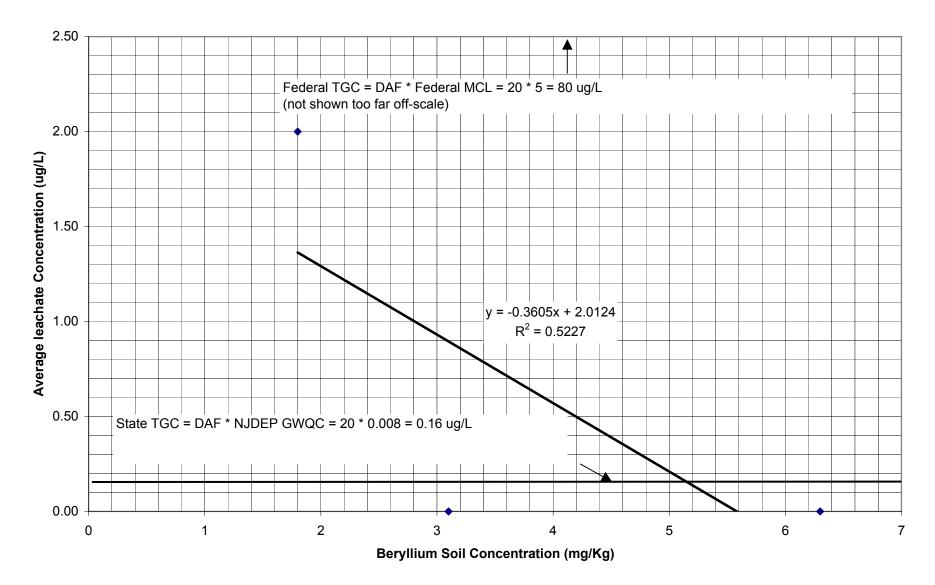
This page intentionally left blank.


