063482-04

DOE/OR/20722-248

M-068

Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-81OR20722

이 이는 것 같은 동생은 이상품은 이를 생겼다. 것이 것 같은

and a substance of a state of the state of

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 19 REDSTONE LANE

Lodi, New Jersey

September 1989

Bechtel National, Inc.

063982

Bechtel National, Inc.

Systems Engineers - Constructors

÷

÷.,

800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Mail Address: P.O. Box 350. Oak Ridge, TH 37831-0350 Telex: 3785873

SEP 29 1989

Jackson Plaza Tower

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin Technical Services Division

Subject:

ect: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of Radiological Characterization Report for seventeen residential properties, four municipa properties, and seven commercial properties in Lodi and Maywood, New Jersey Code: 7315/WBS: 138

Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerate manner. His efforts have allowed us to publish these reports of schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,

R. C. Robertson

Project Manager - FUSRAP

+4-

CONCURRENCE

RCR:wfs:1756x Enclosure: As stated

cc: J. D. Berger, ORAU (w/e)
N. J. Beskid, ANL (w/e)

DOE/OR/20722-248

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 19 REDSTONE LANE LODI, NEW JERSEY

.....

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring, D. J. Whiting, and W. F. Stanley Bechtel National, Inc. Oak Ridge, Tennessee

Bechtel Job No. 14501

TABLE OF CONTENTS

			<u>Page</u>
List	of F	ligures	iv
List	of I	ables	iv
Abbr	eviat	ions	v
1.0	Intr	oduction and Summary	1
	1.1	Introduction	1
	1.2	Purpose	3
	1.3	Summary	3
	1.4	Conclusions	5
2.0	Site	e History	7
	2.1	Previous Radiological Surveys	8
	2.2	Remedial Action Guidelines	9
3.0	Heal	th and Safety Plan	12
	3.1	Subcontractor Training	12
	3.2	Safety Requirements	12
4.0	Char	acterization Procedures	14
	4.1	Field Radiological Characterization	14
		4.1.1 Measurements Taken and Methods Used	14
		4.1.2 Sample Collection and Analysis	17
	4.2	Building Radiological Characterization	19
5.0	Char	acterization Results	22
	5.1	Field Radiological Characterization	22
	5.2	Building Radiological Characterization	26
Refe	rence	25	36
Appe	ndix	A - Geologic Drill Logs for 19 Redstone Lane	A-1

LIST OF FIGURES

Figure	Title	Page
1-1	Location of Lodi Vicinity Properties	2
1-2	Location of 19 Redstone Lane	4
4-1	Borehole Locations at 19 Redstone Lane	16
4-2	Surface and Subsurface Soil Sampling Locations at 19 Redstone Lane	18
4-3	Gamma Exposure Rate Measurement Locations at 19 Redstone Lane	21
5-1	Areas of Subsurface Contamination at 19 Redstone Lane	25

LIST OF TABLES

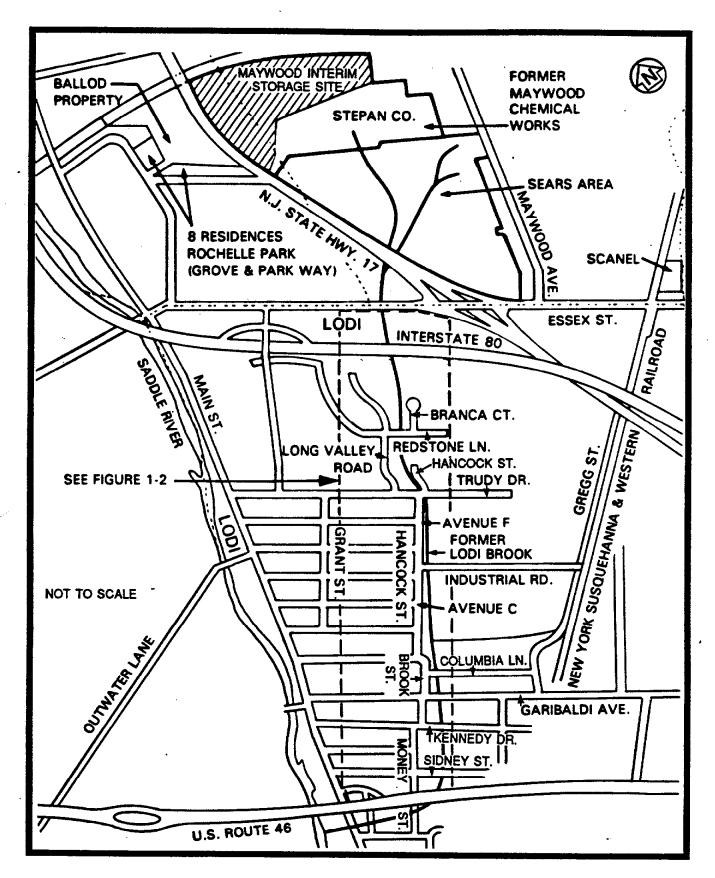
<u>Table</u>	Title	<u>Page</u>
2-1	Summary of Residual Contamination Guidelines for the Lodi Vicinity Properties	10
5-1	Surface and Subsurface Radionuclide Concentrations in Soil for 19 Redstone Lane	28
5-2	Downhole Gamma Logging Results for 19 Redstone Lane	31
5-3	Gamma Radiation Exposure Rates for 19 Redstone Lane	35

ABBREVIATIONS

Cm	centimeter
cm^2	
Cm	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h	hour
in.	inch .
km ²	square kilometer
L	liter
L/min	liters per minute
m	meter
m ²	square meter
MeV	million electron volts
μ R/h	microroentgens per hour
mi	mile
mi ²	square mile
min	minute
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
pCi/g	picocuries per gram
pCi/L	picocuries per liter
WL	working level
yd	yard
yd ³	cubic yard

v

1.0 INTRODUCTION AND SUMMARY


This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 <u>INTRODUCTION</u>

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

1.2 <u>PURPOSE</u>

The purpose of the 1986 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.

1.3 <u>SUMMARY</u>

This report details the procedures and results of the radiological characterization of the property at 19 Redstone Lane (Figure 1-2) in Lodi, New Jersey, which was conducted in November and December 1986. Additional data was obtained in September 1988.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 19 Redstone Lane showed maximum concentrations of thorium-232 and radium-226 to be less than 3.5 and less than 1.3 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 11.0 pCi/g.

