M-065 06398201

Formerly Utilized Sites Remedial Action Program (FUSRAP)

# ADMINISTRATIVE RECORD

for Maywood, New Jersey



U.S. Department of Energy

0489-0613.1

## 063982

M-065

## Bechtel National, Inc. Systems Engineers - Constructors



Mail Address: P.O. Box 350. Oak Ridge, TN 37831-0350 Jeles: 3785873

SEP 2 9 1989

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin Technical Services Division

Subject:

Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of Radiological Characterization Report for seventeen residential properties, four municipal properties, and seven commercial properties in Lodi and Maywood, New Jersey Code: 7315/WBS: 138

#### Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerate manner. His efforts have allowed us to publish these reports or schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,


R. C. Robertson

R. C. Robertson Project Manager - FUSRAP

CONCURRENCE

RCR:wfs:1756x Enclosure: As stated

cc: J. D. Berger, ORAU (w/e)
N. J. Beskid, ANL (w/e)



Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722

# RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 2 BRANCA COURT

Lodi, New Jersey

September 1989



Bechtel National, Inc.

## RADIOLOGICAL CHARACTERIZATION REPORT

FOR THE RESIDENTIAL PROPERTY AT

2 BRANCA COURT

LODI, NEW JERSEY

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring, D. J. Whiting, and W. F. Stanley

Bechtel National, Inc.

Oak Ridge, Tennessee

Bechtel Job No. 14501

## TABLE OF CONTENTS

|                                 |        |                                            | Page       |  |
|---------------------------------|--------|--------------------------------------------|------------|--|
| List                            | : of F | igures                                     | iv         |  |
| List of Tables<br>Abbreviations |        |                                            |            |  |
| Abbr                            | eviat  | ions                                       | v          |  |
| 1.0                             | Intr   | oduction and Summary                       | 1          |  |
|                                 | 1.1    | Introduction                               | 1          |  |
|                                 | 1.2    | Purpose                                    | 3          |  |
|                                 | 1.3    | Summary                                    | 3          |  |
|                                 | 1.4    | Conclusions                                | 5          |  |
| 2.0                             | Site   | e History                                  | 7          |  |
|                                 | 2.1    | Previous Radiological Surveys              | ` <b>8</b> |  |
|                                 | 2.2    | Remedial Action Guidelines                 | 9          |  |
| 3.0 Health and Safety Plan      |        |                                            |            |  |
|                                 | 3.1    | Subcontractor Training                     | 12         |  |
|                                 | 3.2    | Safety Requirements                        | 12         |  |
| 4.0                             | Char   | acterization Procedures                    | 14         |  |
| •                               | 4.1    | Field Radiological Characterization        | 14         |  |
|                                 |        | 4.1.1 Measurements Taken and Methods Used  | 14         |  |
|                                 | ,      | 4.1.2 Sample Collection and Analysis       | 17         |  |
|                                 | 4.2    | Building Radiological Characterization     | 19         |  |
| 5.0                             | Char   | acterization Results                       | 22         |  |
|                                 | 5.1    | Field Radiological Characterization        | 22         |  |
|                                 | 5.2    | Building Radiological Characterization     | 26         |  |
| Refe                            | rence  | S                                          | 35         |  |
| Appe                            | ndix . | A - Geologic Drill Logs for 2 Branca Court | A-1        |  |

iii

LIST OF FIGURES

| <u>Figure</u> | <u>Title</u>                                                        | <u>Page</u> |
|---------------|---------------------------------------------------------------------|-------------|
| 1-1           | Location of Lodi Vicinity Properties                                | 2           |
| 1-2           | Location of 2 Branca Court                                          | 4           |
| 4-1           | Borehole Locations at 2 Branca Court                                | 16          |
| 4-2           | Surface and Subsurface Soil Sampling<br>Locations at 2 Branca Court | 18          |
| 4-3           | Gamma Exposure Rate Measurement Locations<br>at 2 Branca Court      | 21          |
| 5 <b>-1</b>   | Areas of Subsurface Contamination at<br>2 Branca Court              | 25          |

## LIST OF TABLES

| Table            | Title                                                                               | <u>Page</u> |
|------------------|-------------------------------------------------------------------------------------|-------------|
| 2-1              | Summary of Residual Contamination<br>Guidelines for the Lodi Vicinity<br>Properties | 10          |
| 5-1              | Surface and Subsurface Radionuclide<br>Concentrations in Soil for 2 Branca Court    | 28          |
| 5-2              | Downhole Gamma Logging Results for<br>2 Branca Court                                | 29          |
| 5 <del>-</del> 3 | Gamma Radiation Exposure Rates for<br>2 Branca Court                                | 34          |

## ABBREVIATIONS

| Cm              | centimeter .               |
|-----------------|----------------------------|
| $cm^2$          | square centimeter          |
| cpm             | counts per minute          |
| dpm             | disintegrations per minute |
| ft              | foot                       |
| h               | hour                       |
| in.             | inch                       |
| km <sup>2</sup> | square kilometer           |
| L.              | liter                      |
| L/min           | liters per minute          |
| m               | meter                      |
| m <sup>2</sup>  | square meter               |
| MeV             | million electron volts     |
| $\mu$ R/h       | microroentgens per hour    |
| mi              | mile                       |
| mi <sup>2</sup> | square mile                |
| min             | minute                     |
| mrad/h          | millirad per hour          |
| mrem            | millirem                   |
| mrem/yr         | millirem per year          |
| pCi/g           | picocuries per gram        |
| pCi/L           | picocuries per liter       |
| WL              | working level              |
| yd              | yard                       |
| yā <sup>3</sup> | cubic yard                 |

V

٩

#### 1.0 INTRODUCTION AND SUMMARY

This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

#### 1.1 INTRODUCTION

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

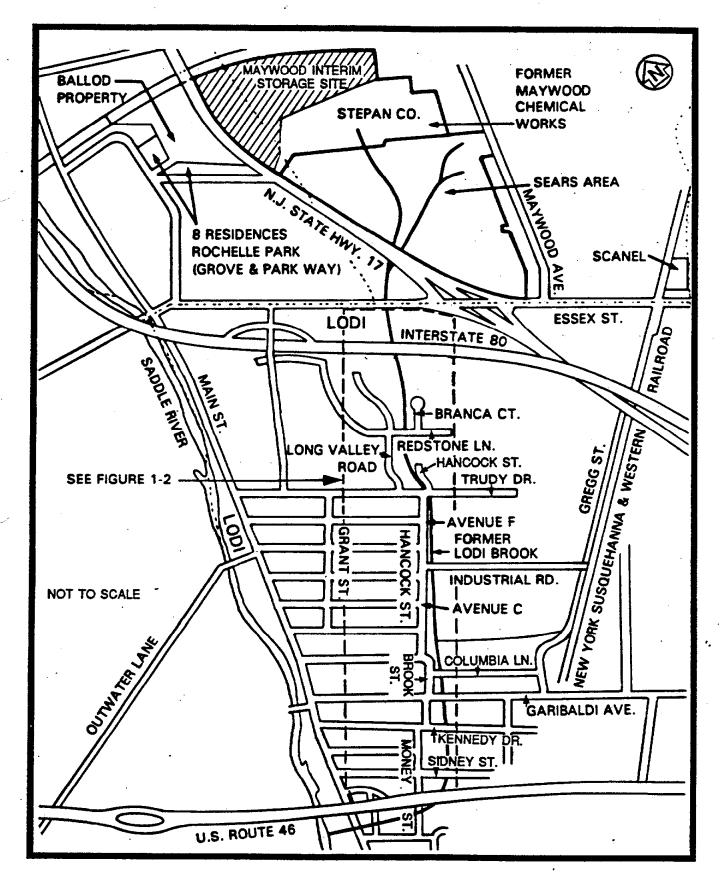



FIGURE 1-1 LOCATION OF LODI VICINITY PROPERTIES

#### 1.2 <u>PURPOSE</u>

The purpose of the 1986 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.

#### 1.3 <u>SUMMARY</u>

This report details the procedures and results of the radiological characterization of the property at 2 Branca Court (Figure 1-2) in Lodi, New Jersey, which was conducted in October and December 1986.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 2 Branca Court showed maximum concentrations of thorium-232 and radium-226 to be 2.4 and 1.1 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 7.7 pCi/g.

Subsurface soil sample concentrations ranged from 0.9 to 13.9 pCi/g for thorium-232 and from 0.6 to less than 1.5 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. The concentrations of uranium-238 in subsurface soil samples ranged from less than 4.8 to less than 9.3 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE believes that these guidelines are conservative for

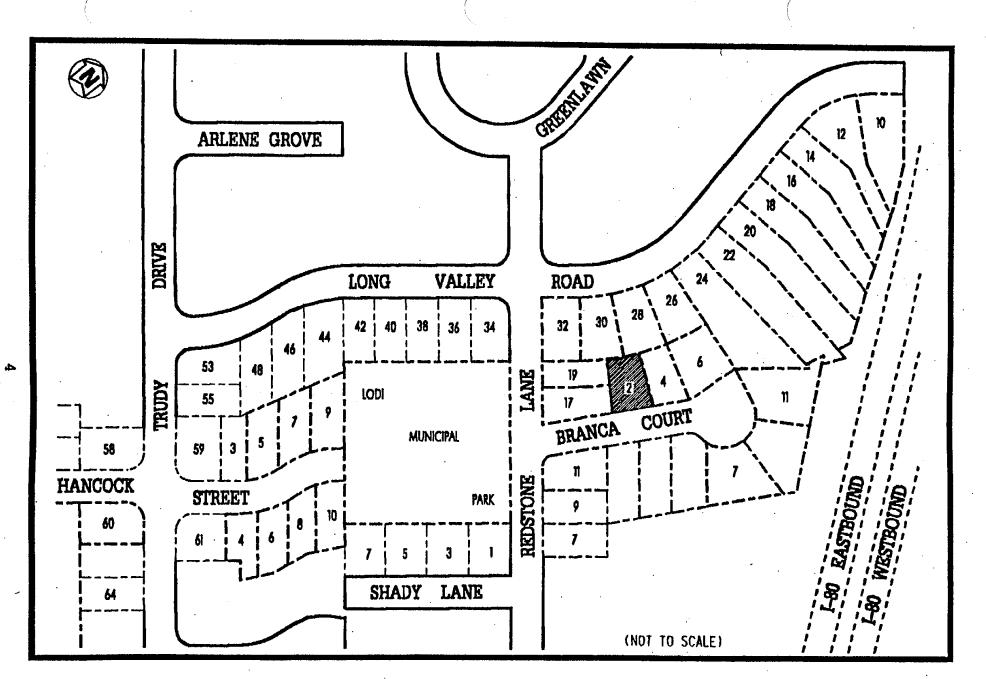



FIGURE 1-2 LOCATION OF 2 BRANCA COURT

considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property did not indicate surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 1.98 m (6.5 ft).

Exterior gamma radiation exposure rates ranged from 8 to 9  $\mu$ R/h, including background. The indoor measurement showed a rate of 4  $\mu$ R/h, including background.

The radon-222 measurement inside the residence indicated a concentration of less than 0.8 pCi/L, which is within the DOE guideline of 3.0 pCi/L.

Measurements for radon daughters were both 0.002 working level (WL), and measurements for thoron daughters ranged from less than the lower limit of detection to 0.003 WL.

All data tables for this property appear at the end of this report.