FUSRAP MAYWOOD SUPERFUND SITE

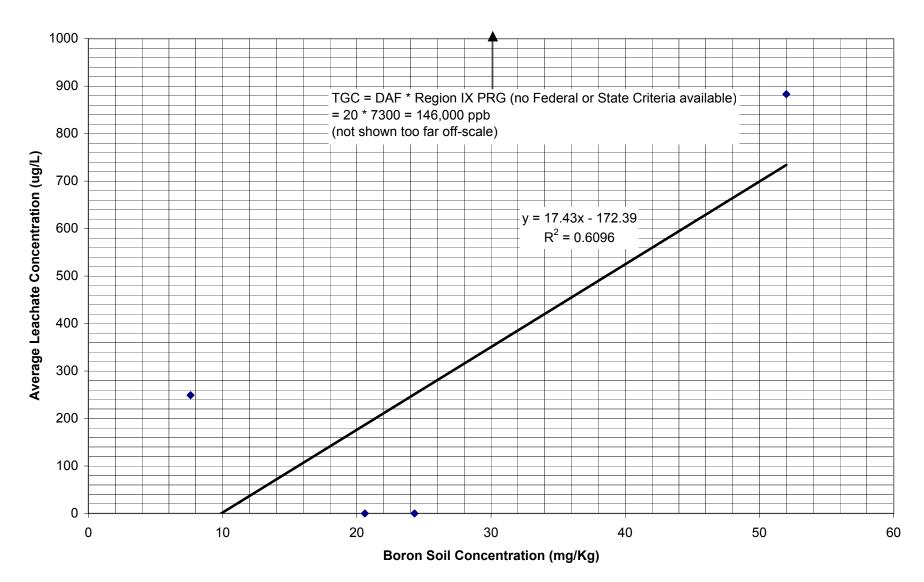
SPLP Results for Antimony


FUSRAP MAYWOOD SUPERFUND SITE

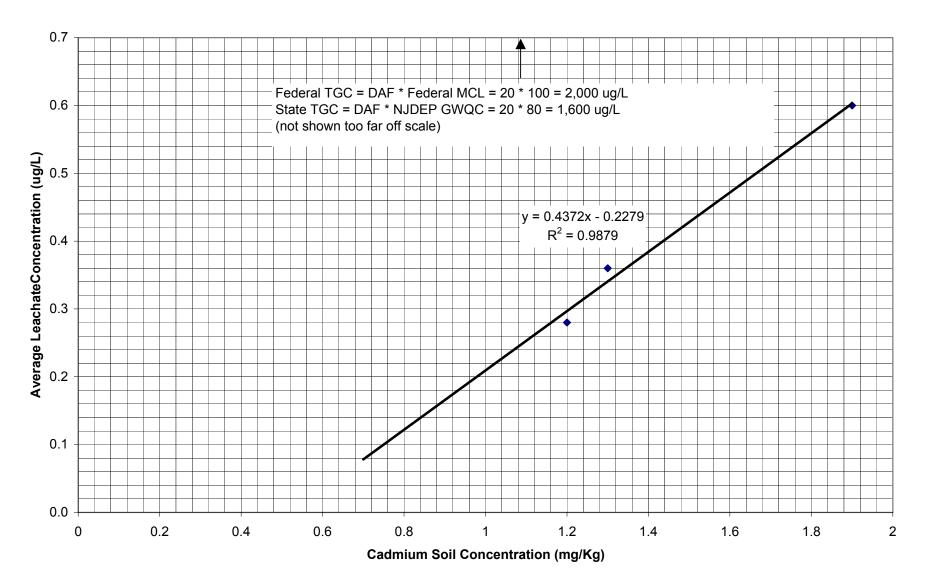
SPLP Results for Arsenic

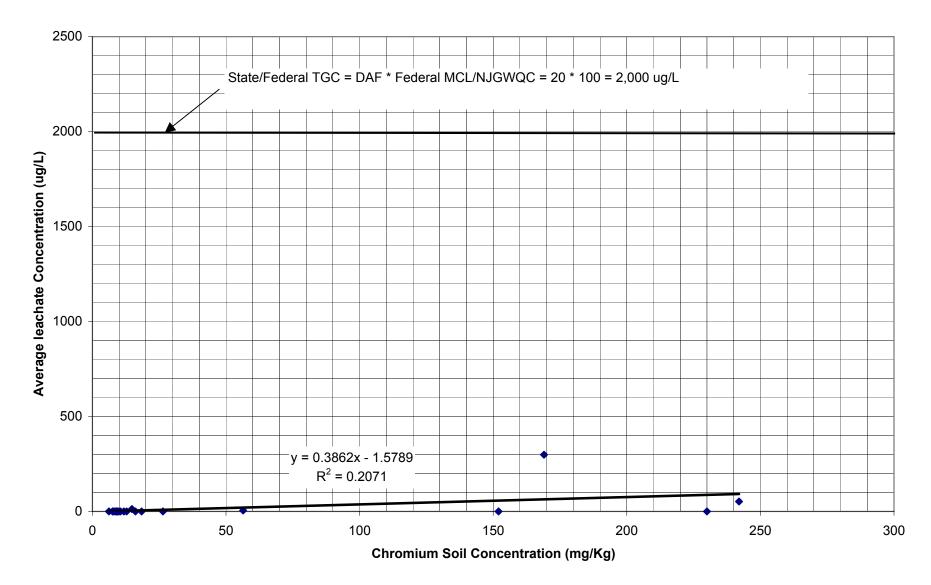

FUSRAP MAYWOOD SUPERFUND SITE

SPLP Results for Barium

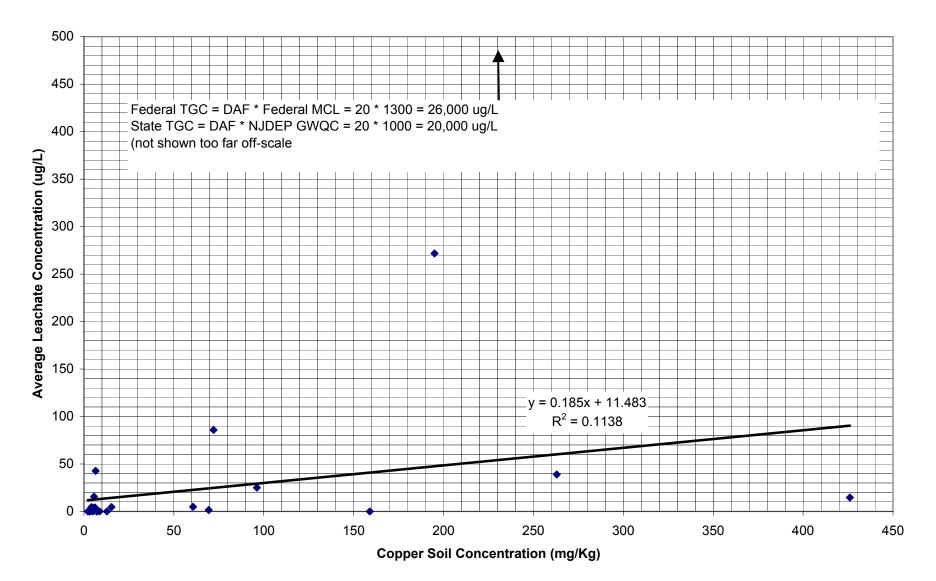

FUSRAP MAYWOOD SUPERFUND SITE

SPLP Results for Beryllium

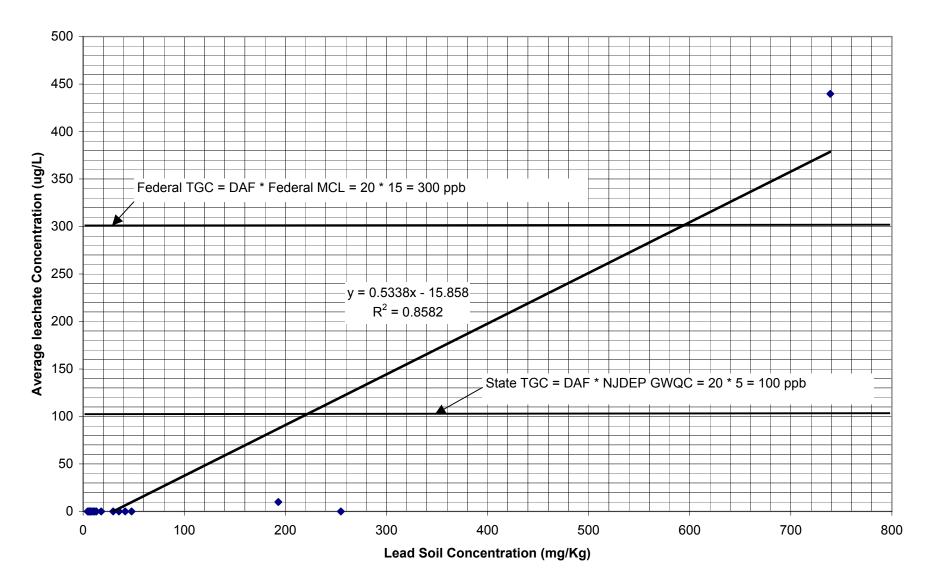

FUSRAP MAYWOOD SUPERFUND SITE


FUSRAP MAYWOOD SUPERFUND SITE

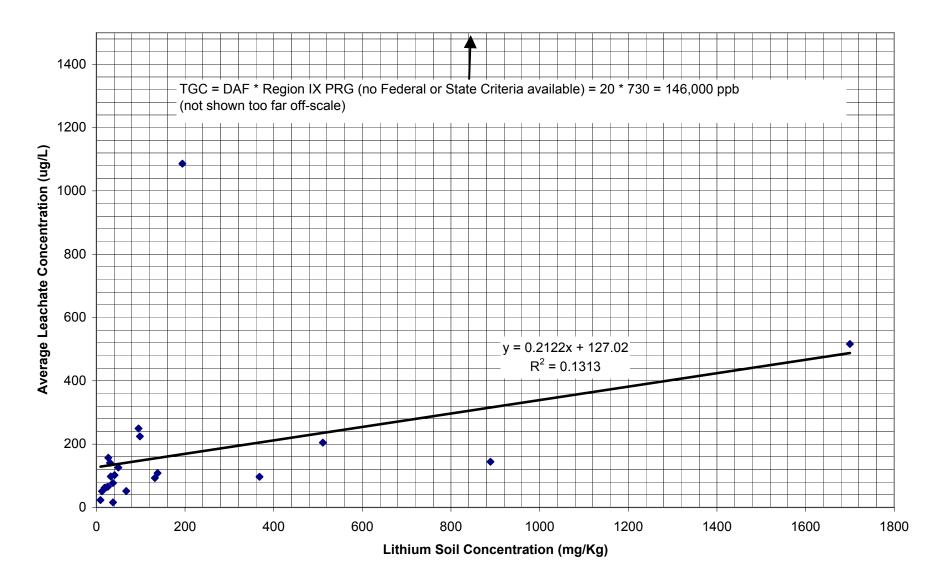
SPLP Results for Cadmium

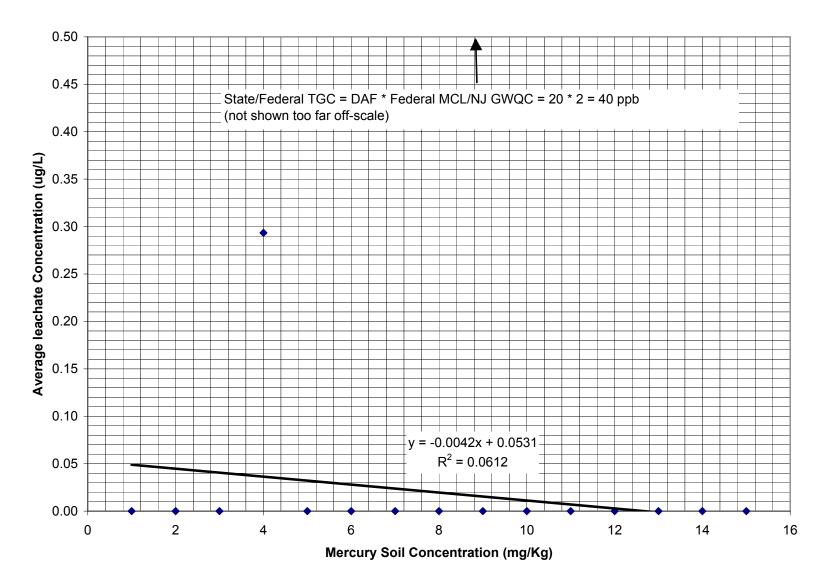

FUSRAP MAYWOOD SUPERFUND SITE