Subsurface soil sample concentrations ranged from 0.4 to 6.8 pCi/g for thorium-232 and from 0.3 to 1.9 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. The concentrations of uranium-238 in subsurface soil samples ranged from 0.3 to less than 10.6 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE

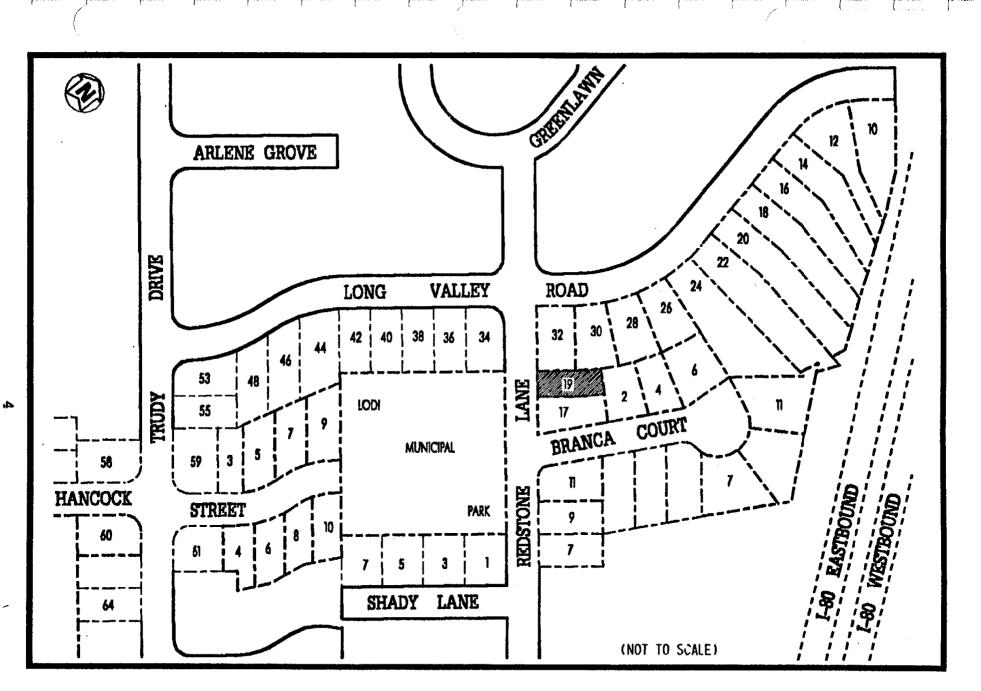


FIGURE 1-2 LOCATION OF 19 REDSTONE LANE

believes that these guidelines are conservative for considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property did not indicate surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 1.37 m (4.5 ft).

Exterior gamma radiation exposure rates ranged from 7 to 8 μ R/h, including background.

The radon-222 measurement inside the residence indicated a concentration that was less than the lower limit of detection, which was within the DOE guideline of 3.0 pCi/L.

The measurement for radon daughters was 0.003 working level (WL), and the measurement for thoron daughters was 0.001 WL.

All data tables for this property appear at the end of this report.

1.4 <u>CONCLUSIONS</u>

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 19 Redstone Lane. This contamination is primarily subsurface contamination ranging from a depth of 1.06 m (3.5 ft) to 1.37 m (4.5 ft). The contamination appears to extend beneath

the residence. The total affected area is estimated to be approximately 20 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. The company continued this work until 1956. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are typically found in monazite sands, which also contain

thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

<u>January 1981</u>--The Nuclear Regulatory Commission directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a $10.3-\text{km}^2$ (4-mi²) aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984--In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its

"scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

<u>September 1986</u>--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

2.2 <u>REMEDIAL ACTION GUIDELINES</u>

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

TABLE 2-1 SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL GUIDELINES

Radionuclide

Soil Concentration (pCi/g) Above Background^{a,b,c}

Radium-226 Radium-228 Thorium-230 Thorium-232 5 pCi/g when averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over any 15-cm-thick soil layer below the surface layer.

Other Radionuclides

Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

STRUCTURE GUIDELINES

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL^d. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 µR/h.

Indoor/Outdoor Structure Surface Contamination

	Allowable Surface Residual Contamination [®] (dpm/100 cm ²)		
Radionuciide [†]	Average ^{g,h}	Maximum ^{h,i}	Removable ^{h.j}
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	⁄ 100	300	20
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-126, I-131, I-133	1,000	3,000	200
U-Natural, U-235, U-238, and associated decay products	5,000 α	15,000 α	1,000 α
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 B - γ	15,000 B - γ	1,000 β - γ

TABLE 2-1 (CONTINUED)

- ^aThese guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").
- ^bThese guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.
- ^CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.
- ^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.
- ^eAs used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.
- Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.
- ^gMeasurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.
- ⁿThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.
- The maximum contamination level applies to an area of not more than 100 cm².
- ¹The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 SUBCONTRACTOR TRAINING

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 <u>SAFETY REQUIREMENTS</u>

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

4.1 FIELD RADIOLOGICAL CHARACTERIZATION

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this property.

4.1.1 Measurements Taken and Methods Used

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling six boreholes (Figure 4-1) [using either a 7.6-cm- (3-in.-) or 15.2-cm-(6-in.-) diameter auger bit], and gamma logging them. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration

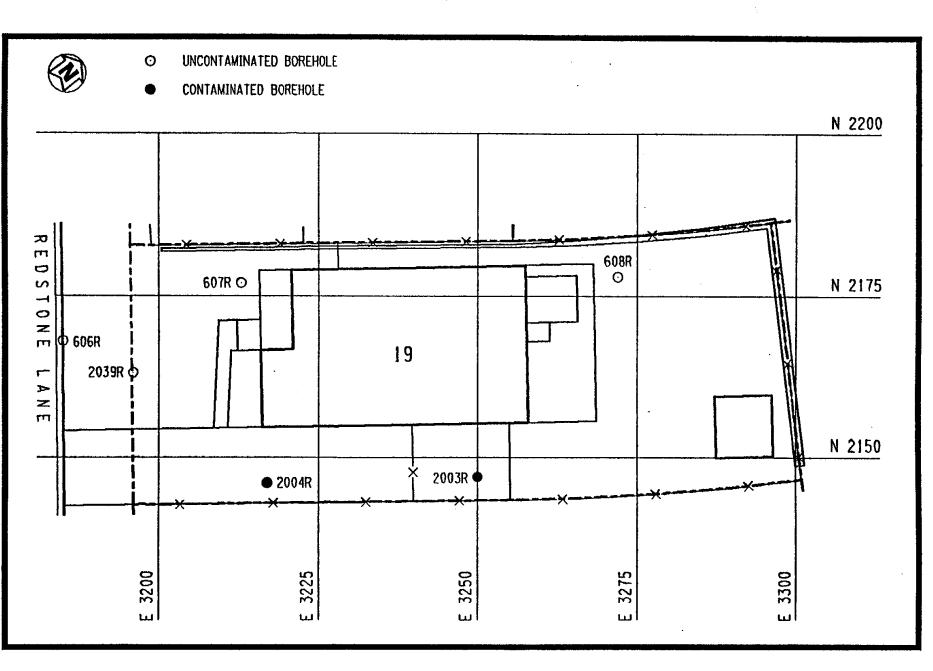


FIGURE 4-1 BOREHOLE LOCATIONS AT 19 REDSTONE LANE

of the contamination. The gamma-logging data were reviewed to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 <u>Sample Collection and Analysis</u>

