063982-07

DOE/OR/20722-242 M-071

Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-81OR20722

the gran were

16

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 10 HANCOCK STREET

Lodi, New Jersey

September 1989

Bechtel National, Inc.

063982

÷.,

Bechtel National, Inc. Systems Engineers - Constructors

Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Mail Address: P.O. Box 350. Oak Ridge, TN 37831-0350 Telex: 3785873

SEP 29 1989

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin Technical Services Division

Subject: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of Radiological Characterization Report for seventeen residential properties, four municipal properties, and seven commercial properties in Lodi and Maywood, New Jersey Code: 7315/WBS: 138

Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerate manner. His efforts have allowed us to publish these reports of schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,

R. C. Robertson Project Manager - FUSRAP

CONCURRENCE

RCR:wfs:1756x Enclosure: As stated

DOE/OR/20722-242

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 10 HANCOCK STREET LODI, NEW JERSEY

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring, D. J. Whiting, W. F. Stanley Bechtel National, Inc. Oak Ridge, Tennessee

Bechtel Job No. 14501

TABLE OF CONTENTS

`......

.

ŧ.

		Page			
List	of Figures	iv			
List of Tables					
Abbr	reviations	v			
	· · · · · · · · · · · · · · · · · · ·				
1.0	Introduction and Summary	1			
1.1	.1 Introduction				
1.2	Purpose	3			
	1.3 Summary	3			
	1.4 Conclusions	6			
2.0	Site History	7			
	2.1 Previous Radiological Surveys	8			
	2.2 Remedial Action Guidelines	9			
3.0	Health and Safety Plan	12			
	3.1 Subcontractor Training	12			
	3.2 Safety Requirements	12			
4.0	Characterization Procedures	14			
	4.1 Field Radiological Characterization	14			
	4.1.1 Measurements Taken and Methods Used	14			
	4.1.2 Sample Collection and Analysis	17			
	4.2 Building Radiological Characterization	19			
5.0	Characterization Results	22			
	5.1 Field Radiological Characterization	22			
	5.2 Building Radiological Characterization	27			
Refe	erences	36			
Appe	endix A - Geologic Drill Logs for 10 Hancock Street	A-1			

.

LIST OF FIGURES

-

~--

•-----

<u>Figure</u>	Title	<u>Page</u>
1-1	Location of Lodi Vicinity Properties	2
1-2	Location of 10 Hancock Street	4
4-1	Borehole Locations at 10 Hancock Street	16
4-2	Surface and Subsurface Soil Sampling Locations at 10 Hancock Street	18
4-3	Gamma Exposure Rate Measurement Locations at 10 Hancock Street	21
5-1	Areas of Surface Contamination at 10 Hancock Street	23
5-2	Areas of Subsurface Contamination at 10 Hancock Street	26

LIST OF TABLES

ŧ

<u>Table</u>	Title	<u>Page</u>
2-1	Summary of Residual Contamination Guidelines for the Lodi Vicinity Properties	10
5-1	Surface and Subsurface Radionuclide Concentrations in Soil for 10 Hancock Street	29
5-2	Downhole Gamma Logging Results for 10 Hancock Street	30
5-3	Gamma Radiation Exposure Rates for 10 Hancock Street	35

ABBREVIATIONS

cm	centimeter
cm^2	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h	hour
in.	inch
km ²	square kilometer
L	liter
L/min	liters per minute
m	meter
m ²	square meter
MeV	million electron volts
μ R/h	microroentgens per hour
mi	mile
mi ²	square mile
min	minute
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
pCi/g	picocuries per gram
pCi/L	picocuries per liter
WL	working level
yd	yard
yd ³	cubic yard