#### 1.4 CONCLUSIONS

İ١

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 2 Branca Court. This contamination is primarily subsurface contamination ranging from a depth of 1.22 m (4.0 ft) to

1.98 m (6.5 ft). In addition, the contamination appears to extend beneath the residence structure as well as into the street in front of the residence. The total affected area is estimated to be approximately 60 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

#### 2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. The company continued this work until 1956. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are

7

٠,

typically found in monazite sands, which also contain thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

#### 2.1 PREVIOUS RADIOLOGICAL SURVEYS

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

January 1981--The Nuclear Regulatory Commission (NRC) directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a 10.3-km<sup>2</sup> (4-mi<sup>2</sup>) aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984 -- In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its "scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

<u>September 1986</u>--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

#### 2.2 <u>REMEDIAL ACTION GUIDELINES</u>

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

## TABLE 2-1

## SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

#### **BASIC DOSE LIMITS**

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

#### SOIL GUIDELINES

#### Radionuclide

Soli Concentration (pCl/g) Above Background<sup>a,b,c</sup>

Radium-226 Radium-228 Thorium-230 Thorium-232 5 pCi/g when averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over any 15-cm-thick soil layer below the surface layer.

Other Radionuclides

Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

#### STRUCTURE GUIDELINES

#### Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL<sup>d</sup>. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

#### External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 µR/h.

#### Indoor/Outdoor Structure Surface Contamination

|                                                                                                                                                 | Aliowable Su           | rface Residual C<br>(dpm/100 cm | Residual Contamination <sup>e</sup> |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------|-------------------------------------|--|--|
| Radionuciide <sup>†</sup>                                                                                                                       | Average <sup>g,h</sup> | Maximum <sup>h,i</sup>          | Removable <sup>h.j</sup>            |  |  |
| Transuranics, Ra-226, Ra-228, Th-230, Th-228<br>Pa-231, Ac-227, 1-125, 1-129                                                                    | 100                    | 300                             | 20                                  |  |  |
| Th-Natural, Th-232, Sr-90, Ra-223, Ra-224<br>U-232, I-126, I-131, I-133                                                                         | 1,000                  | 3,000                           | 200                                 |  |  |
| U-Natural, U-235, U-238, and associated decay products                                                                                          | 5,000 α                | 15,000 α                        | 1,000 α                             |  |  |
| Beta-gamma emitters (radionuclides with decay<br>modes other than alpha emission or spontaneous<br>fission) except Sr-90 and others noted above | 5,000 B - y            | 15,000 B - γ                    | 1,000 B - γ                         |  |  |

## TABLE 2-1 (CONTINUED)

These guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").

<sup>b</sup>These guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m<sup>2</sup> surface area.

<sup>C</sup>Localized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m<sup>2</sup> area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.

- <sup>d</sup>A working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.
- <sup>e</sup>As used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

<sup>9</sup>Measurements of average contamination should not be averaged over more than 1 m<sup>2</sup>. For objects of less surface area, the average shall be derived for each such object.

<sup>h</sup>The average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

The maximum contamination level applies to an area of not more than 100 cm<sup>2</sup>.

<sup>1</sup>The amount of removable radioactive material per 100 cm<sup>2</sup> of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm<sup>2</sup> is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

**59-06**50.2

#### 3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

#### 3.1 <u>SUBCONTRACTOR TRAINING</u>

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

#### 3.2 SAFETY REQUIREMENTS

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

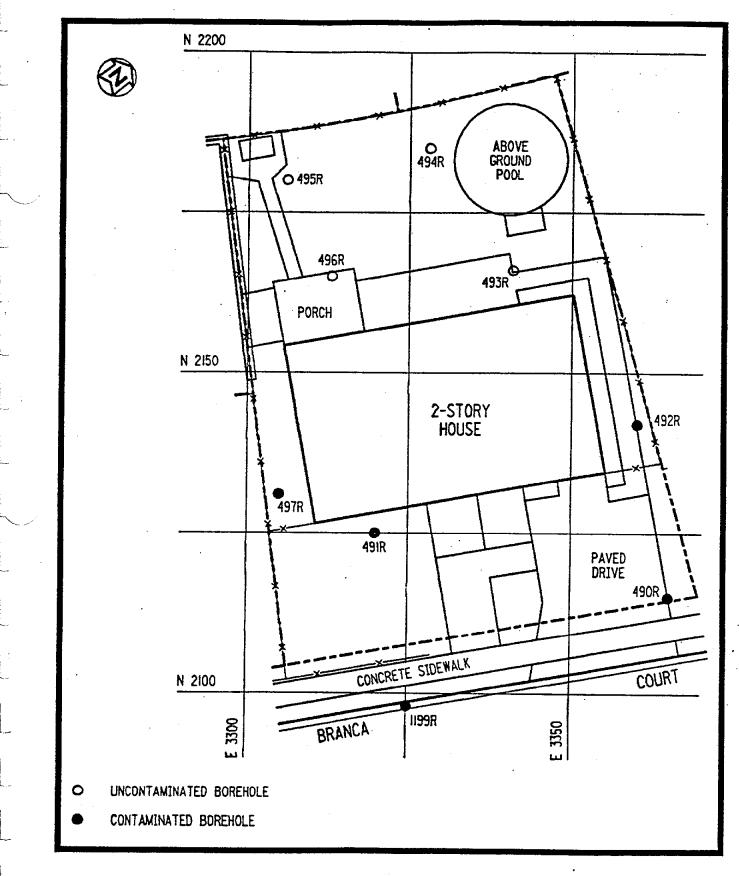
#### 4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

#### 4.1 FIELD RADIOLOGICAL CHARACTERIZATION

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this project.

#### 4.1.1 Measurements Taken and Methods Used


An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

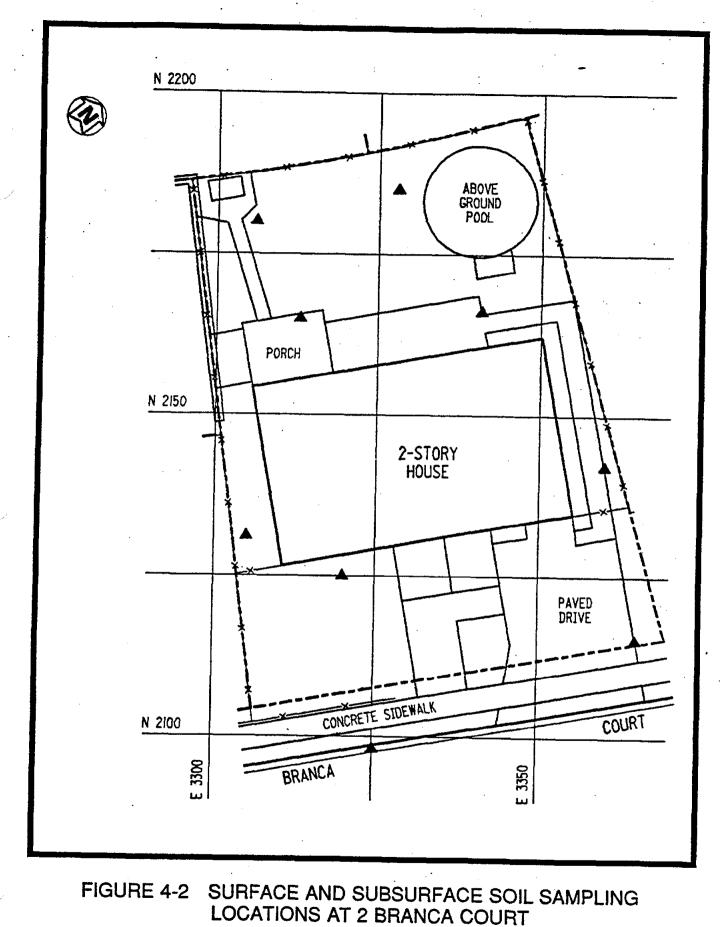
3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling nine boreholes (Figure 4-1) [using either a 7.6-cm- (3-in.-) or 15.2-cm- (6in.) diameter auger bit] and gamma logging them. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration of the contamination. The gamma-logging data were reviewed




# FIGURE 4-1 BOREHOLE LOCATIONS AT 2 BRANCA COURT

to identify trends, whether or not concentrations exceeded the guidelines.

#### 4.1.2 Sample Collection and Analysis

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and 8), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at nine locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from nine locations (Figure 4-2) using the side-wall sampling method and were analyzed to compare laboratory soil sample results to downhole gamma radiation measurements. A cup or can attached to a steel pipe or wooden stake was inserted into the borehole and used to scrape samples off the side of the borehole at a specified depth. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.



18

### 4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the residence. A radon measurement was obtained to verify the presence of contaminated material under the residence and to estimate potential occupational exposures during future remedial actions.

Indoor radon measurements were made using the Tedlar bag method. Samples were collected by pumping air into a Tedlar bag at a rate of approximately 2 L/min. The air sample was transferred directly into a scintillation cell with an interior coating of zinc sulfide and an end window for viewing the scintillations. Analysis of the sample was simplified by allowing the radon decay products to build up over time. This method allowed all the radon decay products to come into secular equilibrium with the radon. The scintillation cell was placed in contact with a photomultiplier tube, and the scintillations were counted using standard nuclear counting instrumentation.

Indoor air samples were collected to determine a WL for radon and thoron daughters. To measure radon daughters, an air sample was collected for exactly 5 min through a 0.45-micron filter at a rate of 11 L/min for a total sample volume of 55 L. Alpha particle activity on the filter paper was counted from 40 to 90 min after sampling. An alpha scintillation detector coupled to a count-rate meter or digital scaler was used. Measurements for thoron daughters were made using the same method as for radon daughter with the exception of the time between collection of the air sample and counting of the alpha particle activity. In the case of thoron daughters, the sample was allowed to age for

at least 5 h after sampling before alpha activity was counted. This elapsed time allowed radon daughters, which may have been present with the thoron daughters, to decay sufficiently so as not to interfere in calculating the WL for thoron daughters.

Exterior gamma exposure rate measurements were made at four locations throughout the property grid system and at one location inside the residence. To obtain these measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. Α conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property. Interior measurements are generally obtained with the gamma scintillation instrument rather than the PIC because of its smaller size and the desire to minimize the technician's time inside the residence.

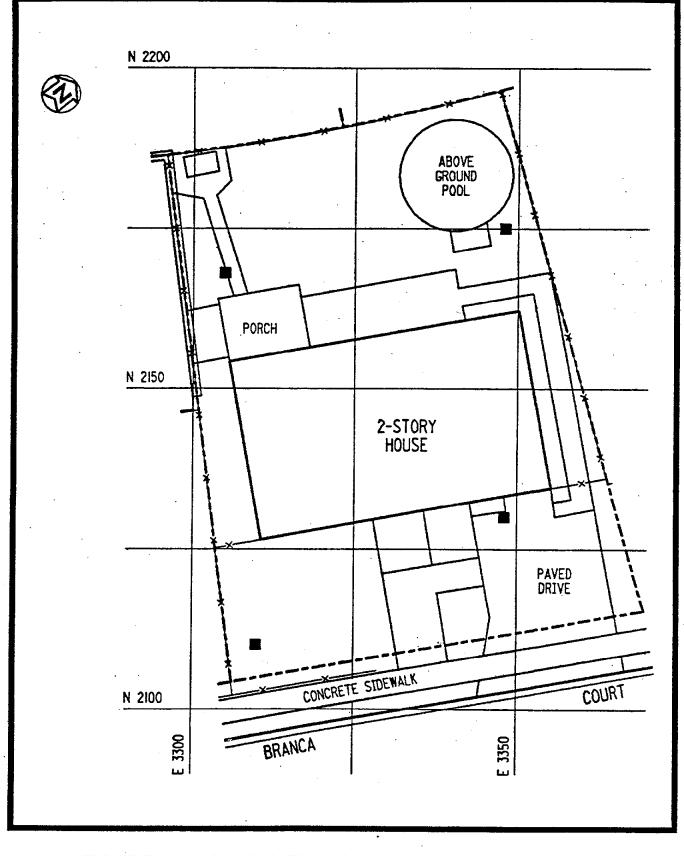



FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 2 BRANCA COURT

JKL.