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and 8), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at six locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from six locations (Figure 4-2) using the side-wall sampling method and were analyzed to compare laboratory soil sample results to downhole gamma radiation measurements. A cup or can attached to a steel pipe or wooden stake was inserted into the borehole and used to scrape samples off the side of the borehole at a specified depth. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

N 2200 刀 m 0 ▲ N 2175 S ----ONE 19 -A N m N 2150 E 3200 3225 3250 3275 3300 ய ι. w ш

FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS AT 19 REDSTONE LANE

[42,25] N38WNS66.DCN

18

~

4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the residence. A radon measurement was obtained to verify the presence of contaminated material under the residence and to estimate potential occupational exposures during future remedial actions.

Indoor radon measurements were made using the Tedlar bag method. Samples were collected by pumping air into a Tedlar bag at a rate of approximately 2 L/min. The air sample was transferred directly into a scintillation cell with an interior coating of zinc sulfide and an end window for viewing the scintillations. Analysis of the sample was simplified by allowing the radon decay products to build up over time. This method allowed all the radon decay products to come into secular equilibrium with the radon. The scintillation cell was placed in contact with a photomultiplier tube, and the scintillations were counted using standard nuclear counting instrumentation.

Indoor air samples were also collected to determine a WL for radon and thoron daughters. To measure radon daughters, an air sample was collected for exactly 5 min through a 0.45-micron membrane filter at a rate of 11 L/min for a total sample volume of 55 L. Alpha particle activity on the filter paper was counted from 40 to 90 min after sampling. An alpha scintillation detector coupled to a count-rate meter or a digital scaler was used. Measurements for thoron daughters were made using the same method as for radon daughters with the exception of the time between collection of the air sample and counting of the alpha particle activity. In the case of thoron daughters, the sample was allowed to age for

at least 5 h after sampling before alpha activity was counted. This elapsed time allowed radon daughters, which may have been present with the thoron daughters, to decay sufficiently so as not to interfere in calculating the WL for thoron daughters.

Exterior gamma exposure rate measurements were made at four locations throughout the property grid system. To obtain these measurements, either a 5.0- by 5.0-cm (2-by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. A conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property.

N 2200 Ð m Ο N 2175 S ----Ο z 'n 19 F---≫ z m N 2150 E 3200 E 3300 3225 3275 3250 ய ш ய

> FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 19 REDSTONE LANE

* [42,25] W38WNS66.DCN

5.0 CHARACTERIZATION RESULTS

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

Near-surface gamma radiation measurements on the property ranged from 3,000 cpm to approximately 6,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. No areas of surface contamination were indicated by near-surface gamma measurements.

Surface soil samples [depths from 0.0 to 15.2 cm (0.5 in.)] were taken at six locations on the property (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from less than 3.0 to less than 11.0 pCi/g for uranium-238, from less than 1.5 to less than 3.5 pCi/g for thorium-232, and from less than 0.7 to less than 1.3 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 do not exceed DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of less than 3.5 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in concentrations that are

quantitative with the instruments and techniques used. The "less than" value represents the lower bound of the quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (\pm) , which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.

Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE guideline Parameters for soil sample analysis were selected in soil. to ensure that the thorium-232 would be detected and measured at concentrations well below the lower quideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its guideline Parameters selected for the thorium-232 analyses also level. provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below quidelines. However, because of the relatively low gamma photon abundance of uranium-238, many of

the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these concentrations are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 7,000 cpm to 47,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples [taken at depths from 15.2 to 30.4 cm (0.5 to 1.0 ft)] indicated uranium-238 concentrations ranging from 0.3 to less than 10.6 pCi/g, thorium-232 concentrations ranging from 0.4 to 6.8 pCi/g, and radium-226 concentrations ranging from 0.3 to 1.9 pCi/g.

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist primarily of subsurface contamination at depths ranging from 1.06 m (3.5 ft) to 1.37 m (4.5 ft). The areas of subsurface contamination are shown in Figure 5-1. The subsurface contamination appears to extend beneath the residence.

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain.

. N 2200 Ħ m O N 2175 S ----Ο z m 19 - \triangleright Z m N 2150 E 3300 3250 3275 3200 3225 ш шl ايت w

> FIGURE 5-1 AREAS OF SUBSURFACE CONTAMINATION AT 19 REDSTONE LANE

10 051 UTOMICCO DOL

N 5 The contamination on this property is similar to contamination found on residential properties in close proximity to this property. It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 19 Redstone Lane. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

Results of an indoor radon measurement using the Tedlar bag method indicated a concentration that was less than the lower limit of detection. This measurement was substantially less than the applicable DOE guideline of 3.0 pCi/L above background (Ref. 10).

Results of the measurements for radon daughters were 0.003 WL. These results were substantially less than the applicable generic guideline detailed in the Code of Federal Regulations, 40 CFR 192 (Ref. 10), which states that an annual average (or equivalent) radon decay product concentration not exceed 0.02 WL.

Results of the measurement for thoron daughters were 0.001 WL. The generic guideline is more restrictive for radon-222 (radon) than for radon-220 (thoron) according to the National Council on Radiological Protection [see NCRP Report No. 50 (Ref. 11), which was used as the guideline for thoron daughter measurements].

Exterior gamma radiation exposure rate measurements ranged from 7 to 8 μ R/h, including background. These results can be found in Table 5-3. These measurements are consistent with the average background exposure rate of 9 μ R/h (Ref. 12). No indoor exposure rate measurement was obtained.

Based on the above information, the exposure rates for this property are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the United States and are often significantly higher than average background for this area.