SPLP Results for Chromium

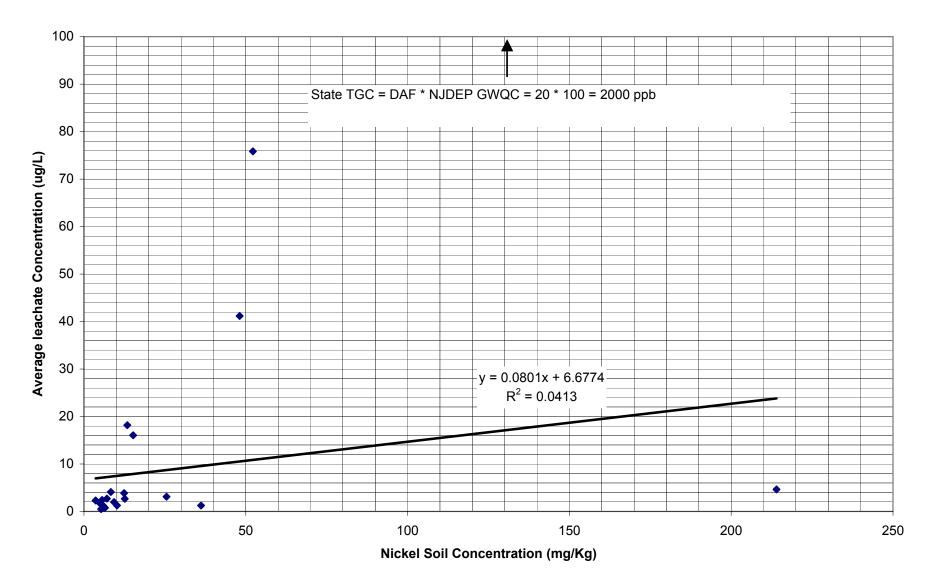

FUSRAP MAYWOOD SUPERFUND SITE

SPLP Results for Copper

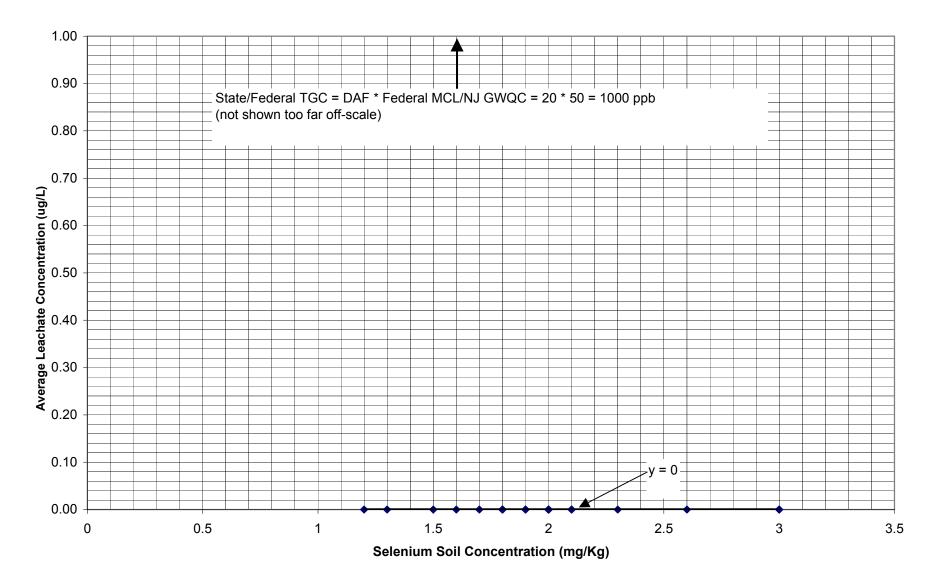

FUSRAP MAYWOOD SUPERFUND SITE


FUSRAP MAYWOOD SUPERFUND SITE

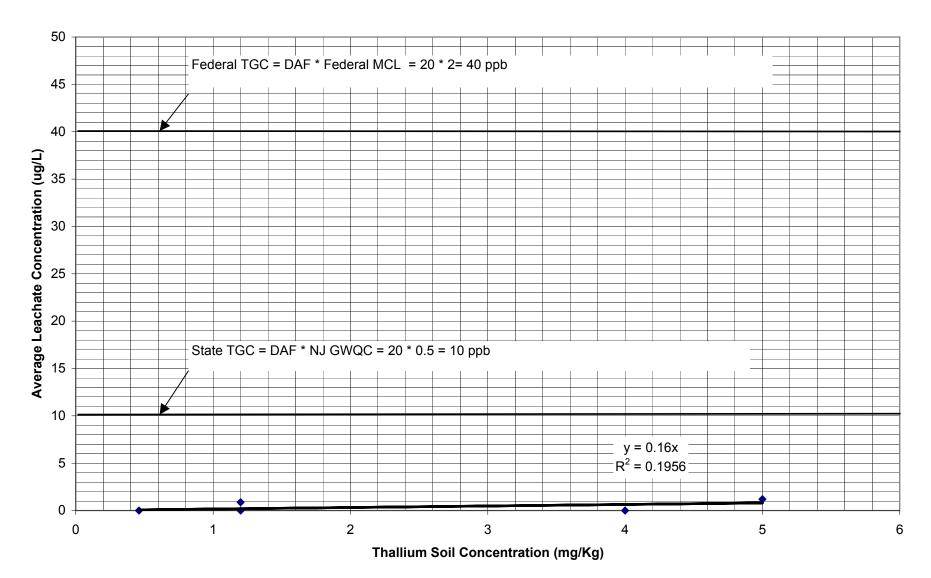
SPLP Results for Lithium


FUSRAP MAYWOOD SUPERFUND SITE

SPLP Results for Mercury


FUSRAP MAYWOOD SUPERFUND SITE

SPLP Results for Nickel


FUSRAP MAYWOOD SUPERFUND SITE

SPLP Results for Selenium

FUSRAP MAYWOOD SUPERFUND SITE

SPLP Results for Thallium

APPENDIX H SSL WORK PLAN AND RESPONSES TO USEPA AND NJDEP COMMENTS

This page intentionally left blank.