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

#### 5.1 FIELD RADIOLOGICAL CHARACTERIZATION

Near-surface gamma radiation measurements on the property ranged from 3,000 cpm to approximately 5,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. No areas of surface contamination were indicated by near-surface gamma measurements.

Surface soil samples [depths from 0.0 to 15.2 cm (0.5 in.)] were taken at eight locations on the property and one location in the street immediately adjacent to the property (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from less than 2.1 to less than 7.7 pCi/g for uranium-238, from less than 0.9 to 2.4 pCi/g for thorium-232, and from 0.4 to 1.1 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 do not exceed DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of 2.4 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in concentrations that are

quantitative with the instruments and techniques used. The "less than" value represents the lower bound of the quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (+), which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.

Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE quideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower guideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its quideline level. Parameters selected for the thorium-232 analyses also provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below guidelines. However, because of the relatively low gamma photon abundance of uranium-238, many of

the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these concentrations are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 8,000 cpm to 106,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples [taken at depths from 15.2 to 30.4 cm (0.5 to 1.0 ft)] indicated uranium-238 concentrations ranging from less than 4.8 to less than 9.3 pCi/g, thorium-232 concentrations ranging from 0.9 to 13.9 pCi/g, and radium-226 concentrations ranging from 0.6 to less than 1.5 pCi/g.

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist primarily of subsurface contamination at depths ranging from 1.22 m (4.0 ft) to 1.98 m (6.5 ft). The areas of subsurface contamination are shown in Figure 5-1. The subsurface contamination appears to extend beneath the residence as well as into the street in front of the property.

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the

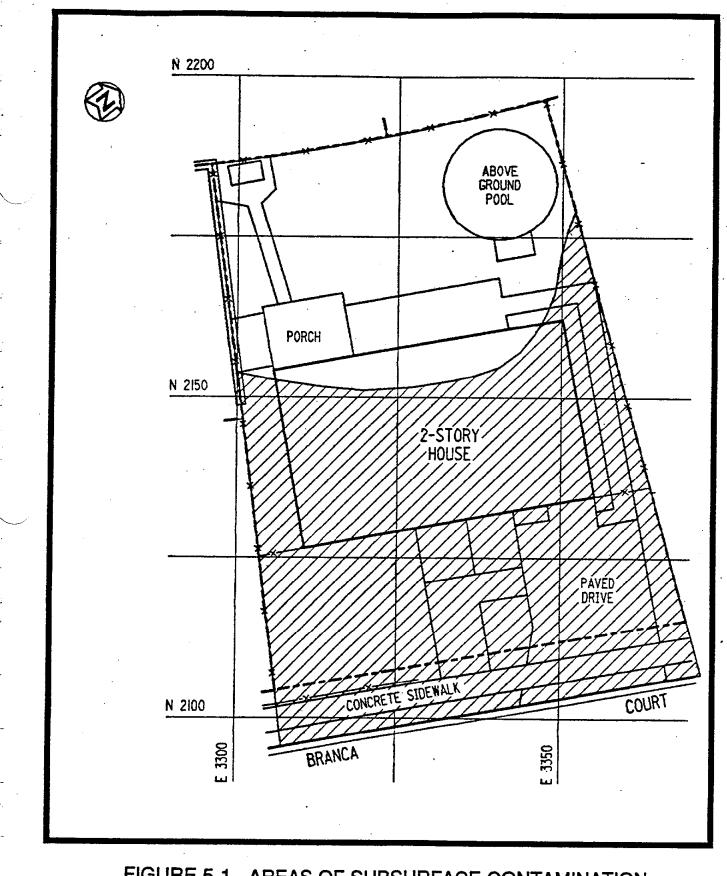



FIGURE 5-1 AREAS OF SUBSURFACE CONTAMINATION AT 2 BRANCA COURT subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain. The contamination on this property is similar to contamination found on residential properties in close proximity to this property. It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 2 Branca Court. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

### 5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

Results of an indoor radon measurement using the Tedlar bag method indicated a concentration of less than 0.8 pCi/L. This measurement was substantially less than the applicable DOE guideline of 3.0 pCi/L above background (Ref. 10).

Results of two measurements for radon daughters were both 0.002 WL. These results were substantially less than the applicable generic guideline detailed in the Code of Federal Regulations, 40 CFR 192 (Ref. 10), which states that an annual average (or equivalent) radon decay product concentration not exceed 0.02 WL.

Results of measurements for thoron daughters ranged from 0.002 to 0.003 WL. The generic guideline is more restrictive for radon-222 (radon) than for radon-220 (thoron) according to the National Council on Radiological Protection [see NCRP Report No. 50 (Ref. 11), which was used as the guideline for thoron daughter measurements].

Exterior gamma radiation exposure rate measurements ranged from 8 to 9  $\mu$ R/h, including background. The indoor exposure rate measurement was 4  $\mu$ R/h, including background. These results can be found in Table 5-3. These measurements are consistent with the average background exposure rate of 9  $\mu$ R/h (Ref 12). For comparison, the DOE guideline for indoor exposure rate is 20  $\mu$ R/h.

Based on the above information, the exposure rates for this property are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the United States and are often significantly higher than average background for this area.

## SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 2 BRANCA COURT

| <u>Coordinatesa</u> |       | Depth     | Concentration (pCi/g ± 2 sigma) |                 |                |
|---------------------|-------|-----------|---------------------------------|-----------------|----------------|
| East                | North | (ft)      | Uranium-238                     | Radium-226      | Thorium-232    |
| 3305                | 2131  | 0.0 - 0.5 | < 7.7                           | $0.9 \pm 0.3$   | $2.4 \pm 0.7$  |
| 3305                | 2131  | 0.5 - 1.0 | < 7.6                           | $0.9 \pm 0.3$   | $3.4 \pm 0.9$  |
| 3306                | 2180  | 0.0 - 0.5 | < 4.9                           | 0.8 ± 0.2       | < 2.3          |
| 3306                | 2180  | 0.5 - 1.0 | < 5.4                           | 0.6 ± 0.3       | < 2.1          |
| 3313                | 2165  | 0.0 - 0.5 | < 6.6                           | $1.1 \pm 0.3$   | < 3.0          |
| 3313                | 2165  | 0.5 - 1.0 | < 5.5                           | $0.7 \pm 0.4$   | $1.8 \pm 0.3$  |
| 3320                | 2125  | 0.0 - 0.5 | < 6.5                           | $0.6 \pm 0.4$   | $2.4 \pm 0.7$  |
| 3320                | 2125  | 0.5 - 1.0 | < 5.6                           | $0.7 \pm 0.2$   | $2.5 \pm 0.3$  |
| 3325                | 2098  | 0.5 - 1.0 | < 2.1                           | < 0.5           | < 0.9          |
| 3325                | 2098  | 1.0 - 2.0 | < 5.0                           | < 1.4           | < 1.7          |
| 3325                | 2098  | 3.0 - 4.0 | < 5.6                           | < 1.1           | < 1.7          |
| 3325                | 2098  | 4.0 - 6.0 | < 9.3                           | < 1.5           | $13.9 \pm 0.6$ |
| 3325                | 2098  | 8.0 - 9.5 | < 4.9                           | < 1.1           | < 1.6          |
| 3328                | 2185  | 0.0 - 0.5 | < 4.0                           | $0.4 \pm 0.1$   | < 1.8          |
| 3328                | 2185  | 0.5 - 1.0 | < 5.2                           | 0.8 ± 0.1       | < 1.8          |
| 3341                | 2166  | 0.0 - 0.5 | < 6.4                           | $0.9 \pm 0.2$   | $2.4 \pm 0.1$  |
| 3341                | 2166  | 0.5 - 1.0 | < 5.9                           | $1.3 \pm 0.4$   | 0.9 ± 0.7      |
| 3360                | 2142  | 0.0 - 0.5 | < 6.9                           | $0.6 \pm 0.3$   | $2.0 \pm 0.6$  |
| 3360                | 2142  | 0.5 - 1.0 | < 4.8                           | $0.8 \pm 0.004$ | $2.6 \pm 0.1$  |
| 3365                | 2115  | 0.0 - 0.5 | < 6.9                           | $0.9 \pm 0.4$   | $2.2 \pm 0.6$  |
| 3365                | 2115  | 0.5 - 1.0 | < 9.0                           | $1.2 \pm 0.4$   | 6.7 ± 1.4      |

<sup>a</sup>Sampling locations are shown in Figure 4-2.

## TABLE 5-2

## DOWNHOLE GAMMA LOGGING RESULTS

FOR 2 BRANCA COURT

| E                                                                                           | Page 1 of 5                                                        |                                                              |                                                                                                            |                                                                                                                                    |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Ē                                                                                           | <u>Coordina</u><br>Last                                            | tes <sup>a</sup><br>North                                    | Depth <sup>b</sup><br>(ft)                                                                                 | Count Rate <sup>C</sup><br>(cpm)                                                                                                   |
| E                                                                                           | Sorehole 49                                                        | 7R <sup>đ</sup>                                              |                                                                                                            |                                                                                                                                    |
| 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 305<br>305<br>305<br>305<br>305<br>305<br>305<br>305<br>305<br>305 | 2131<br>2131<br>2131<br>2131<br>2131<br>2131<br>2131<br>2131 | 0.5<br>1.0<br>1.5<br>2.0<br>2.5<br>3.0<br>3.5<br>4.0<br>4.5<br>5.0<br>5.5<br>6.0<br>6.5<br>7.0<br>7.5      | 12000<br>15000<br>16000<br>16000<br>16000<br>16000<br>17000<br>19000<br>53000<br>92000<br>91000<br>33000<br>17000<br>12000<br>9000 |
| B                                                                                           | orehole 49                                                         | 5R <sup>d</sup>                                              |                                                                                                            |                                                                                                                                    |
| 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 306<br>306<br>306<br>306<br>306<br>306<br>306<br>306<br>306<br>306 | 2180<br>2180<br>2180<br>2180<br>2180<br>2180<br>2180<br>2180 | $\begin{array}{c} 0.5\\ 1.0\\ 1.5\\ 2.0\\ 2.5\\ 3.0\\ 3.5\\ 4.0\\ 4.5\\ 5.0\\ 5.5\\ 6.0\\ 6.5 \end{array}$ | 8000<br>9000<br>12000<br>12000<br>13000<br>16000<br>20000<br>17000<br>13000<br>11000<br>11000                                      |
| B                                                                                           | orehole 49                                                         | 6Rd                                                          |                                                                                                            |                                                                                                                                    |
| 3<br>3<br>3                                                                                 | 313<br>313<br>313<br>313<br>313<br>313                             | 2165<br>2165<br>2165<br>2165<br>2165<br>2165                 | 0.5<br>1.0<br>1.5<br>2.0<br>2.5                                                                            | 8000<br>11000<br>12000<br>13000<br>14000                                                                                           |
|                                                                                             |                                                                    |                                                              |                                                                                                            |                                                                                                                                    |