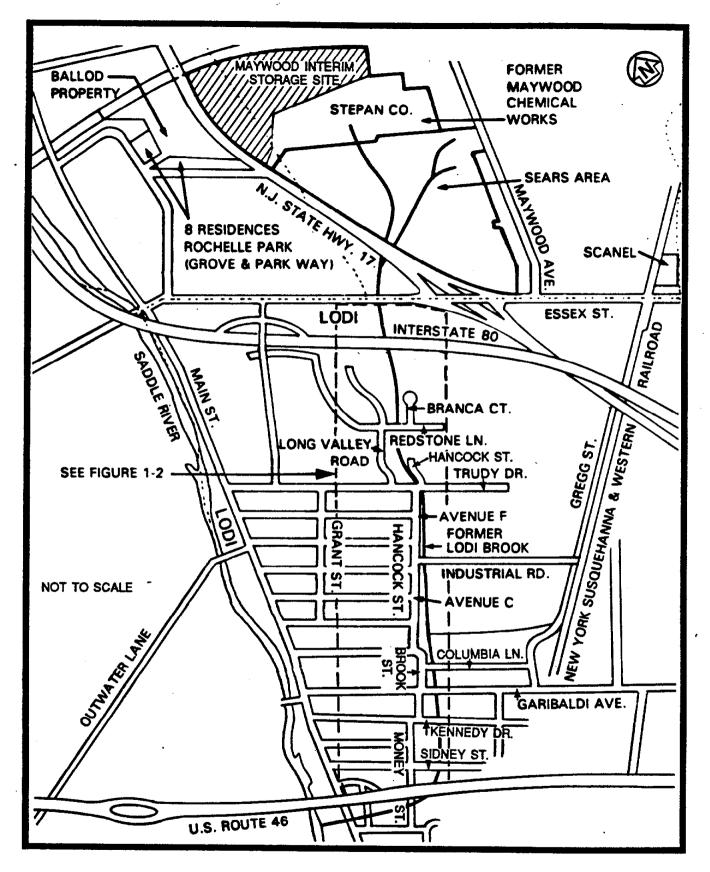
v

١

i......

: ⊾...

1.0 INTRODUCTION AND SUMMARY


This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 INTRODUCTION

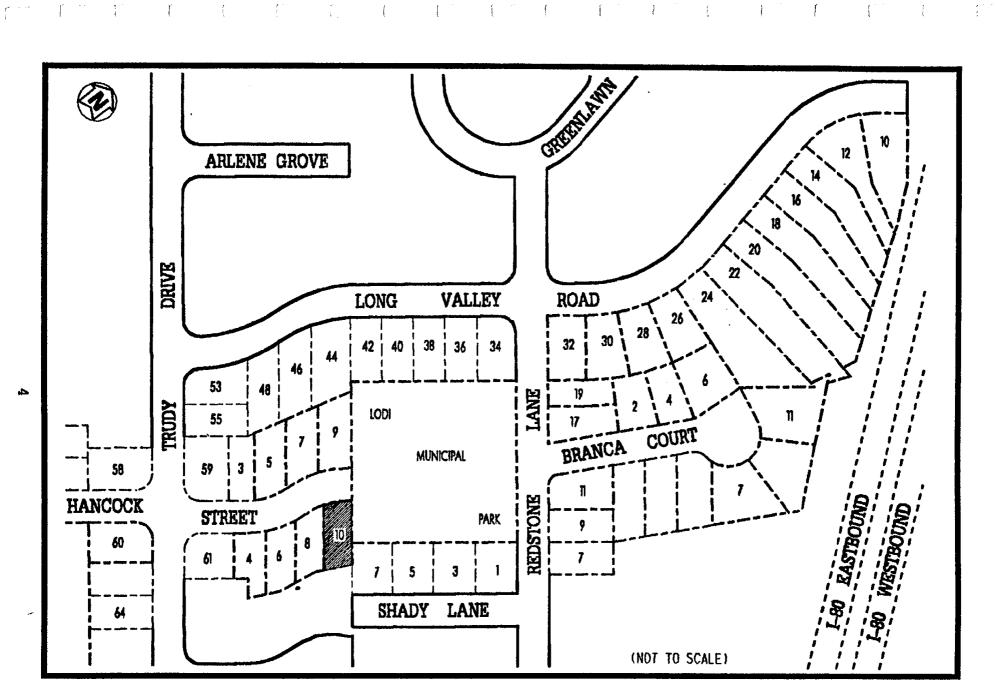
The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

1.2 PURPOSE

The purpose of the 1986 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.


1.3 <u>SUMMARY</u>

This report details the procedures and results of the radiological characterization of the property at 10 Hancock Street (Figure 1-2) in Lodi, New Jersey, which was conducted from November through December 1986.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 10 Hancock Street showed maximum concentrations of thorium-232 and radium-226 to be 7.2 and 1.9 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 15.7 pCi/g.