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 19 REDSTONE LANE

Page 1 of 3

Coord	inates ^a	Depth	Concentr	ation (pCi/g ± 2	sigma)
East	North	(ft)	Uranium-238	Radium-226	Thorium-232
			<u>.</u>		
3185	2168	0.0 - 0.5	< 8.0	< 1.3	< 3.0
3185	2168	0.5 - 1.0	<10.6	< 1.5	1.8 ± 1.4
3196	2163	0.0 - 0.5	< 3.0	0.8 ± 0.1	1.5 ± 0.8
3196	2163	0.5 - 1.0	< 2.0	0.7 ± 0.2	< 1.0
3196	2163	1.0 - 1.5	< 2.0	0.4 ± 0.3	0.6 ± 0.1
3196	2163	2.0 - 2.5	1.6 ± 1.4	0.5 ± 0.2	< 1.0
3196	2163	2.5 - 3.0	< 2.0	0.6 ± 0.1	0.9 ± 0.1
3196	2163	3.0 - 3.5	< 2.0	< 1.0	1.3 ± 0.3
3196	2163	3.5 - 4.0	< 3.0	0.8 ± 0.1	1.6 ± 0.1
3196	2163	4.0 - 4.5	4.0 ± 2.1	1.0 ± 0.3	1.0 ± 0.4
3196	2163	4.5 - 5.0	8.5 ± 2.5	1.9 ± 0.3	1.2 ± 0.3
3196	2163	5.0 - 5.5	3.9 ± 2.3	1.3 ± 0.3	1.3 ± 0.4
3196	2163	5.5 - 6.0	0.8 ± 0.3	0.4 ± 0.1	0.4 ± 0.1
3196	2163	6.0 - 6.5	< 2.0	0.3 ± 0.1	< 1.0
3196	2163	6.5 - 7.0	< 2.0	0.6 ± 0.2	0.8 ± 0.1
3196	2163	7.0 - 7.5	< 3.0	< 1.0	< 1.0
3196	2163	7.5 - 8.0	< 2.0	0.4 ± 0.2	< 1.0
3196	2163	8.0 - 8.5	< 2.0	0.4 ± 0.2	< 1.0
3196	2163	8.5 - 9.0	< 1.0	< 1.0	< 1.0
3196	2163	9.0 - 9.5	< 2.0	0.6 ± 0.1	0.6 ± 0.2
3196	2163	9.5 - 10.0	< 2.0	< 1.0	< 1.0
3213	2177	0.0 - 0.5	<11.0	< 0.7	< 3.5
3213	2177	0.5 - 1.0	< 9.3	< 1.5	< 3.6

TABLE 5-1

(continued)

Page 2 of 3

Coordinatesa		Depth	<u>Concentration (pCi/g ± 2 sigma)</u>		
East	North	(ft)	Uranium-238	Radium-226	Thorium-232
3217	2146	0.5 - 1.0	< 1.0	0.4 ± 0.3	0.5 ± 0.3
3217	2146	1.0 - 1.5	< 2.0	< 1.0	1.1 ± 0.2
3217	2146	1.5 - 2.0	< 2.0	0.8 ± 0.2	0.9 ± 0.2
3217	2146	2.0 - 2.5	< 2.0	< 1.0	3.3 ± 0.9
3217	2146	2.5 - 3.0	< 1.0	1.0 ± 0.1	6.8 ± 0.4
3217	2146	3.0 - 3.5	0.5 ± 0.2	0.6 ± 0.1	0.9 ± 0.2
3217	2146	3.5 - 4.0	< 1.0	< 1.0	< 1.0
3217	2146	4.0 - 4.5	< 2.0	0.7 ± 0.1	1.7 ± 0.4
3217	2146	4.5 - 5.0	< 2.0	< 1.0	< 1.0
3217	2146	5.0 - 5.5	< 1.0	0.4 ± 0.1	0.9 ± 0.4
3217	2146	5.5 - 6.0	< 1.0	0.3 ± 0.1	0.7 ± 0.4
3217	2146	6.0 - 6.5	< 1.0	< 1.0	1.0 ± 0.1
3217	2146	6.5 - 7.0	< 1.0	0.4 ± 0.1	0.7 ± 0.2
3217	2146	7.0 - 7.5	< 1.0	0.4 ± 0.1	0.6 ± 0.4
3217	2146	7.5 - 8.0	< 1.0	< 1.0	< 1.0
3217	2146	8.0 - 8.5	< 1.0	< 1.0	< 0.1
3217	2146	8.5 - 9.0	0.3 ± 0.1	0.3 ± 0.1	0.4 ± 0.1
3217	2146	9.0 - 9.5	0.9 ± 0.2	0.3 ± 0.1	0.5 ± 0.1
3217	2146	9.5 - 10.0	< 1.0	< 1.0	< 1.0
3217	2146	10.0 - 10.5	< 1.0	0.3 ± 0.1	0.5 ± 0.3
3217	2146	10.5 - 11.0	1.8 ± 1.4	0.5 ± 0.2	0.9 ± 0.4
3217	2146	11.0 - 11.5	< 2.0	< 1.0	1.1 ± 0.7
3217	2146	11.5 - 12.0	< 1.0	0.5 ± 0.1	1.1 ± 0.2
3250	2147	0.5 - 1.0	< 2.0	0.6 ± 0.2	< 1.0
3250	2147	1.0 - 1.5	< 2.0	0.5 ± 0.1	0.7 ± 0.3
3250	2147	2.0 - 2.5	< 2.0	< 1.0	1.3 ± 1.2

~

TABLE 5	-1
---------	----

(continued)

Page 3 of 3

Coord	linates ^a	Depth	Concentra	ation_(pCi/g_±	2 sigma)
East	North	(ft)	Uranium-238	Radium-226	Thorium-232
3250	2147	2.5 - 3.0	< 2.0	0.7 ± 0.2	1.8 ± 0.6
3250	2147	2.5 - 3.0	2.2 ± 1.7	0.7 ± 0.1	1.7 ± 0.3
3250	2147	3.0 - 3.5	< 3.0	0.7 ± 0.2	< 1.0
3250	2147	3.5 - 4.0	< 2.0	0.8 ± 0.2	1.2 ± 0.5
3250	2147	4.0 - 4.5	1.6 ± 1.4	< 1.0	0.9 ± 0.3
3250	2147	4.5 - 5.0	2.2 ± 2.0	0.9 ± 0.2	4.4 ± 0.5
3250	2147	5.0 - 5.5	2.9 ± 1.0	0.6 ± 0.2	0.9 ± 0.1
3250	2147	5.5 - 6.0	< 3.0	< 1.0	1.3 ± 0.6
3250	2147	6.0 - 6.5	2.7 ± 1.7	0.8 ± 0.1	3.7 ± 0.5
3250	2147	6.5 - 7.0	< 2.0	< 1.0	< 1.0
3250	2147	7.0 - 7.5	< 1.0	0.4 ± 0.2	0.8 ± 0.2
3250	2147	7.5 - 8.0	< 2.0	0.9 ± 0.1	1.0 ± 0.1
3250	2147	8.0 - 8.5	2.2 ± 0.5	0.5 ± 0.2	1.0 ± 0.2
3250	2147	8.5 - 9.0	1.5 ± 0.2	0.4 ± 0.1	0.6 ± 0.1
3250	2147	9.0 - 9.5	< 2.0	0.5 ± 0.1	· < 1.0
3272	2178	0.0 - 0.5	< 8.2	0.9 ± 0.1	2.0 ± 0.5
3272	2178	0.5 - 1.0	< 8.3	0.6 ± 0.3	< 2.4

^aSampling locations are shown in Figure 4-1.