# (continued)

| <u>Page 2 o</u>      | <u>f 5</u>                         |                            |                                  |
|----------------------|------------------------------------|----------------------------|----------------------------------|
| <u>Coord</u><br>East | <u>inates<sup>a</sup></u><br>North | Depth <sup>b</sup><br>(ft) | Count Rate <sup>C</sup><br>(cpm) |
| Borehole             | 496R (cont                         | inued) <sup>d</sup>        |                                  |
| 3313                 | 2165                               | 3.0                        | 14000                            |
| 3313                 | 2165                               | 3.5                        | 14000                            |
| 3313                 | 2165                               | 4.0                        | 12000                            |
| 3313                 | 2165                               | 4.5                        | 13000                            |
| 3313                 | 2165                               | 5.0                        | 16000                            |
| 3313                 | 2165                               | 5.5                        | 12000                            |
| 3313                 | 2165                               | 6.0                        | 10000                            |
| 3313                 | 2165                               | 6.5                        | 10000                            |
| 3313                 | 2165                               | 7.0                        | 9000                             |
| Borehole             | 491R <sup>d</sup>                  |                            |                                  |
| 3320                 | 2125                               | 0.5                        | 11000                            |
| 3320                 | 2125                               | 1.0                        | 10000                            |
| 3320                 | 2125                               | 1.5                        | 11000                            |
| 3320                 | 2125                               | 2.0                        | 14000                            |
| 3320                 | 2125                               | 2.5                        | 19000                            |
| 3320                 | 2125                               | 3.0                        | 21000                            |
| 3320                 | 2125                               | 3.5                        | 22000                            |
| 3320                 | 2125                               | 4.0                        | 16000                            |
| 3320                 | 2125                               | 4.5                        | 15000                            |
| 3320                 | 2125                               | 5.0                        | 22000                            |
| 3320                 | 2125                               | 5.5                        | 75000                            |
| 3320                 | 2125                               | 6.0                        | 38000                            |
| 3320                 | 2125                               | 6.5                        | 44000                            |
| 3320                 | 2125                               | 7.0                        | 16000                            |
| 3320                 | 2125                               | 7.5                        | 12000                            |
| 3320                 | 2125                               | 8.0                        | 10000                            |
| <u>Borehole</u>      | 1199R <sup>đ</sup>                 |                            | ·                                |
| 3325                 | 2098                               | 0.5                        | 11000                            |
| 3325                 | 2098                               | 1.0                        | 8000                             |
| 3325                 | 2098                               | 1.5                        | 9000                             |
| 3325                 | 2098                               | 2.0                        | 8000                             |
| 3325                 | 2098                               | 2.5                        | 8000                             |
| .3325 .              | 2098                               | 3.0                        | 12000                            |
| 3325                 | 2098                               | 3.5                        | 19000                            |
|                      |                                    |                            |                                  |

لى تى تى تەرىپىيە ا

المستحرجين

# (continued)

| Page 3 c | of 5              |                      |                         |
|----------|-------------------|----------------------|-------------------------|
|          | linatesa          | Depthb               | Count Rate <sup>C</sup> |
| East     | North             | (ft)                 | (cpm)                   |
| Borehole | 1199R (con        | tinued) <sup>d</sup> | -                       |
| 3325     | 2098              | 4.0                  | 42000                   |
| 3325     | 2098              | 4.5                  | 106000                  |
| 3325     | <b>2098</b>       | 5.0                  | 54000·                  |
| 3325     | 2098              | 5.5                  | 20000                   |
| 3325     | 2098              | 6.0                  | 13000                   |
| 3325     | 2098              | 6.5                  | 10000                   |
| 3325     | 2098              | 7.0                  | 9000                    |
| 3325     | 2098              | 7.5                  | 9000                    |
| 3325     | .2098             | 8.0                  | 10000                   |
| 3325     | 2098              | 8.5                  | 12000                   |
| 3325     | 2098              | 9.0                  | 11000                   |
| Borehole | <u>494R</u> d     |                      | . ·                     |
| 3328     | 2185              | 0.5                  | 16000                   |
| 3328     | 2185              | 1.0                  | 16000                   |
| 3328     | 2185              | 1.5                  | 18000                   |
| 3328     | 2185              | 2.0                  | 17000                   |
| 3328     | 2185              | 2.5                  | 18000                   |
| 3328     | 2185              | 3.0                  | 18000                   |
| 3328     | 2185              | 3.5                  | 28000                   |
| 332.8    | 2185              | 4.0                  | 26000                   |
| 3328     | 2185              | 4.5                  | 27000                   |
| 3328     | 2185              | 5.0                  | 20000                   |
| 3328     | 2185              | 5.5                  | 15000                   |
| 3328     | 2185              | 6.0                  | 15000                   |
| 3328     | 2185              | 6.5                  | 14000                   |
| 3328     | 2185              | 7.0                  | 14000                   |
| Borehole | 493R <sup>d</sup> |                      |                         |
| 3341     | <b>216</b> 6      | 0.5                  | 8000                    |
| 3341     | 2166              | 1.0                  | 10000                   |
| 3341     | 2166              | 1.5                  | 10000                   |
| 3341     | 2166              | 2.0                  | 12000                   |
| 3341     | 2166              | 2.5                  | 14000                   |
|          |                   |                      |                         |

Sector Sector Sector

a contra 
ł

uinininini ≁

----

WITH SHOW

٤.

(continued)

| Page 4 c             | of 5.                         |                            |                                  |
|----------------------|-------------------------------|----------------------------|----------------------------------|
| <u>Coord</u><br>East | linates <sup>a</sup><br>North | Depth <sup>b</sup><br>(ft) | Count Rate <sup>C</sup><br>(cpm) |
| Borehole             | 493R (cont                    | inued) <sup>d</sup>        |                                  |
| 3341                 | 2166                          | 3.0                        | 13000                            |
| 3341                 | 2166                          | 3.5                        | 14000                            |
| 3341                 | 2166                          | 4.0                        | 13000                            |
| 3341                 | 2166                          | 4.5                        | 15000                            |
| 3341                 | 2166                          | 5.0                        | 23000                            |
| 3341                 | 2166                          | 5.5                        | 26000                            |
| 3341                 | 2166                          | 6.0                        | 16000                            |
| 3341                 | 2166                          | 6.5                        | 12000                            |
| 3341                 | 2166                          | 7.0                        | 11000                            |
| 3341                 | 2166                          | 7.5                        | 10000                            |
| 3341                 | 2166                          | 8.0                        | 9000                             |
| Borehole             | 492R <sup>d</sup>             |                            | · ,                              |
| 3360                 | 2142                          | 0.5                        | 9000                             |
| 3360                 | 2142                          | 1.0                        | 11000                            |
| 3360                 | 2142                          | 1.5                        | 13000                            |
| 3360                 | 2142                          | 2.0                        | 12000                            |
| 3360                 | 2142                          | 2.5                        | 12000                            |
| 3360                 | 2142                          | 3.0                        | 13000                            |
| 3360                 | 2142                          | 3.5                        | 13000                            |
| 3360                 | 2142                          | 4.0                        | 13000                            |
| 3360                 | 2142                          | 4.5                        | 14000                            |
| 3360                 | 2142                          | 5.0                        | 37000                            |
| 3360                 | 2142                          | 5.5                        | 20000                            |
| 3360                 | 2142                          | 6.0                        | 18000                            |
| 3360                 | 2142                          | 6.5                        | 15000                            |
| 3360                 | 2142                          | 7.0                        | 11000                            |
| 3360                 | 2142                          | 7.5                        | 9000                             |
| <u>Borehole</u>      | 490R <sup>d</sup>             | ·                          |                                  |
| 3365                 | 2115                          | 0.5                        | 11000                            |
| 3365                 | 2115                          | 1.0                        | 14000                            |
| 3365                 | 2115                          | 1.5                        | 14000                            |
| 3365                 | 2115                          | 2.0                        | 13000                            |
| 3365                 | 2115                          | 2.5                        | 15000                            |
| 3365                 | 2115                          | 3.0                        | 15000                            |
|                      |                               |                            |                                  |

#### (continued)

Page 5 of 5

| <u>     Coord</u> ;<br>East | inates <sup>a</sup><br>North | Depth <sup>b</sup><br>(ft) | Count Rate <sup>C</sup><br>(Cpm) |
|-----------------------------|------------------------------|----------------------------|----------------------------------|
| Borehole                    | 490R (cont                   | inued)d                    |                                  |
| 3365                        | 2115                         | 3.5                        | 17000                            |
| 3365                        | 2115                         | 4.0                        | 24000                            |
| 3365                        | 2115                         | 4.5                        | 57000                            |
| 3365                        | 2115                         | 5.0                        | 77000                            |
| 3365                        | 2115                         | 5.5                        | 104000                           |
| 3365                        | 2115                         | 6.0                        | 84000                            |
| 3365                        | 2115                         | 6.5                        | 48000                            |
| 3365                        | 2115                         | 7.0                        | 24000                            |
| 3365                        | 2115                         | 7.5                        | 23000                            |
| 3365                        | 2115                         | 8.0                        | 12000                            |

<sup>a</sup>Borehole locations are shown in Figure 4-1.

<sup>b</sup>The variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

CInstrument used was 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

<sup>d</sup>Bottom of borehole collapsed.

### GAMMA RADIATION EXPOSURE RATES

### FOR 2 BRANCA COURT

| inates <sup>a</sup> | Rateb                |
|---------------------|----------------------|
| North               | (µR/h)               |
| 2168                | . 8                  |
| 2110                | 9                    |
| 2130                | 8                    |
| 2175                | 9                    |
| of Residence        | 4                    |
|                     | 2168<br>2110<br>2130 |

<sup>a</sup>Measurement locations are shown in Figure 4-3. <sup>b</sup>Measurements include background.

#### REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- 2. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.
- 3. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> Chemical, <u>Maywood</u>, <u>New Jersey</u>, November 1983.
- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area, Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- 8. Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 2 Branca Court (LJ036), Lodi,</u> <u>New Jersey</u>, ORNL/RASA-88/44, Oak Ridge, Tenn., June 1989.

- 9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.
- 10. <u>U.S. Code of Federal Regulations</u>. 40 CFR 192, "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," Washington, D.C., July 1986.
- National Council on Radiation Protection and Measurements. <u>Environmental Radiation Measurements</u>, NCRP Report No. 50, Washington, D.C., December 27, 1986.
- 12. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