Subsurface soil sample concentrations ranged from 2.0 to 6.4 pCi/g for thorium-232 and from less than 0.2 to 2.5 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. The concentrations of uranium-238 in subsurface soil samples ranged from less than 5.4 to less than 12.4 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE believes that these guidelines are

Í

{

-E

1

1

FIGURE 1-2 LOCATION OF 10 HANCOCK STREET

1

ľ

conservative for considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property showed an isolated area of surface contamination at the northeast corner of the property adjacent to Hancock Street. Subsurface investigation by gamma logging indicated contamination to a depth of 2.43 m (8.0 ft).

Exterior gamma radiation exposure rates ranged from 8 to 12 μ R/h, including background. The indoor measurement showed a rate of 6 μ R/h, including background.

The radon-222 measurements inside the residence ranged from 0.4 to 0.6 pCi/L, which were within the DOE guideline of 3.0 pCi/L.

Measurements for radon daughters ranged from 0.002 to 0.005 working level (WL), and measurements for thoron daughters ranged from 0.001 to 0.002 WL.

All data tables for this property appear at the end of this report.

1.4 <u>CONCLUSIONS</u>

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 10 Hancock Street. This contamination is primarily subsurface contamination ranging from a depth of 1.52 m (5.0 ft) to 2.43 m (8.0 ft). In addition, the contamination appears to extend beneath the residence as well as into the street at the northeast corner of the property. An isolated area of surface contamination was also found in this northeast location. The total affected area is estimated to be approximately 80 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. The company continued this work until 1956. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are

· 7

typically found in monazite sands, which also contain thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

January 1981--The Nuclear Regulatory Commission (NRC) directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a 10.3-km² (4-mi²) aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984--In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its "scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

<u>September 1986</u>--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

2.2 <u>REMEDIAL ACTION GUIDELINES</u>

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

TABLE 2-1 SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

.

١

Ł

SOIL GUIDELINES

Radionuciide	Soil Concentration (pCl/g) Above Background ^{a,b,c}		
Radium-226	5 pCi/g when averaged over the first 15 cm of soil below		
Radium-228	the surface; 15 pCi/g when averaged over any 15-cm-thick		
Thorium-230	soil layer below the surface layer.		
Thorium-232			
· Other Radionuclides	Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.		
STRUCTURE GUIDELINES			

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL^d. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 µR/h.

Indoor/Outdoor Structure Surface Contamination

	Allowable Su	Allowable Surface Residual Contamination ^e (dpm/100 cm ²)	
Radionuciide [†]	Average ^{g,h}	Maximum ^{h,i}	Removable ^{h,j}
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	100	300	20
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-126, I-131, I-133	1,000	3,000	200
U-Natural, U-235, U-238, and associated decay products	5,000 α	15,000 α	1,000 α
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 8 - γ	15,000 B - γ	1,000 B - γ

TABLE 2-1 (CONTINUED)

^aThese guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").

^bThese guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick isyer to any depth and over any contiguous 100-m² surface area.

^CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.

^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.

^eAs used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

^gMeasurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.

^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

The maximum contamination level applies to an area of not more than 100 cm².

¹The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 SUBCONTRACTOR TRAINING

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 <u>SAFETY REQUIREMENTS</u>

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- o Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