DOWNHOLE GAMMA LOGGING RESULTS

FOR 19 REDSTONE LANE

Page 1 of 4

<u>Coord</u> East	<u>inates</u> a North	Depth ^b (ft)	Count Rate ^C (cpm)
<u>Borehole</u>	<u>606R</u> d		
3185 3185 3185 3185 3185 3185 3185 3185	2168 2168 2168 2168 2168 2168 2168 2168	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0	13000 12000 13000 12000 11000 9000 8000 10000 7000
Borehole	2039R ^d		
3196 3196 3196 3196 3196 3196 3196 3196	2163 2163 2163 2163 2163 2163 2163 2163	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5	10000 11000 12000 12000 12000 13000 14000 15000 15000 15000 13000 9000 9000 9000
3196 3196 3196 3196	2163 2163 2163 2163	8.0 8.5 9.0 9.5	9000 10000 10000 10000

(continued)

P	a	q	e	2	of	_4

Ĵ.

L

1

.

<u>Coord</u> East	<u>inates</u> a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehole	<u>607R</u> đ		
3213	2177	0.5	12000
3213	2177	1.0	17000
3213	2177	1.5	16000
3213	2177	2.0	18000
3213	2177	2.5	17000
3213	2177	3.0	14000
3213	2177	3.5	15000
3213	2177	4.0	14000
3213	2177	4.5	11000
3213	2177	5.0	10000
3213	2177	5.5	9000
3213	2177	6.0	15000
3213	2177	6.5	9000
Borehole	2004R ^d		
3217	2146	0.5	7000
3217	2146	1.0	8000
3217	2146	1.5	10000
3217	2146	2.0	13000
3217	2146	2.5	18000
3217	2146	3.0	23000
3217	2146	3.5	43000
3217	2146	4.0	47000
3217	2146	4.5	31000
3217	2146	5.0	21000
3217	2146	5.5	13000

32

Ŀ

(continued)

<u>Page 3 c</u>	of 4		
	linatesa	Depthb	Count Rate ^C
East	North	(ft)	(cpm)
Borehole	2004R (cont	tinued) ^d	
3217	2146	6.0	11000
3217	2146	6.5	10000
3217	2146	7.0	9000
3217	2146	7.5	10000
3217	2146	8.0	10000
3217	2146	8.5	9000
3217	2146	9.0	9000
3217	2146	9.5	9000
3217	2146	10.0	9000
3217	2146	10.5	10000
3217	2146	11.0	11000
Borehole	<u>2003R</u> d		
3250	2147	0.5	10000
3250	2147	1.0	10000
3250	2147	1.5	11000
3250	2147	2.0	13000
3250	2147	2.5	15000
3250	2147	3.0	15000
3250	2147	3.5	17000
3250	2147	4.0	27000
3250	2147	4.5	36000
3250	2147	5.0	28000
3250	2147	5.5	15000
3250	2147	6.0	12000
3250	2147	6.5	11000

TABLE	5-2	
-------	-----	--

(continued)

<u>Page 4 o</u>	f 4	· · · · · · · · · · · · · · · · · · ·				
Coord	inates ^a	Depth ^b	Count Rate ^C			
East	North	(Ît)	(cpm)			
Borehole	2003R (cont	tinued) ^d				
3250	2147	7.0	11000			
3250	2147	7.5	10000			
3250	2147	8.0	9000			
3250	2147	8.5	10000			
3250	2147	9.0	10000			
3250	2147	9.5	10000			
3250	2147	10.0	9000			
Borehole	<u>608R</u> d					
3272	2178	0.5	8000			
3272	2178	1.0	8000			
3272	2178	1.5	10000			
3272	2178	2.0	11000			
3272	2178	2.5	13000			
3272	2178	3.0	14000			
3272	2178	3.5	11000			
3272	2178	4.0	9000			
3272	2178	4.5	11000			

^aBorehole locations are shown in Figure 4-1.

^bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

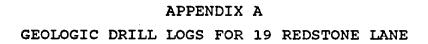
^CInstrument used was 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

dBottom of borehole collapsed.

GAMMA RADIATION EXPOSURE RATES

FOR 19 REDSTONE LANE

Coord	inates ^a	Rateb				
East	North	(µR/h)				
3197	2170	8				
3227	2148	7				
3273	2153	8				
3284	2176	7				


^aMeasurement locations are shown in Figure 4-3.

^bMeasurements include background.

REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- 2. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.
- 3. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> <u>Chemical, Maywood, New Jersey</u>, November 1983.
- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area, Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- 8. Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 19 Redstone Lane (LJ056), Lodi,</u> <u>New Jersey</u>, ORNL/RASA-87/31, Oak Ridge, Tenn., May 1987.

- 9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Calibrations by Comparison to TMC Calibration Pads," May 1989.
- 10. <u>U.S. Code of Federal Regulations</u>. 40 CFR 192, "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," Washington, D.C., July 1986.
- National Council on Radiation Protection and Measurements. <u>Environmental Radiation Measurements</u>, NCRP Report No. 50, Washington, D.C., December 27, 1986.
- 12. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

		G	EC	LOG	CD	RILI	L LO	G	PROJE	СТ			4				HOLE NO.
	ITE	•••						COORDIN	ATES		_	FUSRAP			E FRO	M HORIZE	606R BEARING
	EGU			istone] Mpleted)	1		DRIL		1 2,168 E 3,18 MAKE AND MODEL		the second s	Verti ROCK		TOTAL DEPTH
				L-21-8				ENCH	D CAS			S Little Beaver ROUND EL. DEPTH	4"	6.0			6.0 OF ROCK
			1									42.1 ¥ 3.	0/39.1 11/21/8	36 DE		/	
	;AMP	LE H		RWEIGHT, NA	/FALL	CAS	ING LE	FT IN HO		[A./	LEI	NGTH LOGGED BY:	D .	McGran	e	98	L
	Ļ.	25	<u>сі</u> .		PR	JATER	RE			8	Ī						
\sim	ים ום	₹ Ö		MPL. US	<u>σ_Σ</u>	rests of H		ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION	N AND CLASS	BIFICATIO	ON		ON: LEVELS, RETURN,
	SANP DIAN.	LEN	COR	SAMPLE BLOUS "N" X CORE RECOVERY	LOSS IN G.P.M	PRES P. S.	TIME MIN.	42.1	ā	GRA	SA					CHARAC	TER OF
			-W2					74.1			ſ	0.0 - 6.0 ft. Silty ((0.0-4.0 ft.) an (4.0-6.0 ft.) C	SAND (SM). F	ill aterial			
										-			olor stratified. ed with a few pi rular gravel (an ious lithologies		1	0-6 ft. u	e advanced sing 4" om augers.
									F	-		material. Solt,	unconsolidated	[100se],	1	Site chec radioact	ked for
									5.]			vey (SC-OH). N 0 ft. derate brown (S			contamin hole gam	nation and ma-logged -Eberline,
								36.1_		ļĽ.	4	Numerous gras	is roots and org	anics.	Ч	Corp.	- svernne,
												4.0-6.0 ft. Mo	rk reddish brow derate brown. 1	• • •	- 11	observed	ound water (after heavy
												upper soil hori				rain).	
												Bottom of boreho Auger spoils were 11-21-86.		hole,			
×	/																
	:								1								
						-											
									ļ								
	-															Desertet	iau a-3
																samples	tion of soil by visual
	•															examina	tion.
\sim																	
	5 S 4	SPL	 1T S	POON; ST	= SHE	LBY TU	JBE; S	ITE	<u> </u>			1	(1.05*)			HOLE NO	
				; P = PI						19	F	Redstone Ln	. (LODI)	`		6	06R