## APPENDIX A GEOLOGIC DRILL LOGS FOR 2 BRANCA COURT

| L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,        | G                      | iec               | LOG                                        | IC D                    | RIL          | L LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G        | PROJEC | T        |                                                                                                                                      | ET NO. HOLE NO.                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|-------------------|--------------------------------------------|-------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SIT      |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COORDINA | TES    |          | FUSRAP 14501-138 1<br>ANGLE FF                                                                                                       | OF 1 497R                                             |
| la contraction de la contracti | BEG      |                        |                   |                                            | Ct. (LC<br>) DRILL      |              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        |          | N 2,131 E 3,305 Ver                                                                                                                  | tical                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-      | 29-                    | 8610              | )-29-8                                     | 36                      | MO           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RENCH    |        | Bð       | S Little Beaver 4" 9.0                                                                                                               | ((FT.) TOTAL DEPTH                                    |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CORE     | REC                    | OVER              | (FT./                                      | X) CORE                 | BOXE         | SSAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ESEL. TO | P CASI | NG       | ROUND EL. DEPTH/EL. GROUND WATER DEPTH                                                                                               | /EL. TOP OF ROCK                                      |
| . 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAME     | LE H                   | AMMEI             | R WEIGH                                    | T/FALL                  | CAS          | I<br>SING LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FT IN HO | LE: DI | A./L     | 42.8 \$ 0.5730.5<br>NGTH LOGGED BY:                                                                                                  | <u> </u>                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | _                      |                   | N/A                                        |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO       |        |          | D. McGRANE                                                                                                                           | - CPL                                                 |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | j.<br>He | SAMP. ADU.<br>LEN CORE |                   | SAMPLE<br>BLOWS "N"<br>% CORE<br>DECOLIEDY | PR                      | ATER<br>ESSU | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |        | CS       |                                                                                                                                      | NOTES ON:                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIAM     | 40                     |                   |                                            | <u></u>                 |              | F. The second se | ELEV.    | DEPTH  | BRAPHICS | DESCRIPTION AND CLASSIFICATION                                                                                                       | WATER LEVELS,<br>WATER RETURN,                        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AND      | LEN                    | <b>AMP</b><br>COR | 20%<br>20%<br>20%                          | LOSS<br>LOSS<br>G. P. M | PRESS.       | HINE<br>MIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | ٩      | GRF      |                                                                                                                                      | CHARACTER OF<br>DRILLING, ETC.                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        | <u> </u>          |                                            |                         | <u></u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.8     |        |          | 0.0 - 9.0 Ft. <u>Silty SAND</u> (SM). Fill<br>(0.0-4.5) and indigenous material<br>(4.5-9.0). Color stratified. Fine- to             | Borehole advanced                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | . ]    |          | I medilim-grained with lew to mimerolis                                                                                              | 0.0-9.0 ft. using 4"<br>solid stem augers.            |
| √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,        |        |          | pieces of rounded to angular gravel (and<br>occasional cobbles) of various lithologies<br>in the fill material. Soft, unconsolidated |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -      |          | (loose), sometimes clayey (SC-OH). Moist<br>to saturated at 6.5 Ft.                                                                  |                                                       |
| L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                        |                   |                                            |                         |              | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 5_     |          | 0.0-0.3 Ft. Moderate brown (5YR3/4); grass                                                                                           | Site checked for                                      |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 5      |        |          | roots.<br>0.3-4.5 Ft. Dark reddish brown (10R3/4);<br>mottled moderate brown; few roots.                                             | radioactive<br>contamination and<br>hole gamma-logged |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -      |          |                                                                                                                                      | by TMA-Eberline,<br>Corp.<br>6.5 Ft. Groundwater      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   | ·                                          | ļ                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$3.8_   |        |          | 4.5-5.0 Ft. Grayish black (N2); clayey.<br>May be stream sediments.                                                                  | observed.                                             |
| , the second sec |          | •                      |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          | 5.0-9.0 Ft. Dark yellowish brown with a greenish hue (5.0-6.0). May be decomposed sandstone.                                         |                                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          | 9.0 Ft. Bottom of hole.<br>Auger spoils were replaced in the hole,<br>10/29/86.                                                      |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
| <u>ل</u> له                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4                      |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      | :                                                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      | •                                                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
| <b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   | •                                          |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      | Description and                                       |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      | classification of soil<br>samples by visual           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      | examination.                                          |
| $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                        |                   |                                            |                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |          |                                                                                                                                      |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <b>C</b> DI 1          |                   | 004. 61                                    | = Shel                  | DY TI        | nc.  S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ITE      |        |          | L                                                                                                                                    | HOLE NO.                                              |
| <u>ب</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                        |                   |                                            | TCHER;                  |              | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |        | 2        | Branca Ct. (LODI)                                                                                                                    | 497R                                                  |

| <u></u> | Ģ                                                                                                                    | GE(   | DLO                             | OG                 |                       | RIL        | L LO         | G        | PROJEC  | CT          |        | FLICDAD                                                                                  | JOB NO.                      | SHEET    |                        | HOLE NO:              |
|---------|----------------------------------------------------------------------------------------------------------------------|-------|---------------------------------|--------------------|-----------------------|------------|--------------|----------|---------|-------------|--------|------------------------------------------------------------------------------------------|------------------------------|----------|------------------------|-----------------------|
| SITE    |                                                                                                                      |       |                                 |                    |                       |            |              | COORDIN  | ATES    |             |        | FUSRAP                                                                                   | 14501-1                      | GLE FROM |                        | 495R                  |
|         |                                                                                                                      | 2 B   | and                             | ca C               | t. (Ľ                 | DDI)       |              |          |         |             | N :    | 2,180 E 3,306                                                                            |                              | Vertic   |                        |                       |
| 3EGU    |                                                                                                                      |       |                                 |                    | DRIL                  | LER        |              |          |         |             |        | KE AND MODEL SIZE                                                                        | OVERBURDEN                   | ROCK     |                        | TOTAL DE              |
|         |                                                                                                                      |       |                                 | 9-8                |                       |            |              | ENCH     |         |             |        | Little Beaver 4"                                                                         | 9.0                          |          |                        | 9.0                   |
| CORE    | REC                                                                                                                  | OVER  | Y €I                            | FT./X              | CORI                  | E BOXE     | SISAMPL      | ESEL. TO | OP CASI | ING         | GRO    | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                    | XIND WATER                   | DEPTH/E  | L. TOP                 | OF ROCK               |
| SAMP    | LEH                                                                                                                  | /     | RW                              | EIGHT              | /FALL                 | ICAS       | SING LE      | FT IN HO | LE: DI  | A./L        | ENG    | 42.8 2 / / / / / / / / / / / / / / / / / /                                               |                              | l        | /                      |                       |
|         |                                                                                                                      |       | N//                             |                    |                       |            |              | NO       |         |             |        |                                                                                          | D. McGRA                     | NE       | - 98                   | L.                    |
| 1       | -1                                                                                                                   |       |                                 |                    |                       | ATE        |              |          | 1 .     | 6           | Π      |                                                                                          |                              |          |                        |                       |
| DIAN    | <b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b><br><b>D</b> |       | 길빌로                             | X CORE<br>RECOVERY |                       | TEST       |              |          | E       | GRAPHICS    | H      |                                                                                          |                              |          | NOTES                  |                       |
| ,a      |                                                                                                                      |       | 비 두 일                           | 김요덩                | ຫຼັ <sup>1</sup>      | <u>ю́н</u> | 빈:           | ELEV.    | DEPTH   | H           | SAMPLE | DESCRIPTION AND                                                                          |                              |          |                        | RETURN                |
| SAMP.   | μ                                                                                                                    | ۲,C   | S<br>S<br>S<br>S<br>S<br>S<br>S | ĺ×Ĕ                | LOSS<br>LOSS<br>A.P.H | PRESS.     | HIN.<br>MIN. |          | -       | à           | 7      |                                                                                          |                              | · c      | CHARAC                 | TER OF                |
| 84      | <b>က</b> ်                                                                                                           | Jun - | / <b>•</b>                      |                    | - 0                   | <u>ē</u> r | · _          | 42.8     |         | ।           | -      | 0.0 - 9.0 Pt. Silty SAND (                                                               | SM). Fill                    |          |                        | NG, E1                |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         | <b>[</b> ]: |        | 0.0 - 9.0 Ft. <u>Silty SAND</u> (<br>(0.0-3.5) and indigenou<br>(3.5-9.0). Color stratif | is material<br>led. Fine- to |          |                        | advance<br>t. using 4 |
|         |                                                                                                                      |       |                                 |                    |                       | 1          |              |          | · -     |             |        | medium-grained with f                                                                    | ew to numerous               |          |                        | m augers.             |
|         |                                                                                                                      |       |                                 |                    |                       | .          | ľ            | ·        |         |             |        | pieces of rounded to an<br>occasional cobbles) of v<br>in the fill material. Sof         | arious lithologie            |          |                        |                       |
|         |                                                                                                                      |       | 1                               |                    | ł                     |            |              |          | .       |             |        | (loose), sometimes claye<br>to saturated at 6.5 Ft.                                      | ey (SC-OH). M                | oist     |                        |                       |
| :       |                                                                                                                      |       |                                 |                    | 1                     |            |              | 1        | 5_      | <b>[</b> ]} |        | 0.0-0.3 Ft. Moderate b                                                                   |                              |          | Site chee              | -ked for              |
|         |                                                                                                                      | 1     |                                 |                    | ]                     | 1          | ]            | .        | f -     |             |        | grass roots.                                                                             |                              |          | radioact               | ive<br>nation ar      |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          | Ť.      |             |        | 0.3-3.5 Ft. Dark yellov<br>4/2); mottled moderate                                        | wish brown (10Y              | R.       | hole gan               | nma-logg<br>-Eberlin  |
|         |                                                                                                                      |       |                                 |                    |                       |            |              | 33.8     | .       |             |        | 3.5-5.0 Ft. Grayish bla<br>May be stream sedimen                                         | ack (N2); clayey.            | . [      | Corp.                  | Groundw               |
|         | •                                                                                                                    |       |                                 |                    |                       |            |              |          |         |             | ŤΝ     | 5.0-9.0 Ft. Dark yellow<br>decomposed sandstone.                                         | wish brown. May              | — П      | ODDELVEC               | <b>*</b> •            |
|         | -                                                                                                                    |       |                                 |                    |                       |            |              |          |         | ŗ           |        |                                                                                          | ·                            |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        | 9.0 Ft. Bottom of hole.<br>Auger spoils were replaced<br>10/29/86.                       | l in the hole,               |          |                        |                       |
| 1       |                                                                                                                      |       |                                 |                    | {.                    | ł          |              |          | [       |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        |                                                                                          |                              | ·        |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        |                                                                                          |                              |          |                        |                       |
| l       |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       | 1                               |                    |                       |            |              |          |         |             |        |                                                                                          |                              |          | •                      |                       |
|         |                                                                                                                      |       | 1                               |                    |                       | 1          |              |          |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       | 1                               |                    |                       |            |              | 1        |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       | 1                               |                    | İ                     |            |              |          |         |             |        |                                                                                          | ·                            |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              | 1        |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       | 1                               |                    |                       |            |              | 1 ·      |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            |              | ł        |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      | 1     |                                 |                    |                       |            | 1            | ļ        | 1       |             | 11     |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      | ĺ     |                                 |                    |                       |            |              | ]        |         |             |        |                                                                                          |                              |          |                        |                       |
|         |                                                                                                                      |       |                                 |                    |                       |            | · ·          |          |         |             |        |                                                                                          |                              |          | Descript<br>classifics | ion and<br>tion of s  |
|         |                                                                                                                      |       |                                 |                    |                       |            | · ·          |          |         |             |        | ·                                                                                        |                              |          |                        | by visual             |
|         |                                                                                                                      |       |                                 |                    |                       |            |              |          |         |             |        |                                                                                          | <u> </u>                     |          |                        | -                     |
| ~       |                                                                                                                      |       |                                 |                    |                       |            |              | 1        |         |             |        |                                                                                          |                              | 1        |                        |                       |
|         |                                                                                                                      |       | l                               |                    |                       |            |              |          |         |             |        |                                                                                          |                              |          |                        |                       |
| SS =    | SPL                                                                                                                  | IT S  | POO                             | I; ST              | = SHE                 | LBY TU     | JBE; S       | ITE      |         | -           |        |                                                                                          |                              |          | HOLE NO                |                       |
|         |                                                                                                                      |       |                                 |                    | TCHER;                |            |              |          |         | 2           | В      | ranca Ct. (LOD                                                                           | 91)                          |          | - 4                    | 95R                   |

.