Responses to USEPA Comments on the Draft SSL Work Plan

Comment 1:

Section 3.0, 1st paragraph: This paragraph states, "Noting that some metals may be specific to one former pond..." This information is presented as the basis for collecting SPLP samples from each of the three ponds. However, the second paragraph of Section 5.0 states that "site data will be evaluated as one data set, since the samples are close together and the native soil type is common to all areas." This is inconsistent with the statement in Section 3.0. By combining the SPLP results from all three lagoons into one data set, the results may be biased low. If one specific pond contains high concentrations of leachable metals, this information will be lost by diluting the result in a combined data set. The results from each pond should be evaluated separately so that any potential leachability from a specific pond can be determined.

Response 1:

SSLs will be determined by using all of the data. Additional data points will further define the range of metals concentrations in the soils, rather than dilute or low bias the data set. As noted in Section 5.0, the data set should be fairly consistent since the soil samples will be collected from the native soil horizon, and the samples are located in close proximity.

As noted in the WP, the location of six (6) to seven (7) samples in each basin was intended to provide the minimum required data if specific metal concentrations are limited to one Former Retention Pond area. In the cited scenario, the pond specific data will define the range of metal concentrations in soil for use in determining the SSL.

Comment 2:

An area of concern (AOC 4) near Burial Pit 3 was identified in the June 2003 Groundwater RI Report. This AOC, centered around OBMW10, had elevated levels of arsenic, total radium and gross alpha. Therefore, soils in this area should also be sampled and included in the SSL evaluation.

Response 2:

It is proposed to develop one SSL for each COC on the MISS, not separate, basin specific SSLs for each COC. Elevated concentrations of arsenic in fill/native soils are reported in Former Retention Ponds A and C, and to a lesser degree, in Former Burial Pit 3. The fill in each basin is underlain by native soils. NRC Burial Pit 3 is covered by an active process building (Stepan Bldg. 3) on the Stepan Company Property, and cannot be

sampled by geoprobe. The arsenic and radium impacted fill is probably limited to Burial Pit 3, and leaching of these materials into groundwater has resulted in the exceedances detected in downgradient well OBMW-10. The USACE does not propose additional sampling at NRC Burial Pit 3.

Comment 3:

In areas where excavation of radiological impacted soils will leave residual fill, samples should be collected in the fill rather than in the native soils since the fill likely contains higher concentrations of metals.

Response 3:

Site specific compound SSLs are being prepared to determine the soil (impact to GW) compound cleanup standard. As noted in response #2, it is proposed to develop one SSL for each COC on the MISS, not a number of basin or soil media specific site SSLs. Soils on the MISS will be excavated to meet the compound SSL, thereby removing all "leachable" groundwater source material. Development of SSLs and sampling is focused on the native soils for the following reasons: (1) most, if not all, of the MISS Former Pond material/fill will probably be removed during excavation of radiological *and* metals impacted soils, leaving native soils/sediment in place; (2) the vertical and lateral limits of metals contamination will be determined in native soils below and outside the former Retention Pond source areas. Accordingly, the metal SSLs should be derived for this soil media; and (3) the properties of the native soils should be fairly consistent on the MISS. Sampling of compounds in native soils/subsoils should therefore yield the most representative SSL values for the MISS, and adjacent properties.

Comment 4:

Please clarify in Section 4.0 on page 2 that the targeted two-foot interval from the four foot core will be homogenized and sampled.

Response 4:

The appropriate text will be revised in Section 4.0 to include the following: "Soil samples collected from the targeted two feet interval will be homogenized in a decontaminated stainless steel bowl, and transferred to the appropriate sample bottles."

Comment 5:

Lithium and arsenic groundwater plumes are centered around monitoring well MISS-2A, which is located just outside Former Retention Pond A (Basin A), yet no soil samples are proposed in this location. The Work Plan should be modified to include at least one soil sample in this area.

Response 5:

Soil samples were located within/adjacent the basins to obtain a distribution of soil concentrations in order to define the compound isotherm. Other proposed sample locations have higher reported soil arsenic and lithium concentrations than the requested location adjacent MISS -2A in/adjacent Former Retention Pond A.

As requested, a soil sample will be collected adjacent well MISS 2A. The Work Plan will be revised to reflect the addition of a sample (to adjacent MISS 2A) in Former Retention Pond A.

Draft Responses to NJDEP Comments on the SSL Work Plan

Comment 1:

It is stated that a DAF will be calculated using site-specific information. NJDEP has developed a generic DAF, but allows for modification under certain conditions. Please provide NJDEP with the data that will be used to calculate the DAF as soon as possible to ensure that the data is sufficient and acceptable.

Response 1:

A DAF of 20 was calculated for the MISS source area based upon site specific permeability, groundwater gradient, aquifer thickness and source area data. The site specific DAF was calculated using Equations 11 and 12 from the USEPA Soil Screening Guidance, 1996.

Equation 11: Derivation of Di	lution Factor
dilution factor = 1 +	Kid IL
Parameter/Definition (units)	Default
dilution factor (unitless)	20 (0.5-acre source)
K/aquifer hydraulic conductivity (m/yr)	
i/hydraulic gradlent (m/m) i/infiltration rate (m/yr)	
d/mixing zone depth (m) L/source length parallel to ground water flow (m)	

Equation 12: Estimation of Mixing Zone De	pth
d = (0.0112 L ²) ^{0.5} + d _a {1 - exp[(-LI)/(Kid _a)]}	
Parameter/Definition (units)	
d/mixing zone depth (m) L/source length parallel to ground water flow (m) I/infiltration rate (m/yr) K/aquifer hydraulic conductivity (m/yr) i/hydraulic gradient (m/m) da/aquifer thickness (m)	

The site specific DAF of 20 is based upon the following parameters:

Hydraulic Conductivity, K = 2043 m/yr (18.35 ft/day); Geometric Mean of Overburden (See Draft GWRI Tbl. 3-9) Hydraulic Gradient (across basins) i = 0.011 m/m; Mixing Zone Depth, d = 3 m (10 ft), average aquifer thickness Infiltration Rate, I = 0.18 m/yr (7.0 in/yr); EPA Default Infiltration Rate Source Length, L = 20 m (65 ft); variable

The source length of 20m (65 feet) was conservatively estimated from historical soil sampling data. Most historical metals soil sampling data does not show elevated concentrations, and those exceedances are typically isolated. Follow on soil sampling in impacted areas shows that metal concentrations vary dramatically over short distances, and that "source areas" are limited in extent. Impacted soil areas appear to be small (25 feet length), and others may extend 50 feet along flow (North side of Former Retention Pond A).