Ł

ومستعرب

وسيعيب

أحديدهم

المراجع

لىدىنىنى ا

- nin bearing to a

he interesting

j het stratenister

1

A species in

د- ديابه- ا

أحدمة والمتحدة

Land and the second

		19			IC D	RILI	L LO	G	PROJE		1	FUSR /	<u>AP</u>		· 1		138 1	ET NO.	HOLE NO. 2039R
	EGU 9-2	19	Red	leter :				COOPD THE	TEC				14		t*				all and the second s
	9-2		Red	Into				POOK THY	u Ea							L L	NGLE FI	OM HORIZ	BEARING
	9-2	N			Ln. (1	_)				N 2,1	<u>63 E</u>	3,19	6		·	Ver	tical	
					DRILL					DRIL		AND HOD	EL	SIZE	OVERB	URDEN	ROC	K (FT.)	TOTAL DEPT
				-29-8				SOILS			CM	<u>E 45B</u>		12"		9.7		0.3	10.0
	URE	REU	UVER /	(ri./	b) CORE	DUKE	5	ESEL. IU	PCAS	ING	GROUND	EL.		/EL. GRO 0/ 9/29/	und wat 88	ER	DEPTI	1/EL. TOP 9.1	
- CAMP	ANP	LE H	AMMEF	WEIGH	T/FALL	CAS		FT IN HOL	E: DI	A./L	ENGTH	LOGGED	BY:	· · · ·				9.	<u></u>
N CAMP		30	0 Ib	s./ 24	in.			NO							J	. LO	RD		
N CAMP	1.	5	0.	Ξ		JATEF ESSU				_						<u> </u>		1	
- CAMP	DIAM.	D B		BLOWS "N" CORE		TESTS	5		Ξ	GRAPHICS								NOTES	
5	6	0 .7	.		<u></u>	ю́н	₩;	ELEV.	DEPTH	H	SAMPLE D	escrif	TION	N AND (LASS:	IFIC	ATION		LEVELS, RETURN,
		LEI	ΞŔ	No lo	LOSS LOSS G. P. M	Щ.	TIME MIN. MIN.		۵	GRA	ñ							CHARA	CTER OF
	n SS	ທ 2.0	0 1.5	8-9-11	- 0	āa	·					- 35 Ft	TOP	SOIL D	ark hro	wn		URILL	ING, ETC.
-				11							N	(5YR2/2	2) grav	SOIL. D elly sand crumbly	y fill di	rt.			advanced 1/4 in. i.d.
_ *	22	2.0	20	6-6-3-	E C						A	out nov		ci uniory	, 101100			hollow	stem augers.
				0-0-0-	1					₩	N							gamma	-scanned by berline, Inc.
h	60	2.0	10	3-4-6-1				-	.	ĨĨ	3.5	- 5.0 Ft	<u>Silty</u>	SAND (<u>M].</u> M	loderat	e Do (o)		werme, 100.
	55	a.U	1.0	~- 1 -0+1	Ĭ			-	5_			medium	-grain	4) to dus ed sand.	Poorly	sorted	, some		
Ļ				10.10	1			_				gravel a crumble	nd fine s easily	15, <5%. 7. Earthy	odor.	dense,			water detect at 7.0 Ft?
	33	2.0	1.5	10-12 11-12				Ę		H	5.0	- 5.5 Ft	Clay	ver SILT	(ML-C	L) <u>.</u>		Н	
								•	Ι.			Dark to moist, p	mediu lastic s	m gray () nilt. Wea	N3-N5) k threa	. Deni d.	se, stiff,	}	
	SS	2.0	2.0	5-18-3 50	1														
L								-	10			gray (N' Medium	7) to p - to co	r SAND (ale bluist arse-gra	i gráy (ined sar	5B7/1 1d. wel	i.	d	
								_			114	sorted. under pi	MOISE,	moderat	ely stiff	, crum	bles	Π	
ļ											111	•			SM). M	lodera	.e	Top of Ft.	bedrock at 9.
							:					brown (SYR5/	SAND (6). Loose se to fine	, soft, v	vet to d sand			
												Possible	undist	turbed m	aterial.		·		
											9.7	- 10.0 F	t. <u>SAI</u>	NDSTON	E. Fra	ctured	tion		
												Dusky r	ed (5R	3/4).					
-												ttom of 1	Boreho	le at 10.0	۳+	• •			
											Bo Bo	rehole b	ckfille	d with sp	oils, 9/	29/88.			
																	~		
						l													
																-			
				1															
			1	1															
ł					1	ł													
									.										
			.			<u>مع</u>			· ·										
					1											• •			
				ł	1													_ .	
								ł										classific	tion and ation of
I			1	1		1							,					soils by examin	visual ation of
∠ŕ				ļ														sample	
			ľ	ł															
			ł	1				· ·											
s	SS =	SPL	IT S	POON; S	T = SHE	LBY TI	JBE; S	ITE	۰	<u> </u>				<i>1</i>			<u>.</u>	HOLE NO	
þ					ITCHER;					19	Red	<u>ston</u> e	<u>e Ln</u>	. (LO	DI)		١	2	<u>039R</u>

المراد ومرار

ليعينهم المراجع

1

the statement of the

لمنت يعودوس

.