|                             | ~                |         |                                           |                     |                        |                                          |           | PROJEC    | T        | JOB NO. SHEET                                                                       | NO. HOLE NO.                                                                   |
|-----------------------------|------------------|---------|-------------------------------------------|---------------------|------------------------|------------------------------------------|-----------|-----------|----------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| SITE                        |                  |         | DLOG                                      |                     | KIL                    |                                          | COORDINA  | TEC       |          |                                                                                     |                                                                                |
| 3115                        |                  | 2 Br    | anca C                                    | t. (LC              | )DI)                   |                                          | LUKUIN/   | (125      |          | N 2,165 E 3,313 Vertic                                                              | HORIZBEARING                                                                   |
| BEGL                        | IN               | CC      | MPLETED                                   | DRILL               | .ER                    | D. D. D. D. D. D. D. D. D. D. D. D. D. D |           | F         | DRIL     | MAKE AND MODEL SIZE OVERBURDEN ROCK                                                 | (FT.) TOTAL DEPTH                                                              |
|                             |                  |         | )-29-8<br>r (FT./X                        |                     |                        |                                          | ENCH      | P CASI    | Ba       | S Little Beaver 4" 9.0<br>GROUND EL. DEPTH/EL. GROUND WATER DEPTH/E                 | 9.0                                                                            |
|                             |                  | _ /     |                                           |                     |                        |                                          | •         |           |          | 42.8                                                                                | /                                                                              |
|                             |                  | . ]     | R WEIGHT<br>N/A                           |                     |                        |                                          | FT IN HOL |           | A./L     | INGTH LOGGED BY:<br>D. MCGRANE                                                      | 9PL                                                                            |
| ĭr.∈                        | 00.<br>MR        |         | u.zuk                                     | PR                  | JATEF<br>ESSU<br>FESTS | RE                                       |           | -         | ဗ္ဗ      |                                                                                     | IOTES ON:                                                                      |
| <br>SAMP. IYLE<br>AND DIAM. | AMP. A<br>LEN CO | AMPLE I | SAMPLE<br>BLOUS "N"<br>X CORE<br>RECOVERY | LOSS<br>IN<br>M.P.M | _                      | HIN<br>MIN<br>NIN<br>NIN                 | ELEV.     | DEPTH     | GRAPHICS | DESCRIPTION AND CLASSIFICATION                                                      | ATER LEVELS,<br>ATER RETURN,<br>HARACTER OF                                    |
| 8,4                         | ິ<br>ທີ          |         |                                           | - 6                 |                        |                                          | 42.8      |           | 1-1      | 0.0 - 9.0 Ft. Silty SAND (SM). Fill                                                 | DRILLING, ETC.                                                                 |
|                             |                  |         |                                           |                     |                        |                                          |           | -         |          | (0.0-5.0) and indigenous material<br>(5.0-9.0). Color stratified. Fine- to          | Borehole advanced<br>1.0-9.0 ft. using 4"<br>wolid stem augers.                |
|                             |                  |         |                                           |                     |                        |                                          | 2         | δ_<br>7 - |          | 0.3-5.0 FT. Moderate brown, mottled dark<br>reddish brown (10R 3/4): pisces of wood | Site checked for<br>radioactive<br>contamination and<br>hole gamma-logged      |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          | and glass. May be mixed fill and buried soil horizon.                               | by TMA-Eberline,<br>Corp.<br>3.5 Ft. Groundwater                               |
|                             |                  |         |                                           |                     |                        |                                          | 33.8_     | -         |          |                                                                                     | observed.                                                                      |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          | 9.0 Ft. Bottom of hole.<br>Auger spoils were replaced in the hole,<br>10/29/86.     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  | -       |                                           |                     |                        |                                          |           |           |          |                                                                                     | • .                                                                            |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  | ·       |                                           |                     |                        |                                          | •         |           |          |                                                                                     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     | •                                                                              |
|                             |                  | ·       |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     |                                                                                |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          |                                                                                     | Description and<br>classification of soil<br>samples by visual<br>examination. |
|                             |                  |         |                                           |                     |                        |                                          |           |           |          | · · ·                                                                               |                                                                                |
|                             |                  |         | POON; ST<br>P = PI                        |                     |                        |                                          | ITE       |           | 2        | Branca Ct. (LODI)                                                                   | IOLE NO.<br>496R                                                               |

واليتين ومسادم

|     |            | G         | EC        | LOG                                       |                            | RILI          | . LO    | G        | PROJEC       | 1        | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                              | T NO. HOLE NO.                                                                                     |
|-----|------------|-----------|-----------|-------------------------------------------|----------------------------|---------------|---------|----------|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|     | SITE       |           |           |                                           |                            |               |         | COORDIN  | TES          |          | FUSRAP 14501-138 1<br>ANGLE FRO                                                                                                                                                                                                                                                                                                                                                                                                  | OF 1 491R<br>M HORIZBEARING                                                                        |
|     | 3EGL       |           |           | ADCA C                                    |                            |               |         | · ·      | r            |          | N 2,125 E 3,320 Vert<br>MAKE AND MODEL SIZE OVERBURDEN ROCK                                                                                                                                                                                                                                                                                                                                                                      | Ical<br>(FT.) TOTAL DEPTH                                                                          |
| . • | .0-        | 29-       | 861       | 0-29-8                                    | 6                          | MOI           |         | ENCH     |              | B&       | S Little Beaver 4" 9.0                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0                                                                                                |
|     | CORE       | REC       | OVER<br>/ | Y (FT./%                                  | CORE                       | BOXES         | SISAMPL | ESEL. TO | P CASI       | NG       | GROUND EL. DEPTH/EL. GROUND WATER DEPTH/<br>42.8 40.034.8                                                                                                                                                                                                                                                                                                                                                                        | EL. TOP OF ROCK                                                                                    |
|     | SAMP       | LE H      |           | R WEIGHT                                  | /FALL                      | CAS           | ING LE  |          |              | A./L     | ENGTH LOGGED BY:                                                                                                                                                                                                                                                                                                                                                                                                                 | 000                                                                                                |
|     |            | -         | ]         | N/A                                       | 1                          | ATER          |         | NOI      | NE           |          | D. McGRANE                                                                                                                                                                                                                                                                                                                                                                                                                       | 992                                                                                                |
| •   | SAND DIAN. | AMP. ADU. | MPLE REC. | SAMPLE<br>BLOWS "N"<br>X CORE<br>RECOVERY | P. M. 4.0<br>NI<br>A. P. M | ESSUI<br>ESTS | RE      | ELEV.    | DEPTH        | GRAPHICS | DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                   | NOTES ON:<br>WATER LEVELS,<br>WATER RETURN,<br>CHARACTER OF                                        |
|     | S.         | <u> </u>  | E C       |                                           | - 0                        | ād            |         | 42.8     | <u>-</u>     | 1.1      | 0.0 - 9.0 Ft. <u>Silty SAND</u> (SM). Fill                                                                                                                                                                                                                                                                                                                                                                                       | DRILLING, ETC.                                                                                     |
|     |            |           |           |                                           |                            |               |         |          | -<br>-<br>5_ |          | <ul> <li>(0.0-8.0) and indigenous material</li> <li>(0.0-8.0). Color stratified. Fine- to<br/>medium-grained with few to numerous<br/>pieces of rounded to angular gravel (and<br/>occasional cobbles) of various lithologies<br/>in the fill material. Soft, unconsolidated<br/>(loose), sometimes clayey (SC-OH). Moist<br/>to saturated at 8.0 Ft.</li> <li>0.0-0.3 Ft. Moderate brown (5YR 3/4);<br/>garden fill.</li> </ul> | Borehole advanced<br>0.0-9.0 ft. using 4"<br>solid stem augers.<br>Site checked for<br>radioactive |
|     |            |           |           |                                           |                            |               |         |          | -            |          | 0.3-4.5 Ft. Dark yellowish brown (10YR 4/2).                                                                                                                                                                                                                                                                                                                                                                                     | contamination and<br>hole gamma-logged<br>by TMA-Eberline,<br>Corp.                                |
|     |            | •.        |           |                                           |                            |               |         | 33.8_    |              |          | 4.5-8.0 Ft. Moderate brown, mottled<br>grayish black (N2). May be mixed fill and<br>stream sediments.                                                                                                                                                                                                                                                                                                                            | 8.0 Ft. Groundwater<br>observed.                                                                   |
|     |            |           |           |                                           |                            |               |         |          |              |          | 8.0-9.0 Ft. Dark yellowish brown. May be decomposed sandstone.                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |
|     |            |           |           |                                           |                            |               |         | •        |              |          | 9.0 Ft. Bottom of hole.<br>Auger spoils were replaced in the hole,<br>10/29/86.                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
| /   |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
| •   |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
|     |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
|     |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ·                                                                                                |
|     |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
|     |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
|     |            |           |           |                                           |                            |               |         |          |              |          | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                    |
|     |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
|     |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  | `                                                                                                  |
|     |            |           |           |                                           |                            |               |         | · · ·    |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description and<br>classification of soil<br>samples by visual<br>examination.                     |
|     |            |           |           |                                           |                            |               |         |          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |
|     |            |           |           | POON; ST<br>; P = PI                      |                            |               | ,       | ITE      | 1            | 2        | Branca Ct. (LODI)                                                                                                                                                                                                                                                                                                                                                                                                                | HOLE NO.<br><b>491</b> R                                                                           |

1

ì.