Comment 2:

It is stated that triplicate SPLP sample data will be averaged for each sample. NJDEP does not allow averaging where results vary greatly.

Response 2:

Significant variation of the SPLP (triplicate) sample data is not expected since soil samples were thoroughly homogenized in the field. The variability of the SPLP triplicate data will be evaluated and addressed in the SSL Sampling Report.

Comment 3:

USACE proposes to use regression analysis to back-calculate soil screening levels. Although regression analysis is allowed, NJDEP requires that at least half of the points used in the calculation lie at or above the midpoint of the range of total soil concentrations and that the Target Groundwater Concentration lie within the range of measured leachate concentrations.

Response 3:

SSL sampling locations were selected using historical soil sampling data, and focused on the most heavily impacted soil areas. Three additional borings are located in impacted areas of former Retention Ponds A and C to provide additional (impacted soil/SPLP metals) data. Although sampling is biased toward impacted soils, the range and distribution of bulk sample metal/SPLP leachate concentrations cannot be reasonably predicted from historical data. Due to the relatively large number of samples, there should be sufficient bulk soil/leachate data to define the range of concentrations in soil and associated SPLP values for each COC.

WP NJDEP RTC, Rev0 August 26, 2004

It is noted that the vast majority of samples (historical data) collected within the MISS retention ponds do not show individual metal soil exceedances, and further, data shows that impacted soil concentrations within the former retention ponds vary dramatically over short horizontal and vertical distances. This illustrates the potential difficulty in obtaining heavily impacted soil samples for each COC, and suggests that the bulk of soil metal concentrations may be lower than the "midpoint of the range of total soil concentrations". To address this concern, three additional soil samples were collected in mapped areas of contamination to potentially provide "highly impacted" bulk soil data.

SSLs will be calculated using both regression analysis and the NJDEP draft procedures:

NJDEP, 2004, SPLP Impact to Groundwater Site Specific Remediation Standards (IGWSRS) Draft Procedure, Letter from Ms. Donna L. Gaffigan, Case Manager to Mr. Allen Roos, Project Manager USACE, May 5, 2004.

Comment 4:

Please note that the TGC equals the DAF times the health based New Jersey Groundwater Quality Criteria (identified in Table 1 of N.J.A.C. 7:9-6).

Response 4:

The individual metal TGCs will be calculated using both the (1) applicable NJDEP Ground Water Quality Standard (GWQS)/USEPA MCL, and (2) NJDEP GWQC, if lower than the GWQS.

SOIL SCREENING LEVEL (SSL) WORK PLAN

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT No. DACW41-99-D-9001 TASK ORDER 00001 WAD 05, WBS 17

Submitted to:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Submitted by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

> April 2004 Revision 1

Issued			Date:	
to:			<u> </u>	
Copy No.	Controlled	Uncontrolled		

SOIL SCREENING LEVEL (SSL) WORK PLAN

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. DACW41-99-D-9001 TASK ORDER 00001 WAD 05, WBS 17

Submitted to:

Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10278 Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Submitted by:

Shaw Environmental, Inc. 100 West Hunter Avenue Maywood, New Jersey 07607

April 2004

Reviewed / Approved by:	Kevin F. Donnelly, P.E. Project Environmental Engineer / Task Manager	Date:	
Reviewed / Approved by:	Robert DeMott, P.G. Project Hydrogeologist	Date:	

1.0 Introduction

The USACE has completed the *Draft Groundwater Remedial Investigation* (GWRI), and *Draft RI Addendum* (to be submitted), and proposes to develop site-specific soil screening levels (SSLs) for the protection of groundwater on the FMSS. The NJDEP has not developed impact to groundwater soil cleanup criteria (IGWSCC) for inorganic constituents; and therefore, SSLs need to be developed using site-specific chemical and physical parameters. The metals selected for evaluation were detected in site groundwater at concentrations above the Federal/State Maximum Contaminant Level (MCL), or the lower of the New Jersey Groundwater Quality Criteria (GWQC) or New Jersey Practical Quantitation Limit (PQL). The metals of concern include arsenic, barium, beryllium, boron, cadmium, chromium (total), lead, lithium, and thallium. Isolated exceedances of the NJDEP residential direct soil contact criteria (RDSCC) for antimony, copper, and mercury were also detected on the MISS, and will be included in the SSL evaluation.

The USACE proposes to calculate one SSL for each selected metal COCs using the methodology described in the *Soil Screening Guidance* (USEPA 1996). SSLs will be determined for each COC using the USEPA Synthetic Precipitation Leaching Procedure (SPLP). The scope of work includes the collection of 18 soil samples on the MISS, and analysis for Target Analyte List (TAL) metals plus lithium and boron, and leachable TAL metals including lithium/boron via SPLP. Additionally, other soil parameters such as total organic carbon, soil pH, grain size distribution and moisture content will be analyzed. The site-specific SSLs will be determined for each COC based upon the calculated dilution attenuation factor (DAF), total metals concentrations (in soils) and SPLP metal results. The field program, lab analysis/validation, data analysis, and report preparation will take approximately 145 days to complete from Work Plan approval. Results of the field, lab and data evaluation would be presented in a Technical Memorandum.

The SSL Work Plan is submitted as an Addendum to the *Groundwater Remedial Investigation Work Plan* (USACE 2000), and incorporates the Geoprobe field sample collection and analysis preparation procedures outlined in that document.

2.0 Background

Soil sampling is proposed in the northern and western portions of the MISS, including Former Retention Ponds A, B & C (study area). The study area is underlain by fill and native soil/subsoil overburden, which overlies shale and sandstone bedrock of the Passaic Formation. The overburden has an average thickness of about 20 feet, and ranges from 15 feet in the western portions of Pond C to greater than 25 feet in Pond B. The upper portion of overburden is comprised of fill, which is laterally continuous across the MISS. Fill deposits are thickest in the former retention ponds, and reach a maximum 10+ feet thickness in parts of Pond C. Fill is generally comprised of a tan to black sand, with thick sequences of coal ash and process sludge found in the former retention ponds. Fill is underlain on the MISS by a redbrown fine to coarse-grained soil and sand, which is of glacial-fluvial origin. These are termed "native soils/subsoils" in the text and overly the water table, and siltstone and shale bedrock on the MISS. The native soils are readily distinguished from overlying fill by their color, texture and other characteristics.