-		G	EC)LO	GI	C D	RILI	L LO	G	PROJE	:T				JOB NO		ET NO.	HOLE NO.
	ITE									J FUSRAP					14501-138 1 OF 1 607 ANGLE FROM HORIZBEARING			607R BEARING
-	EGU					DRILL)					2,177 E 3,21	3 ISIZE	OVERBURDE		tical K (FT.)	TOTAL DEPI
	1-	21-8	861	1-21	-86		MO		ENCH		Bð	¢S	Little Beaver	4"	9.0		K (F1.)	9.0
-	ORE	REC	OVER' /	Y (FT	./%)	CORE	BOXE	SAMPL	ESEL. TO	P CASI	NG	GR	OUND EL. DEPTH/ 42.7 ¥ 6.1	'EL. GR D/36.7	OUND WATER 11/21/86	DEPTH	/EL. TOP	OF ROCK
	AMP	LE H		RWEI	GHT/	FALL	CAS	ING LE	FT IN HO		A./L	EN				I	$\overline{\alpha}$	
:	-	al		NA	T	L	JATER		NO	NE	 	FT			D. Mc	Grane	yoh	
1	AND DIA	SAMP. ADU.	AMPLE REC.	SAMPLE BLOUS "N"	X CORE RECOVERY	PR	ESSU	RE	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION	AND	CLASSIFIC	CATION	WATER CHARA	ON: LEVELS, RETURN, CTER OF ING, ETC
	<u>),-</u>								33.7	5			0.0 - 9.0 ft. Silty 1 (0.0-6.0 ft.) an (6.0-9.0 ft.) C medium-graine rounded to ang cobbles) of var material. Soft, sometimes clay saturated at 6. 0.0-0.3 ft. Moo Numerous gras 0.3-6.0 ft. Dat mottled with n distinguish if fi 3.0-6.0 ft. Dat (10YR4/2). M Bottom of borehol Auger spoils were 11-21-86.	d with ular gr ious liti uncons ey (SC- 0 ft. derate l s roots k yellon ioderate ll or na derate l ton. k yellon ay be d	a few pieces o avel (and occs iologies in the blidated (loos OH). Moist (prown (5YR3/ and organics. wish brown (1 s brown. Diffi tural. brown. May b wish brown ecomposed sa	f sional fill), 4). 0R4/2), icult to be buried	Borehol 0-9 ft. t solid-st Site che radioact contami hole gan by TMA Corp. 6.0 ft. g observe	e advanced ising 4" em augers. cked for ive nation and nma-logged -Eberline, round water i.
						= SHEI CHER;			ITE	,£	19	R	edstone Ln	. (LC)DI)		HOLE NO	07R

.

أنذررب

		6	EO	LOG		DIL		<u> </u>	PROJE	.1				JOB NO.	SHE	ET NO.	HOLE NO.
	SITE			LUG				COORDIN	ATES			FUSRAP		14501-		OF 1 OM HORIZ	2004R
		19		istone)					2,146 E 3,21	7		Vert		SEAKING
•	SEGU			MPLETED			PIDE	SOILS		DRIL		KE AND MODEL ME 45B	SIZE 12"	OVERBURDEN 12.0	ROCK	(FT.)	TOTAL DEPTH
fine of the second								ESEL. TO	DP CAS	ING		IND EL. DEPTH	EL. GROU	IND WATER	DEPTH.	EL. TOP	OF ROCK
È	SAMP	IE H		RWEIGHT	/FALL	ICAS		FT IN HO	15. DT	A /1	ENGT		/ 9/14/0			/	0
		30	0 Ib	s./ 24	in.			NO						J. LOF	D	$\bigcirc ?$	
L	'DIÀH.É	N. N. W.	<u>с</u> ШС	SAMPLE BLOWS "N" % CORE RECOVERY	PR	JATEF ESSU	RE			Ŋ	Π						
1	DIA	SOA	E E	1-900 1-9000 1-90000 1-9000 1-9000 1-9000 1-90000 1-90000 1-90000 1-90000 1-90000 1-90000 1-900000 1-90000 1-90000000 1-90000000000	ωΣ	EST	ы Ш.	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION	AND C	LASSIFICA	TION	NOTES WATER	ON: LEVELS,
- 	SAMP.	ц И И И И И	MP BR	S S S S S S S S S S S S S S S S S S S	LOSS IN G. P. M	PRESS.	MIN.			RAF	29					CHARAC	RETURN, CTER OF
				1	- 0	<u>äa</u>			<u> </u>		┟ <u>┼</u> ─,	0.0 - 0.5 Ft. ASPE	ALT &	GRAVEL.		DRILL	ING, ETC.
	SS	1.5	1.5	5-11-6							N N	Driveway.			/ _~	using 6	advanced 1/4 in. i.d.
	SS	2.0	1.4	6-6-6-7					·		N \	0.5 - 1.4 Ft. FILL, gravely sandy crumbly, nonco	Dark bi fill dirt. besive	Slightly moist	?	Sampled scanned	tem augers. l and gamma
Ì	- 00			-10-0							N Y	•••		M). Moderat]	TMA-E	berline, Inc.
	22	2.0	2.0	18-9 10-8					- ⊈ 5-			1.4 - 4.3 Ft. Silty brown (5YR3/4 Poorly sorted, 1 <5% Dry den	i) mediur iome grav	n grain sand. vel and fines b blas assily	ut [Ground	water
ŧ	SS	2.0	2.0	11-11-11] ·		NI	<5%. Dry, den 4.0-4.3 ft. Incr sorting; no grav	easing m	oisture. Impresilt.	oved		in hole at
				11					·		Nľ	4.3 - 5.2 Ft. <u>GRA</u> riprap. FILL.	VEL (GV	V). Limestone	[
	SS	2.0	2.0	6-7-12 13							N }	5.2 - 11.0 Ft. <u>SAN</u> brown (5Y4/4)	<u>D (SP).</u>	Moderate oliv	•	Elevate	d scan s, 3 - 5 Ft.
	<u>88</u>	2.0	2.0	19-20					10_		A	brown (5Y4/4) adhesive, dense 8.0 Ft. Saturat	medium , trace of	grain sand. N fines.	loist,		
ف	55	2.0	2.0	17-31				-			\mathbb{N}^{-}	Adhesive.				Top of u	indisturbed FT
								-	- ·		h	11.0 - 12.0 Ft. Sil (GP). Moderat 2 in. and proba	e brown bly large	till with pebb r. Sub-angula	es to	soif 11.0	FT
L_	<i>.</i>										\	grains and grav Compacted but Undisturbed Qu	crumble	s easily. till?	1		
ţ											'	Bottom of Borehol]		
L												Borehole backfilled to 6", and topp	i with gr	out to 6', spoil	s 88.		
ł														• • • • •			
in the second																	
Lv				-													
Ì																	
L																	
L																	
ŧ																	
L																	
																Descript classific soils by	ation of
the second second																examina samples	tion of
*																	
L				POON; ST ; P = PI				ITE	•	19	Re	dstone Ln.	(LO	DI)		HOLE NO	004R
	_					_							<u>`````````````````````````````````````</u>	·· · · j			