|     |            | G                     | EC          | LOG                                       | IC D                | RILI                                                                | LLO     | G        | PROJEC  | .T       |           | FUSRA                                                    | D                            |                        | JOB NO.<br>14501-1                           | 1 1      |                     | HOLE NO.                                        |
|-----|------------|-----------------------|-------------|-------------------------------------------|---------------------|---------------------------------------------------------------------|---------|----------|---------|----------|-----------|----------------------------------------------------------|------------------------------|------------------------|----------------------------------------------|----------|---------------------|-------------------------------------------------|
|     | SITE       |                       |             |                                           |                     |                                                                     |         | COORDIN  | TES     |          | <u> </u>  |                                                          |                              |                        |                                              |          | ON HORIZ            | 1199R<br>BEARING                                |
| 1   | BEGL       |                       |             | anca C<br>MPLETED                         |                     |                                                                     |         | <u> </u> |         |          |           | 2,098 E 3                                                |                              |                        | OVERBURDEN                                   | Vert     |                     | TOTAL DEPTH                                     |
|     |            |                       |             | 2-6-87                                    |                     |                                                                     | E.D.    |          |         | ľ        | ON        | BILE B-5                                                 | 7                            | 6"                     | 8.5                                          |          | 1.0                 | 9.5                                             |
|     | CORE       | REC                   | OVER'<br>/  | r (FT./X                                  | S) CORE             | BOXE                                                                | S SAMPL | ESEL. TO | P CASI  | ING      | GRO       | UND EL. D                                                | EPTH/E                       | il. Groui              | ID WATER                                     | DEPTH    | /EL. TOP<br>8.5     |                                                 |
| ~ 1 | SAMP       |                       |             | R WEIGHT                                  |                     | CAS                                                                 | SING LE | -        |         | A./L     | ENG       | TH LOGGED B                                              | Y:                           |                        |                                              |          |                     | ······                                          |
| _   | tu<br>ال   |                       |             | os / 30                                   |                     |                                                                     | र       | NO       | NE<br>I | <u> </u> | m         |                                                          |                              |                        | David Har                                    | nish     | $-\frac{9}{1}$      | <del>}-</del>                                   |
| ·   | SAMD DIAN. | SAMP. ADU<br>LEN CORE | SAMPLE REC. | SAMPLE<br>BLOUS "N"<br>X CORE<br>RECOVERY | PR<br>W'd'D<br>SSOJ | ESSU<br>ESSU<br>SSU<br>SSU<br>SSU<br>SSU<br>SSU<br>SSU<br>SSU<br>SS |         | ELEV.    | DEPTH   | GRAPHICS | SAMPLE    |                                                          | · .                          |                        | ASSIFICA                                     |          | WATER               | ON:<br>LEVELS,<br>RETURN,<br>TER OF<br>NG, ETC. |
|     | SS         |                       |             | 10 15 9                                   |                     |                                                                     |         |          |         |          | N         | 0.0 - 6.3 ft. <u>5</u><br><u>SILT (GN</u>                | Gity G<br>(-ML)              | RAVEL<br>and SIL       | (GM), Gravel<br>r (ML), FiLl                 | <b>y</b> | Barahal             | e drilled                                       |
|     | SS         | 2.0                   | 1.4         | 6 14 12                                   |                     |                                                                     |         |          |         |          | Ŋ         |                                                          | -                            |                        | roken basalt.                                |          | 0.0-10.0            | Ft. using 6"<br>item augers.                    |
| -   |            |                       |             | 15                                        |                     |                                                                     |         |          | -       |          | N         | 0.5-2.7 ft.<br>(N2) with<br>Brunswick                    | . Grave<br>pieces<br>c sands | of wood                | , very dark gr<br>, steel and Nev<br>vel.    | ay<br>W  | Site che            |                                                 |
|     | SS         | 2.0                   | 0.9         | 77119                                     |                     |                                                                     |         | -        | 5_      |          | $\square$ | 2.7-3.0 ft.                                              | GRA                          | VEL, as                | ohalt.                                       |          | contami<br>hole gar | nation, and<br>mna-logged                       |
|     | SS         | 1.0                   | 1.1         | 23 35                                     |                     |                                                                     |         | · _      | ļ.      |          |           | 3.0-3.3 ft.<br>3.3-4.0 ft.                               |                              |                        |                                              | New      | by TMA<br>Corp.     | -Eberline,                                      |
|     |            | 1.0                   | 0.9         | 41 41                                     |                     |                                                                     |         |          | -       |          | H         | Brunswich<br>decompos                                    | c sands<br>ed san            | tone gra<br>dstone ar  | L, dusky red,<br>vel, matrix of<br>id shale. |          |                     |                                                 |
|     | SS         | 1.5                   | 1.1         | 11 41<br>100/5"                           |                     |                                                                     |         | -        | -       |          | h         | <u> </u>                                                 |                              |                        |                                              |          | No grou             | ndwater                                         |
|     |            |                       |             |                                           |                     |                                                                     |         | _        |         |          | N.        | 4.0 - 6.3 ft.<br>gray, gree<br>very line,<br>May be in   | dark g                       | TAYISD DI              | ery dark<br>ish brown. So<br>rown silty sand | me<br>d. |                     | ••                                              |
|     |            |                       |             |                                           |                     |                                                                     |         |          |         |          |           | 6.3 - 8.5 ft. 5<br>(2.5Y 5/2<br>(5YR 5/2)<br>6.3-6.7 ft. |                              |                        | rayish brown<br>lish gray dow<br>ined.       | nward    | Hole col<br>Ft deep | lapsed to 9.5                                   |
|     |            |                       |             |                                           |                     |                                                                     |         |          |         |          |           | 8.0 - 8.5 ft. 2<br>Dark gray                             |                              |                        | <b>GRAVEL.</b><br>'R 4/2).                   |          |                     |                                                 |
|     |            |                       |             |                                           |                     |                                                                     |         |          |         |          |           | 8.5 - 9.5 ft.<br>Dusky red<br>Fissile wit<br>harder do   | h hori                       | Brunswic<br>sontal fra | BKDROCK.<br>k sandstone.<br>actures, becom   | ies .    |                     | •                                               |
|     |            |                       |             |                                           |                     |                                                                     |         |          |         |          |           | Bottom of bo<br>Borehole bac                             | ring a                       | t 10.0 ft.<br>with spo | ils, 12/6/87.                                |          |                     |                                                 |
|     |            |                       |             |                                           |                     |                                                                     |         |          |         |          |           |                                                          |                              |                        |                                              |          |                     |                                                 |
| L   |            |                       |             |                                           |                     |                                                                     |         |          |         |          |           |                                                          |                              |                        |                                              |          |                     |                                                 |
|     |            |                       |             |                                           |                     |                                                                     |         |          |         |          |           |                                                          |                              |                        |                                              | •        |                     | ation of soil<br>by visual                      |
|     |            |                       |             | 2000; ST<br>P = PI                        |                     |                                                                     |         | ITE      |         | 2        | B         | ranca C                                                  | t. (I                        | LODI                   | · · · · ·                                    |          | HOLE NO             |                                                 |

Level and a second second second second second second second second second second second second second second s

|                                                                               | DGIC DRILL L                                       | OG PROJECT          | FUSRAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JOB NO. SHEE<br>14501-138 1                                                                                                                                                                                                                                     | T NO. HOLE NO.<br>OF 1 494R                                                                                                                                                                               |
|-------------------------------------------------------------------------------|----------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               | a Ct. (LODI)                                       | COORDINATES         | N 2,185 E 3,328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 | H HORIZBEARING                                                                                                                                                                                            |
| 3EGUN COMPLI<br>10-29-8610-2                                                  | ETED DRILLER<br>9-86 MORET                         |                     | LL MAKE AND MODEL SIZE<br>&S Little Beaver 4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OVERBURDEN ROCK                                                                                                                                                                                                                                                 | (FT.) TOTAL DE                                                                                                                                                                                            |
|                                                                               | T./%) CORE BOXES SAM                               | PLESEL. TOP CASING  | GROUND EL. DEPTH/EL. GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 8.0<br>NHD WATER DEPTH/                                                                                                                                                                                                                                       | EL. TOP OF ROCK                                                                                                                                                                                           |
| SAMPLE HAMMER HE                                                              | IGHT/FALL CASING                                   | .EFT IN HOLE: DIA./ | 42.8 42.8 46.5/36.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>_</u>                                                                                                                                                                                                                                                        | /                                                                                                                                                                                                         |
| N/A                                                                           |                                                    | NONE                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D. McGRANE                                                                                                                                                                                                                                                      | 9Pf                                                                                                                                                                                                       |
| DIAN.<br>ADV.<br>CORE<br>REC.<br>BPLE<br>S "N"                                |                                                    | T S                 | щ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 | NOTES ON:                                                                                                                                                                                                 |
| SAMP. DIAM.<br>SAMP. ADV.<br>LEN CORE<br>BAMPLE REC.<br>SAMPLE REC.<br>SAMPLE | RECOU<br>IN<br>0. P.M<br>PRESS<br>PRESS<br>P.S. I. |                     | H<br>A DESCRIPTION AND (<br>F<br>A<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CLASSIFICATION                                                                                                                                                                                                                                                  | WATER LEVELS<br>WATER RETURN<br>CHARACTER OF<br>DRILLING, ET                                                                                                                                              |
|                                                                               |                                                    | 34.8_<br>34.8_      | <ul> <li>0.0 - 8.0 Ft. Silty SAND (10.0-3.5) and indigenous (3.5-8.0). Color stratific medium-grained with fer pieces of rounded to any occasional cobbles) of v in the fill material. Soft (loose), sometimes clayer to saturated at 6.5 Ft.</li> <li>0.0-0.3 Ft. Moderate b grass roots.</li> <li>0.3-3.5 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft. Dark yellow (100 Ft.</li></ul> | SM). Fill<br>s material<br>ed. Fine- to<br>sw to numerous<br>gular gravel (and<br>arious lithologies<br>t, unconsolidated<br>y (SC-OH). Moist<br>rown (5YR 3/4);<br>rish brown (10YR<br>brown.<br>ack (N2); clayey.<br>ts.<br>rish brown<br>composed sandstone. | Borehole advancec<br>0.0-8.0 ft. using 4"<br>solid stem augers.<br>Sits checked for<br>radioactive<br>contamination and<br>hole gamma-logge<br>by TMA-Eberline,<br>Corp.<br>6.5 Ft. Groundwa<br>observed. |
|                                                                               |                                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           |
|                                                                               |                                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           |
|                                                                               |                                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 | Description and<br>classification of soi<br>amples by visual<br>examination.                                                                                                                              |
| S = SPLIT SPOON;<br>= DENNISON; P =                                           | ST = SHELBY TUBE; S<br>PITCHER; O = OTHER          | 1TE 2               | Branca Ct. (LODI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                                                                                                                                                                                                                                               | OLE NO.<br>494R                                                                                                                                                                                           |

ł

التستين

all market

| GEOLOGIC DRILL LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FUSKAI 14501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D. SHEET NO. HOLE NO.<br>-138 1 OF 1 493R<br>ANGLE FROM HORIZBEARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 Branca Ct. (LODI)<br>BEGUN COMPLETED DRILLER<br>10-29-8610-29-86 MORETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N 2,166 E 3,341<br>PRILL MAKE AND MODEL SIZE OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CORE RECOVERY (FT. /%) CORE BOXES SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ESEL. TOP CASING GROUND EL. DEPTH/EL. GROUND WATER<br>42.8 42.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEPTH/EL. TOP OF ROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T IN HOLE: DIA./LENGTH LOGGED BY:<br>NONE D. McG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RANE 992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SAMP. TYPE<br>AND DIAM.<br>SAMP. ADU.<br>LEN CORE<br>BAMPLE REC.<br>CORE  ELEV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER RETURN<br>CHARACTER OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>42.8</li> <li>42.8</li> <li>0.0 - 9.0 Ft. Silty SAND (SM). Fill<br/>(0.0-4.0) and indigenous material(4.1)<br/>Color stratified. Fine- to medium-g<br/>with few to numerous pieces of round<br/>angular gravel (and occasional cobbl<br/>various lithologies in the fill material<br/>Soft, unconsolidated (loose), sometim<br/>clayery (SC-OH). Moist to saturated<br/>Ft.</li> <li>0.0-0.3 Ft. Moderate brown (5YR3/<br/>numerous grass roots and organics.</li> <li>0.3-4.0 Ft. Dark yellowish brown<br/>(10YR4/2).</li> <li>4.0-6.5 Ft. Grayish black (N2); mott<br/>dark reddish brown (10R3/4). Claye<br/>be mixed fill and stream sediments.</li> <li>6.5-9.0 Ft. Dark yellowish brown. M<br/>decomposed sandstone.</li> <li>9.0 Ft. Bottom of hole.<br/>Auger spoils were replaced in the hole,<br/>10/29/86.</li> </ul> | <ul> <li>solid stem augers.</li> /ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S = SPLIT SPOON; ST = SHELBY TUBE; SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Description and<br>classification of so<br>samples by visual<br>examination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Ł