Excavation and disposal of radiologically impacted soils within the MISS is proposed as part of the OU1 remediation in the *Feasibility Study* and *Proposed Plan* (USACE 2002c, 2002d). The proposed excavation limits for the study area are shown in Figure 1. It is proposed to sample the soil interval below the proposed excavation limit to determine the metal concentrations in native soil, and the corresponding SPLP leachable metal concentrations. Soils on the MISS will also be excavated to meet the negotiated compound SSLs, thereby removing all potential groundwater source material. The excavation would be backfilled with clean fill, and returned to grade.

Groundwater data was evaluated from 2001 and 2002 to determine the lower (vadose zone) limit of soil sampling. In 2002, the average elevation of groundwater in the Study Area ranged from 51.13 to 44.17 feet MSL. Water table elevations varied seasonally, fluctuating from 2.40 to 6.50 feet in overburden wells measured quarterly on the MISS (USACE 2003b). A comparison of the July 2001 and other 2002 water table elevation maps show that the water table lies several feet or more below the base of excavation in the study area. This data suggests that residual soils can be sampled above the water table in the study area. Water table contours within the vicinity of the basins are presented in Figure 1, and were obtained from the July 2001 synoptic water level gauging round. MISS groundwater elevation data for 2001, 2002 and 2003 are presented in Appendix A along with a well location map.

3.0 Sampling Rationale and Methodology

A total of 19 soil samples will be collected in and adjacent to former Retention Ponds A, B, and C, all located on the MISS. Metal specific soil and leachate data will be presented in one data set to develop a compound isotherm, from which the individual metal SSLs will be extrapolated. Six (6) to seven (7) borings are proposed in/adjacent to each former pond area to ensure enough data points in case any metal(s) concentrations are limited to one pond. Sampling in each former pond area will be biased, with the collection of four to five samples in metal impacted soils, and two samples in non/less impacted areas. The proposed soil boring locations are shown in Figure 2. Soil sample locations were selected from soil (metals) data provided in the *Remedial Investigation for the Maywood Site* (DOE 1992), *Final Remedial Investigation Report – Stepan Company Property (CH2M Hill 1994), Pre-Design Assessment/Evaluation For Potential Chemical Contamination at the MISS* (USACE 2002), and *Draft GWRI Report (USACE 2003).*

Soil sampling is focused on the two feet native soil interval located immediately below the proposed OU1 excavation limit. These shallow native soils will be impacted by metals from the overlying or adjacent pond source material, and should yield the required soil and leachate sampling data. Development of SSLs and sampling is focused on the native soils for the following reasons: (1) most, if not all, of the MISS Former Pond material/fill will probably be removed during excavation of radiological *and* metals impacted soils, leaving native soils/sediment in place; (2) the vertical and lateral limits of metals contamination will be determined in native soils below and outside the former Retention Pond source areas, therefore, the metals SSLs should be derived for this soil media; and (3) the properties of the native soils are fairly consistent, and the soils are laterally continuous in the MISS and FMSS. Sampling of compounds in native soils should therefore yield the most representative SSL values for the MISS, and other FMSS properties.

Soil samples will be collected in the two (2) feet interval below the proposed excavation limit, or in the top two (2) feet of native soil at locations where fill is encountered at the proposed sample interval. Although the proposed sample intervals are located above historical groundwater levels, seasonal high groundwater levels may be encountered at selected locations during sampling. If groundwater is encountered within the proposed sample interval, the sample will be collected from the two feet soil interval above groundwater, regardless of soil type. If a fill sample is collected above the groundwater table, a second native soil sample will also be collected below the water table. A summary of proposed soil sample depths for each boring is provided in Table 1.

4.0 Sample Collection and Analysis

All sample locations will be staked in the field, and identified using the alphanumeric sample numbers provided in Figure 2. A geophysical utility survey will be conducted at all proposed boring locations to identify subsurface pipes and obstructions, and borings will be relocated as needed. Alternative boring locations will be cleared in each pond area for use if primary borings cannot be sampled due to shallow groundwater or other conditions. Soil samples will be collected via the direct push sampling method using a truck mounted Model 5400 or track mounted Model 54DT Geoprobe. All borings will be

continuously logged in the field using the Burmister classification. Samples will be collected in four feet cores, within PVC/polyethylene terephthalate (PET) liners. If there is insufficient soil recovery for analysis, another boring will be advanced adjacent the first location, and the soil sample will be collected at the prescribed interval. Soil samples collected from the targeted two feet interval will be homogenized in a decontaminated stainless steel bowl, and transferred to the appropriate sample bottles. All sample locations will be recorded in the field using a Trimble Model PRO XRS differential backpack GPS, which is accurate to +/- 50 cm.

Soil samples will be analyzed for TAL metals + Li/Boron, SPLP (aqueous TAL metals + Li/Boron), total organic carbon (TOC), soil pH, moisture, grain size analysis, both mechanical and hydrometer testing. As recommended in the Soil Screening Guidance (USEPA 1996), each soil sample subjected to the SPLP will be analyzed in triplicate. A summary of the proposed soil analyses, and methods are shown in Table 2. Quality assurance/quality control (QA/QC) sampling will include collection and analysis of rinseate blanks, duplicates and USACE splits for TAL metals + Li/Boron. Duplicate and USACE split samples will not be run for SPLP TAL metals + Li/Boron since they are run in triplicate. Duplicate and USACE split samples will not be run for SPLP TAL metals + Li/Boron since they are run in triplicate. Laboratory precision will be evaluated from the SPLP triplicate analyses, whereas, method accuracy will be evaluated from the laboratory control sample and matrix spike results. All sample results will be validated in accordance with the CDQMP.

5.0 Data Evaluation

In accordance with the methodology in the Users Guide, a dilution attenuation factor will be calculated for the MISS based upon the aquifer hydraulic conductivity, hydraulic gradient, groundwater recharge rate, aquifer thickness and source area (in ft^2). The sensitivity of the dilution factor to variations of each parameter will be evaluated.

The triplicate SPLP metals data will be averaged (mean) for each sample. Site sample data will be evaluated as one data set, since the sample locations are close together and the native soil type is common to all sample areas. The SPLP results will be divided by the dilution attenuation factor to approximate the metals concentration in groundwater. The derived groundwater concentrations will be plotted (on the y axis) against the corresponding soil metal concentrations (X-axis), and a line or curve will be fitted through the plotted points. Individual plots will be generated for each COC, and the specific metal groundwater cleanup standard will be marked on the Y-axis. The SSL is derived from the plot, and represents the extrapolated soil concentration at the groundwater cleanup standard.

A technical memorandum will be prepared summarizing the results of the field sampling, lab analysis and validation, and data evaluation. The memo shall include all boring logs, laboratory data packages, and data/calculations supporting the SSL evaluation.