4.0 CHARACTERIZATION PROCEDURES

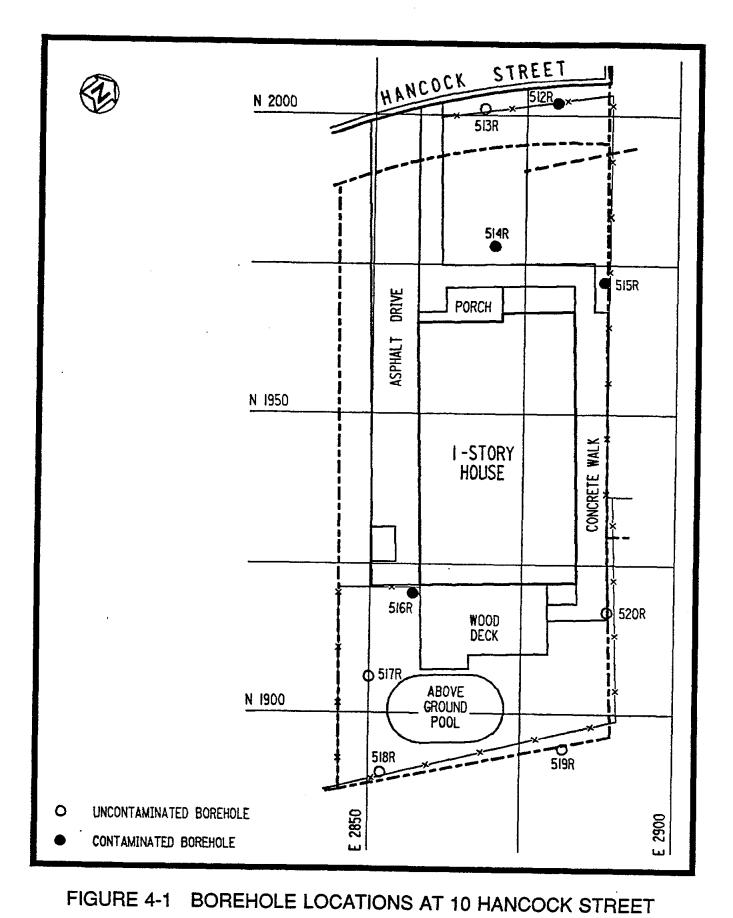
A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

4.1 FIELD RADIOLOGICAL CHARACTERIZATION

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this project.

4.1.1 Measurements Taken and Methods Used

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4-cm (12 in.) above the ground at the intersections of


3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling nine boreholes (Figure 4-1) [using either a 7.6-cm- (3-in.-) or 15.2-cm-(6-in.-) diameter auger bit], and gamma logging them. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

Ł

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration of the contamination. The gamma-logging data were reviewed

to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 <u>Sample Collection and Analysis</u>

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and 8), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at nine locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from nine locations (Figure 4-2) using the side-wall sampling method and were analyzed to compare laboratory soil sample results to downhole gamma radiation measurements. A cup or can attached to a steel pipe or wooden stake was inserted into the borehole and used to scrape samples off the side of the borehole at a specified depth. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

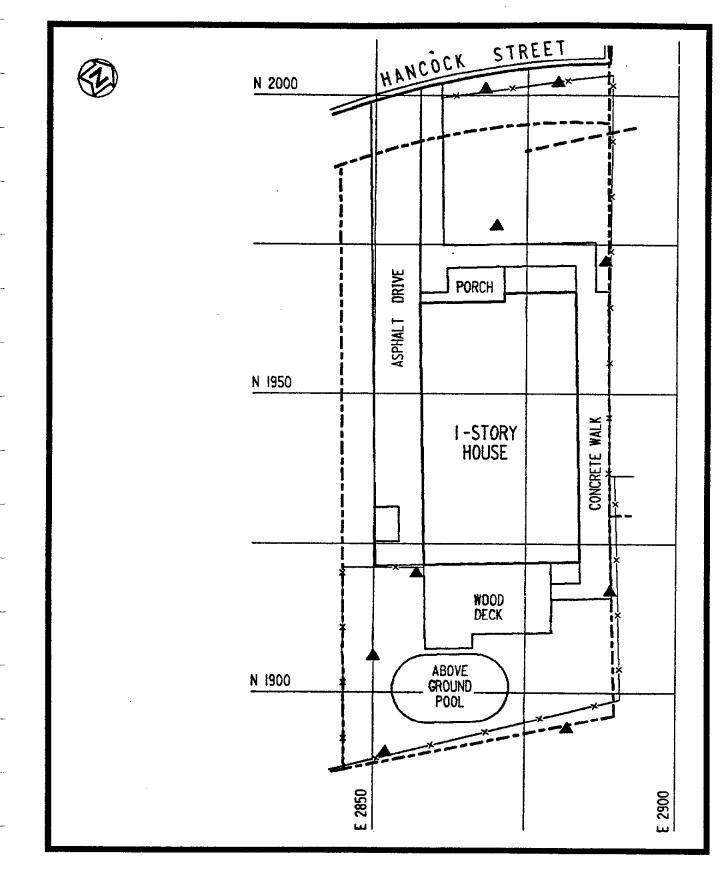


FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS AT 10 HANCOCK STREET

λ

4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the residence. A radon measurement was obtained to verify the presence of contaminated material under the residence and to estimate potential occupational exposures during future remedial actions.