وسعيبي

كور يوتعلوها وارجه

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | ·                                                                                                                                    |                                                                                                                |  |  |
|--------------------|-----------------------------------------------------------------------|------------|---------|-------------------------------------------|-------------------------|--------------------|--------------|-------|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
|                    |                                                                       | G          | FC      |                                           | ור ח                    | RIL                |              | IG    | PROJE  | CT       | JOB NO. SHEET                                                                                                                        |                                                                                                                |  |  |
| GEOLOGIC DRILL LOG |                                                                       |            |         |                                           |                         |                    |              |       | TEC    |          | FUSRAP 14501-138 1 0                                                                                                                 |                                                                                                                |  |  |
|                    | 2 Branca Ct. (LODI)                                                   |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      | ROM HORIZBEARING                                                                                               |  |  |
| •                  | 3EG                                                                   |            |         | MPLETED                                   |                         |                    |              | J     |        |          | N 2,142 E 3,360 Vertic<br>MAKE AND MODEL SIZE OVERBURDEN ROCK (                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         | )-29-8                                    |                         |                    | RFTP         | ENCH  | ļ      |          | MAKE AND MODEL SIZE OVERBURDEN ROCK (<br>S Little Beaver 4" 9.0                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       | P CASI |          |                                                                                                                                      | 9.0                                                                                                            |  |  |
|                    |                                                                       |            | 1       |                                           |                         |                    | -            |       |        |          | 42.8 ¥ 6.5/36.3                                                                                                                      |                                                                                                                |  |  |
|                    | SAMPLE HANNER WEIGHT/FALL CASING LEFT IN HOLE: DIA./LENGTH LOGGED BY: |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            | 1       | N/A                                       | 1                       |                    |              | NO    | NE     |          | D. McGRANE                                                                                                                           | 001                                                                                                            |  |  |
|                    | ٧,                                                                    | -1         |         |                                           | WATER                   |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    | SAMP DIAN.                                                            | SAMP. ADU. |         | SAMPLE<br>BLOWS "N"<br>X CORE<br>RECOVERY | PRESSU<br>TEST          |                    | RE<br>S      |       | I      | l ü      | N N                                                                                                                                  | OTES ON:                                                                                                       |  |  |
| <u> </u>           |                                                                       | 10         | ЩС      | Ē ΩÖS                                     | mΣ                      | юн                 | w.           | ELEV. | DEPTH  | GRAPHICS |                                                                                                                                      | ATER LEVELS,                                                                                                   |  |  |
|                    | 29                                                                    | 윈집         | 电망      | Ğ2<br>₩                                   | LOSS<br>LOSS<br>G. P. M | <u>ຄ</u> ິດ        | TIME<br>MIN. |       |        | ₩.       |                                                                                                                                      | HARACTER OF                                                                                                    |  |  |
|                    | <b>B</b> B                                                            | S -        | Ξų<br>Δ | 룹' ∝                                      |                         | PRESS.<br>P. S. I. | ⊢Σ           | 42.8  |        | 0        |                                                                                                                                      | RILLING, ETC.                                                                                                  |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | 0.0 - 9.0 Ft. Silty SAND (SM). Fill<br>(0.0-5.0) and indigenous material E                                                           | Borehole advanced                                                                                              |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       | •      |          | 5.0-9.0). Color stratified. Fine- to                                                                                                 | .0-9.0 ft. using 4"                                                                                            |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              | •     | •      | 1        | medium-grained with few to numerous spieces of rounded to angular gravel (and                                                        | olid stem augers.                                                                                              |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        | 1        | pieces of rounded to angular gravel (and<br>occasional cobbles) of various lithologies<br>in the fill material. Soft, unconsolidated |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       | -      |          | (loose), sometimes clayey (SC-OH). Moist<br>to saturated at 6.5 Ft.                                                                  |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       | 5_     |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       | L.     |          | numerous grass roots.                                                                                                                | ite checked for<br>adioactive                                                                                  |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       | F.     |          | 0.3-5.0 Ft. Dark reddish brown (10R 3/4); h                                                                                          | ontamination and<br>ole gamma-logged                                                                           |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | mottled moderate brown.                                                                                                              | y TMA-Eberline,                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              | 33.8  | •      | 1        |                                                                                                                                      | Corp.<br>1.5 Ft. Groundwater<br>bserved.                                                                       |  |  |
|                    | -                                                                     |            |         |                                           |                         |                    |              |       | •      |          | 6.0-9.0 Ft. Dark yellowish brown with a                                                                                              |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | greenish hue (6.0-7.0 Ft.). May be<br>decomposed sandstone.                                                                          |                                                                                                                |  |  |
| •                  |                                                                       |            |         |                                           |                         |                    |              |       |        |          | decomposed sandstone.                                                                                                                |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | 9.0 Ft. Bottom of hole.                                                                                                              |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | Auger spoils were replaced in the hole,<br>10/29/86.                                                                                 |                                                                                                                |  |  |
| $\smile$           |                                                                       |            |         |                                           |                         |                    |              |       |        |          | 20/20/00.                                                                                                                            |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         | ŀ                  |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        | 1        |                                                                                                                                      | •                                                                                                              |  |  |
|                    | _                                                                     |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | ··· [                                                                                                                                |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | Į                                                                                                                                    | ·                                                                                                              |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       | l      |          |                                                                                                                                      | · .                                                                                                            |  |  |
|                    |                                                                       |            |         |                                           |                         |                    | '            |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | 1                                                                                                                                    |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | 1                                                                                                                                    |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | <sub>T</sub>                                                                                                                         | Description and                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          | ·  c                                                                                                                                 | lassification of soil                                                                                          |  |  |
|                    |                                                                       |            |         | •                                         |                         |                    |              |       |        |          |                                                                                                                                      | amples by visual<br>xamination.                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
| $\sim$             |                                                                       |            |         | 1                                         |                         |                    |              |       |        |          |                                                                                                                                      |                                                                                                                |  |  |
|                    |                                                                       |            |         |                                           |                         |                    |              |       | l      |          | 1                                                                                                                                    |                                                                                                                |  |  |
|                    | 35 *                                                                  | SPLI       | T SP    | OON; ST                                   | = SHEI                  | BY TU              | BE; S        | ITE   | ·      | ·        |                                                                                                                                      | OLE NO.                                                                                                        |  |  |
|                    |                                                                       |            |         | P = PI                                    |                         |                    |              |       |        | 2        | Branca Ct. (LODI)                                                                                                                    | 492R                                                                                                           |  |  |
|                    | -                                                                     |            |         |                                           |                         |                    |              |       |        |          |                                                                                                                                      | the second second second second second second second second second second second second second second second s |  |  |

-----

California and

-

أرجعت

ł.,,

| ITE        |                                                                                                                                                                                   | EC                                                                                          | LOC               |            | RIL    | L LO       | )G                                           | PROJE  |          |        | FUSRAP                                              |                                                                                                 |                                                                                                                                           | 138 1          |                     | HOLE NO.<br>490R                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|------------|--------|------------|----------------------------------------------|--------|----------|--------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-----------------------------------------|
| -118       |                                                                                                                                                                                   | 2 Br                                                                                        | anca (            | Ct. (L     | וזמס   |            | COORDINA                                     | TES    | •        | N 2,1  | 15 E 3,3                                            | <b>4</b> E                                                                                      |                                                                                                                                           | NGLE FRC       |                     | BEARING                                 |
| ĒGU        |                                                                                                                                                                                   |                                                                                             | MPLETE            |            |        |            | <u>.                                    </u> |        | DRIL     | L MAKE | AND HODEL                                           | SIZE                                                                                            | OVERBURDEN                                                                                                                                | Verti          | (FT.)               | TOTAL DEPT                              |
|            |                                                                                                                                                                                   |                                                                                             | 0-29-8            |            |        |            | RENCH                                        |        |          |        | tle Beaver                                          | 4"                                                                                              | 9.0                                                                                                                                       |                |                     | 9.0                                     |
| CORE       | REC                                                                                                                                                                               | OVER<br>/                                                                                   | Y (FT./           | X) (COR    | E BOXE | SISAMPL    | ESEL. TO                                     | P CASI | ING      | GROUN  | EL. DEPTI<br>2.8                                    | H/EL. GRO<br>.0/35.8                                                                            | UND WATER                                                                                                                                 | DEPTH/         | EL. TOP             | OF ROCK                                 |
| ANP        | LE N                                                                                                                                                                              | AMME                                                                                        | R WEIGH           | T/FALL     | CAS    | SING LE    | FT IN HOL                                    | E: D1  | A./L     | ENGTH  | LOGGED BY:                                          |                                                                                                 |                                                                                                                                           |                | /                   |                                         |
| -          |                                                                                                                                                                                   | .]                                                                                          | N/A               | - <b>r</b> |        |            | NOI                                          | NE     | , — — ·  |        |                                                     |                                                                                                 | D. McGR                                                                                                                                   | ANE            | 9PL                 |                                         |
| ۳.<br>بر   | ALTER<br>BAMP. ADV.<br>LEN CORE<br>BEAMPLE REC.<br>CORE REC. |                                                                                             |                   |            |        |            | _                                            | 2      |          | •      |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
| -ŭ         | ٩ß                                                                                                                                                                                |                                                                                             | <u>τ</u>          | δ m I      | TEST   |            | ELEV.                                        | DEPTH  | Ŧ        | SAMPLE | ESCRIPTIO                                           | N AND                                                                                           | CLASSIFICA                                                                                                                                |                | NOTES<br>WATER      | ON:<br>LEVELS,                          |
| 뉦          |                                                                                                                                                                                   | E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E<br>E |                   |            | ອງ -   | HIN.       |                                              | С<br>Ш | GRAPHICS | 391    | •                                                   |                                                                                                 |                                                                                                                                           |                | WATER<br>CHARA(     | RETURN,<br>CTER OF                      |
| 7 <u>₹</u> | 5                                                                                                                                                                                 | Ğ<br>Ö                                                                                      |                   |            | a c    | <b>Ε</b> Σ | 42.8                                         |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     | ING, ETC.                               |
|            |                                                                                                                                                                                   | •                                                                                           |                   |            |        |            |                                              | •      |          |        | pieces of roun<br>occasional col<br>in the fill mat | d indigen<br>olor strati<br>ned with fo<br>ded to an<br>obles) of v<br>erial. Sof<br>imes clave | SM). Fill<br>ous material<br>fied. Fine- to<br>sw to numerous<br>gular gravel (az<br>arious lithologi<br>t, unconsolidat<br>sy (SC-OH). A | nd<br>es<br>ed | 0.0-9.0             | e advanced<br>ft. using 4"<br>m augers. |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              | 5      |          |        | 0.0-0.3 FT. 1                                       | foderate                                                                                        | brown (5YR 3/                                                                                                                             | 4);            |                     | cked for                                |
|            |                                                                                                                                                                                   |                                                                                             | •                 |            |        |            |                                              | , -    |          |        | numerous gra                                        |                                                                                                 | na organics.<br>ark reddish bro                                                                                                           | -              | radioact<br>contami | nation and<br>nma-logged                |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              | -      |          |        | (10R. 3/4) and                                      | moderat                                                                                         | e brown. A pie<br>ed fill and stres                                                                                                       | ce of          | by TMA              | -Eberline,<br>Groundwate                |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            | 33.8_                                        | -      | []]      | H      | 5.5-9.0 Ft. M                                       | loderate b                                                                                      | rown, clayey.                                                                                                                             | A few I        | observed            | Groundwate<br>1.                        |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        | roots and organisediments and                       | anics. Ma<br>l decompo                                                                          | y be mixed stri<br>sed sandstone.                                                                                                         |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        | Ft. Bottom o<br>rer spoils war<br>10/29/86.         |                                                                                                 | in the hole,                                                                                                                              |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   | Ì                                                                                           |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 | •                                                                                                                                         |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     | •                                       |
|            |                                                                                                                                                                                   |                                                                                             |                   | •          |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
| ŀ          |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              | ·      |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                | Descript            | ion and                                 |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            | ĺ                                            |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     | tion of soil<br>by visual               |
|            |                                                                                                                                                                                   |                                                                                             |                   | 1          |        |            |                                              |        |          |        |                                                     | •                                                                                               |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             |                   |            |        |            |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           | [              |                     | •                                       |
|            |                                                                                                                                                                                   |                                                                                             |                   | <u> </u>   |        | 1.         |                                              |        |          |        |                                                     |                                                                                                 |                                                                                                                                           |                |                     |                                         |
|            |                                                                                                                                                                                   |                                                                                             | 00N; S1<br>P = P1 |            |        |            | ITE                                          |        | 2        | D      | nca Ct.                                             |                                                                                                 | •                                                                                                                                         |                | HOLE NO             | 90R                                     |