\$

and the second second

		EO	LOG	C D	RILL	. LO	G	PROJEC	T	JOB NO. SHEET NO. HOLE NO. FUSRAP 14501-138 1 OF 1 2003
SITE	19		stone)	COORDIN			ANGLE FROM HORIZBEARING N 2,147 E 3,250 Vertical
BEGU			MPLETED - 29-8 8			NDE	SOILS	Ĩ	DRIL	MAKE AND NODEL SIZE OVERBURDEN ROCK (FT.) TOTAL DI CME 45B 12" 10.0 10.0
								P CASI	NG	GROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF ROCK
		/	WEIGHT	(54) 1	lose	5	ET IN HO	E. 01	<u> </u>	ENGTH LOGGED BY:
SAMP			s./ 24		6.43		NO		A./L	J. LORD
AND DIAN.	LEN CORE	AMPLE REC. CORE REC.	SAMPLE BLOWS "N" X CORE RECOVERY	LOSS IN G.P.M Jar	PRESS. I.S. P.	RE	ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION WATER LEVELS WATER RETURN CHARACTER OF DRILLING, ET
SS S			15-21-29							0.0 - 1.1 Ft. ASPHALT & GRAVEL. Driveway. 0-10 ft. advanced
SS	·		6-6-10-8				-			Driveway. 1.1 - 3.4 Ft. <u>Gravelly silty SAND</u> (SG). Dark brown (5YR2/2) gravelly sandy fill dirt. Very slightly moist, crumbly, noncohesive. 0-10 ft. advanced using 6 1/4 in. i.c. hollow stem auge scanned by
SS	2.0	2.0	7-5-10				_			TMA-Eberline, I 3.4 - 5.3 Ft. <u>Silty SAND</u> (SM). Dark reddish brown (10R3/4) medium grain sand.
SS	2.0	2.0	11 14-10-7					▼ 5_ ■		Poorly sorted, some gravel and fines but <5%. Dry, dense, crumbles easily. Molds with high pressure. 5.3 Ft.
SS	2.0	2.0	8 7-8-10							Moist, loose sand, stiff clavey silt. Elevated scan
			12			-	-	10		7.3 - 7.8 FT. Sandy Silty CLAY (CL-ML). Light bluish gray (6B7/1). Plastic, cohesive, moist to slightly moist, stiff,
2										good thread. 7.8 - 9.2 Ft. Silty SAND (SM). Moderate reddish orange (10R6/6). Loose, moist, moderately sorted, subangular sand. Layers of fining upwards sequences with depth. 8.8-9.2 Ft. Coarse sand layer of 3". Saturated. 9.2 - 10.0 Ft. Silty SAND (SM). Moderate brown (5YR3/4) Medium to fine grain sand with >10% fines. Stiff, dense, very slightly moist, rubbery. Slight dilatancy.
					-					Bottom of Borehole at 10.0 Ft. Borehole backfilled with grout to 6', spoils to 6", and topped with asphalt, 9/29/88.
										Description and classification of soils by visual examination of samples
			POON; S'				SITE		 19	Redstone Ln. (LODI) HOLE NO. 2003R

ŧ

Ł

ļ

į

firet and

Ľ

ţ

		GEOLOGIC DRILL LO							PROJECT						JOB NO. SHEET NO. HOLE NO.				
															4501-138 1 OF 1 608R ANGLE FROM HORIZBEARING				
		19	Rec	istone	Ln. (I	ODI)		N 2,178 E 3,272						Vertical			BEAKING	
	BEGU			MPLETED					DRILL MAKE AND MODEL SIZE						OVERBURDEN ROCK (FT.) TOTAL DEPT			TOTAL DEPTH	
				1-21-8				ENCH	D. CAS			ttle Be		4"	8.0			8.0	
	CORL	NE C	/			DUNE	SISPARE		F LAS	ING	GROUN	3.1	¥ 3.5	/39.6 11	ND WATER	DEPTH	I/EL. TOP	OF ROCK	
	SAMP	LE H	AMMEI	R WEIGHT	/FALL	CAS	ING LE	FT IN HO	E: DI	DIA./LENGTH LOGGED BY:)	
				NA				NO	NONE						D. McGrane				
	Ľ.									Ŋ									
·	SMD DIAN.	AND DIANCE SAMP ADU. SAMPLE REC. SAMPLE REC. SAMPLE REC. LEN CORE REC. CORE REC. C. CORE REC. C. C. C. C. C. C. C. C. C. C. C. C. C					ELEV.	DEPTH	GRAPHICS	SAMPLE 1	DESCRIPTION AND CLASSIFICATION						NOTES ON: Water Levels,		
	÷	ĒZ	Ē Ř		LOSS IN G. P. M	00 H 00 +	HINE NIN NIN		Ē	D D D							WATER	RETURN,	
	ð₹.	r SA	ξ Ω	<u>מ</u> מ	Ъ́с	PRESS. P. S. I.	⊢Σ	43.1		G								ING, ETC.	
											0.	0 - 8.0 ft.	Silty S	AND (SM	4). Fill ous material fied. Fine-		1	· · · · · · · · · · · · · · · · · · ·	
]]]		(3.0-8.0 medium	ft.) Co	lor strati	fied. Fine-	to	Borehold 0-8 ft. u	advanced	
												sional fill	solid-stem augers.						
			material. Soft, unconsolidated (loose), sometimes clayey (SC-OH). Moist to								Site checked for radioactive								
													hole gan	contamination and hole gamma-logged					
												0.0-0.3 1 Numero	it. Mod us grass	ierate bro roots an	wn (5YR3/- d organics.	4).	by TMA Corp.	by TMA-Eberline, Corp.	
									0.3-3.0 ft. Dark yellowish brown (10R4/2 2.0 Ft. Piece of metal.										
								\$5.1_						-	H.	3.5 ft. ground water observed (after a			
												3.0-6.0 f	it. Mod	lerate bro	wn. May b	e buried	heavy ra	heavy rain).	
												upper so	n norie	on.		[
									•			6.0-8.0 f	(t. Dar)	k yellowi	ih brown omposed sar	detone			
											L	(101104)			omposed sat	discone.			
											Ba	ottom of l	borehole s were i	e at 8.0 fi replaced i	n the hole,				
												11-21-8	6.						
					-														
																	1		
		·															1		
						:											1		
																	Descript	ion and ation of soil	
																		by visual	
																		-	
<u></u>																			
														_					
				POON; ST				ITE		10	Rod	stone	ln	(1)	וור		HOLE NO		
	D = DENNISON; P = PITCHER; O = OTHER 19 Redstone Ln. (LODI) 608R													(LUI	<i></i>	<u>\</u>	0		

ŧ

. فرومین و المسالی می

أمردة مساولات

· ·

l

ĺ

لمحدز كالمتحرية

kankat yr J