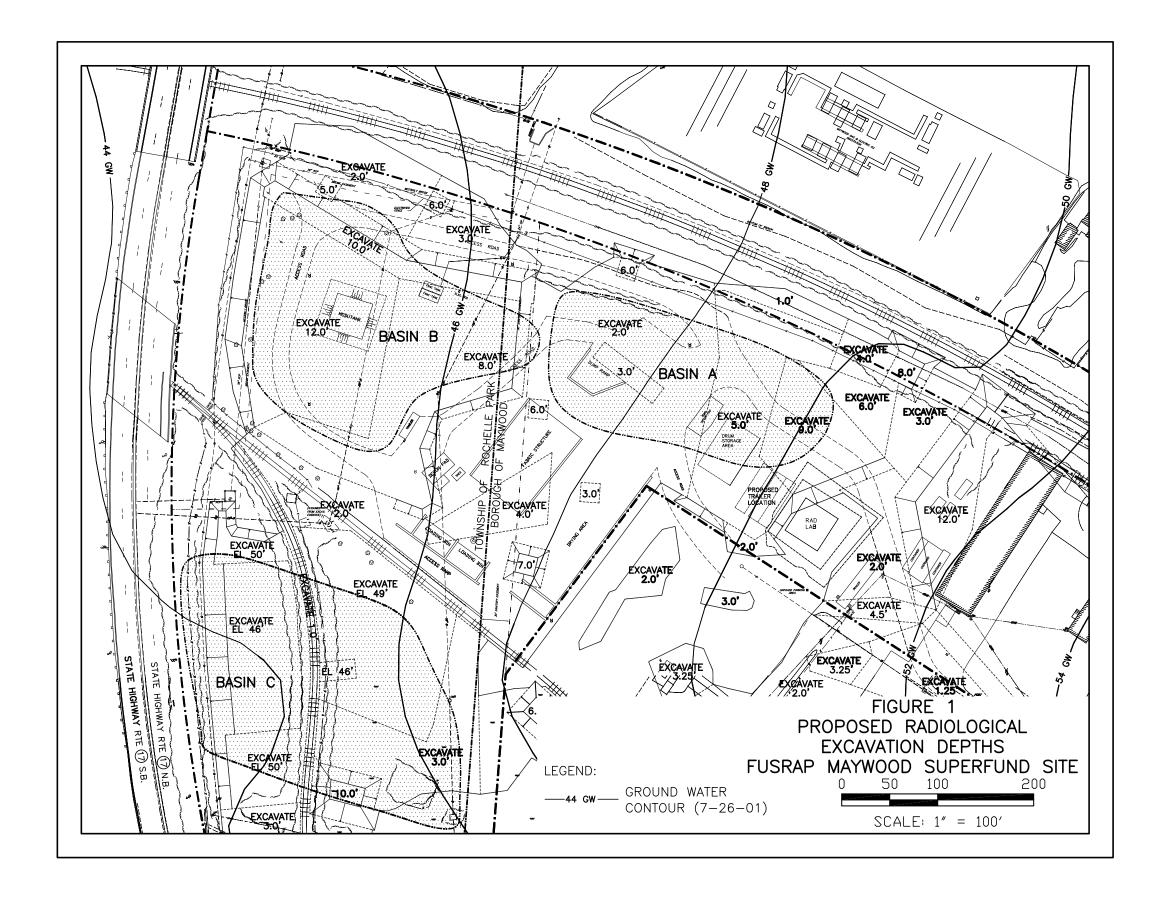
6.0 Schedule

Mobilization, fieldwork and Draft Report Preparation can be completed in 145 calendar days from regulator approval of the SSL Work Plan. The expected duration of individual tasks are provided as follows:

- Subcontractor bid/procurement, mobilization and field sampling 40 days
- Lab Analysis and data validation 45 days
- Prepare Draft SSL and submit to USEPA/NJDEP 60 days

TABLE 1 MAYWOOD SSL SAMPLING PLAN

	Sample Interval	(red poo) (1) 9 -11	6-8	24	5-7	2-4	5-7	4-6	13 - 15	2 - 4	8 -10	13 - 15	14 - 16	8 - 10	11 - 13	6.5 - 8.5	6-8	3 -5	5-7	11 - 13
	Sample Interval (Feet	52 - 50	51 - 49	56 - 54	58 - 56	58 - 56	56 - 54	56.5 54.5	48 - 46	54 - 52	51 - 49	48 - 46	48 - 46	51 - 49	46 - 44	49.5 - 47.5	49 - 47	52 - 50	49 - 47	46 - 44
Excavation Limit	Elevation (Feet MSL)	52	51	56	58	58	56	56.5	48	54	51	48	48	51	46	49.5	49	52	49	46
	Boring Surface	61 61	57	58	63	60	61	60.5	61	56	59	61	62	59	57	56	55	55	54	57
	Boring ID	A-1	A-2	A-3	A-4	A-5	A-6	A-7	B-1	B-2	B-3	B-4	B-5	B-6		C-2	င- ၁	C-4	C-5	с-е С


Legend:

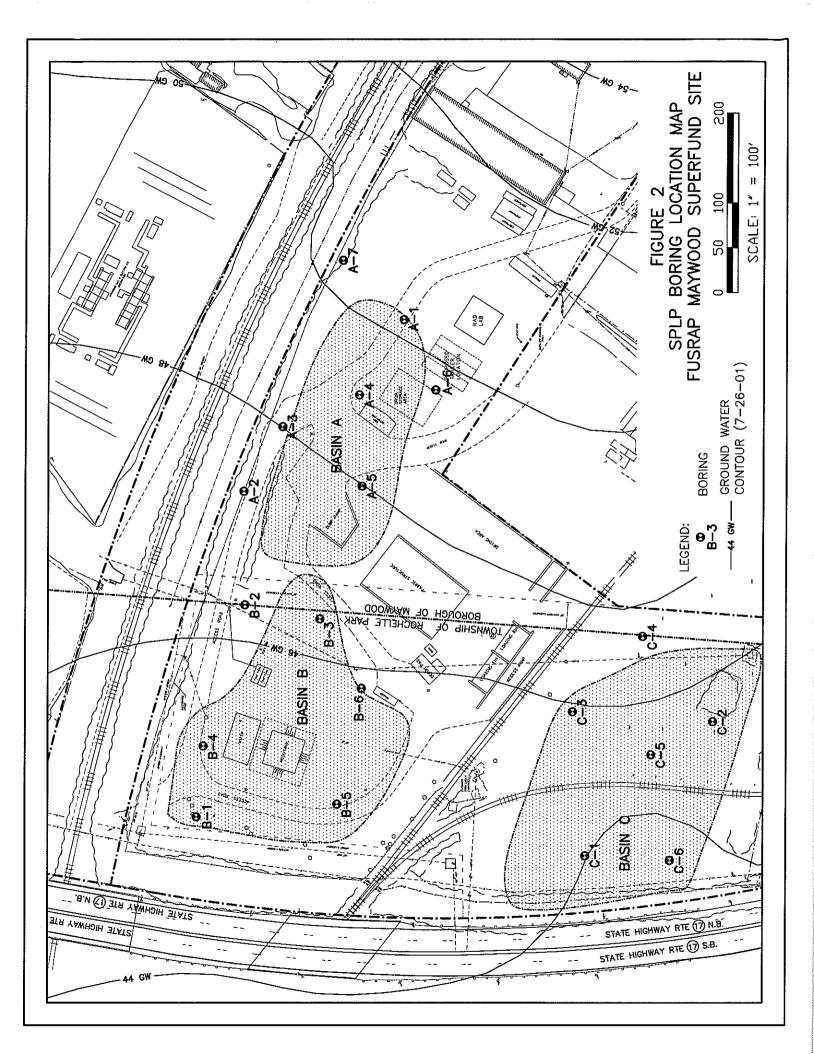
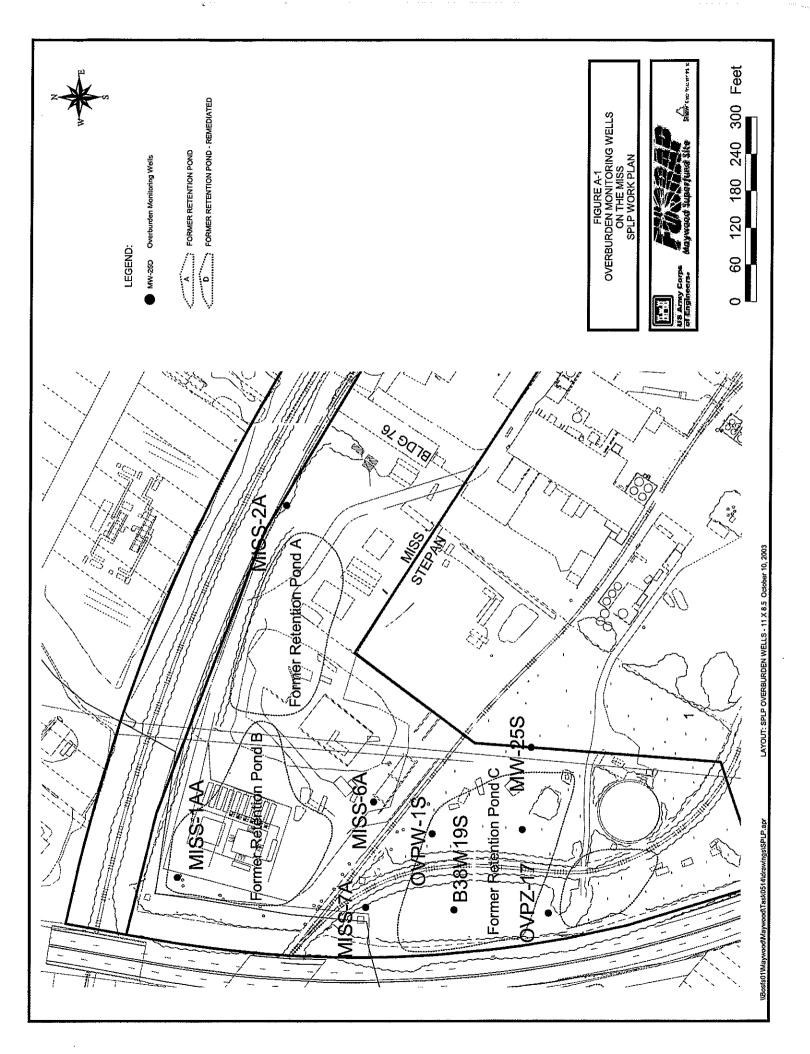

(1) Sample will be collected at the listed interval, or top of native soil, whichever is greater. NA - Not Applicable not within excavation SPLP Samples

TABLE 2 ANALYTICAL METHODS AND SAMPLE NUMBERS

Sample Item	Media	Method	Field Samples	Field Samples Rinsate Blanks Duplicates	Duplicates	USACE Splits	Comments
TAL Metals + Li/Boron	Soil	SW-846 Method 6010B/7471/7470 (mercury (aq.))	18	5 (aqueous)	2	2	
SPLP - TAL Metals + Li/Boron	Soil	1312/SW-846 Method 6010B/7471	18	NA	NA	Υ Ν	SPLP is run in triplicate. No duplicate QA/QC sample is proposed.
Soil pH	Soil	SW-846 Method 9045C	18	NA	2	NA	
Total Organic Carbon	Soil	Lloyd Kahn Method	18	NA	2	AN	
Soil Moisture	Soil	SM-2540B	18	NA	2	NA	
Grain Size Analysis - Mechanical & Hydrometer	Soil	D422-63	18	NA	NA	NA	

Sampling Summary.xls

APPENDIX A


SYNOPTIC WATER LEVEL DATA FOR MISS OVERBURDEN MONITORING WELLS 2001 TO 2003 AND FIGURE DEPICTING MISS OVERBURDEN WELL LOCATIONS

OVPZ-17	z	Z	45.05	0 Z	44.26	9N N	υŊ	Dy N	0 V	ЮN	NG
OVPW-1S	Z	īz	45.65	Ð	45.21	DQ	ŊĊ	ŊĊ	ØN	9N NG	ЭN
MW-25S	z	Z	z	ĩ	46.43	DQ	g	ŊĊ	92	ŊĊ	DN
MISS07A	48.48	46.87	46.37	46.19	46.82	47.20	47.35	46.40	48.80	49.13	46.55
MISSOBA	48.76	47.90	45.24	43.69	45.49	46.08	48.46	45.61	49.39	49.26	46.86
MISS05A	47.41	47.43	44.26	43.18	43.41	43.67	46.39	43.65	47.85	48.35	45.65
MISS02A	53.98	53.40	50.47	49.43	49.78	50.53	52.27	49.07	52.67	54.92	52.33
MISS01AA	47.60	47.89	44.76	43.92	44.09	44.68	47.93	44.40	48.80	48.30	47.60
B38W19S	45.24	45.08	43.33	42.58	42.79	43.11	44.77	42.86	45.94	46.34	44.31
Measurement Date	02/07/2001	04/30/2001	07/26/2001	11/21/2001	12/20/2001	03/07/2002	05/07/2002	08/26/2002	11/20/2002	03/12/2003	05/23/2003

TABLE A-1 WATER LEVEL ELEVATIONS FOR OVERBURDEN MONITORING WELLS LOCATED WITHIN THE MISS 2001 - 2003

·

NI - NOT INSTALLED AS OF THAT GAUGING ROUND NG - NOT GAUGED NGVD - NATIONAL GEODETIC VERTICAL DATUM, 1929 Tb1_water level query - elv_Crosstab.xts