Indoor radon measurements were made using the Tedlar bag method. Samples were collected by pumping air into a Tedlar bag at a rate of approximately 2 L/min. The air sample was transferred directly into a scintillation cell with an interior coating of zinc sulfide and an end window for viewing the scintillations. Analysis of the sample was simplified by allowing the radon decay products to build up over time. This method allowed all the radon decay products to come into secular equilibrium with the radon. The scintillation cell was placed in contact with a photomultiplier tube, and the scintillations were counted using standard nuclear counting instrumentation.

Indoor air samples were collected to determine a WL for radon and thoron daughters. To measure radon daughters, an air sample was collected for exactly 5 min through a 0.45-micron filter at a rate of 11 L/min for a total sample volume of 55 L. Alpha particle activity on the filter paper was counted from 40 to 90 min after sampling. An alpha scintillation detector coupled to a count-rate meter or digital scaler was used. Measurements for thoron daughters were made using the same method as for radon daughters with the exception of the time between collection of the air sample and counting of the alpha particle activity. In the case of thoron daughters, the sample was allowed to age for

at least 5 h after sampling before alpha activity was counted. This elapsed time allowed radon daughters, which may have been present with the thoron daughters, to decay sufficiently so as not to interfere in calculating the WL for thoron daughters.

Exterior gamma exposure rate measurements were made at four locations throughout the property grid system and at one location inside the residence. To obtain these measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. Α conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property. Interior measurements are generally obtained with the gamma scintillation instrument rather than the PIC because of its smaller size and the desire to minimize the technician's time inside the residence.

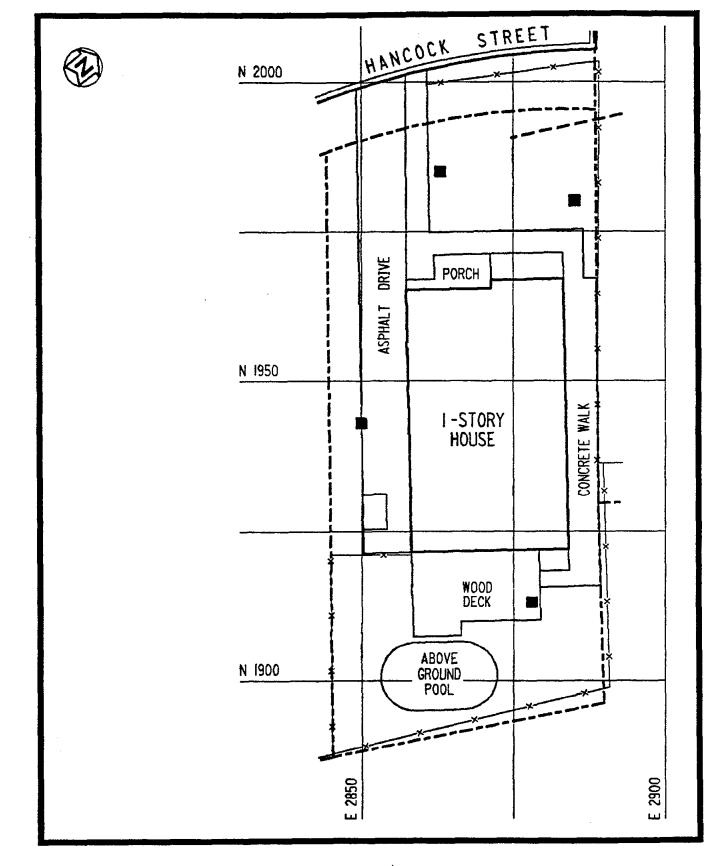


FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 10 HANCOCK STREET

5.0 CHARACTERIZATION RESULTS

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

Near-surface gamma radiation measurements on the property ranged from 3,000 cpm to approximately 7,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. Areas of surface contamination are shown in Figure 5-1.

Surface soil samples [depths from 0.0 to 15.2 cm (0.5 in.)] were taken at nine locations on the property (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from less than 6.0 to less than 15.7 pCi/g for uranium-238, from 1.1 to 7.2 pCi/g for thorium-232, and from 0.8 to 1.9 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1. The results of one soil sample showed concentrations of thorium-232 in excess of DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of 7.2 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in concentrations that are quantitative with the instruments and techniques used. The "less than" value represents the lower bound of the

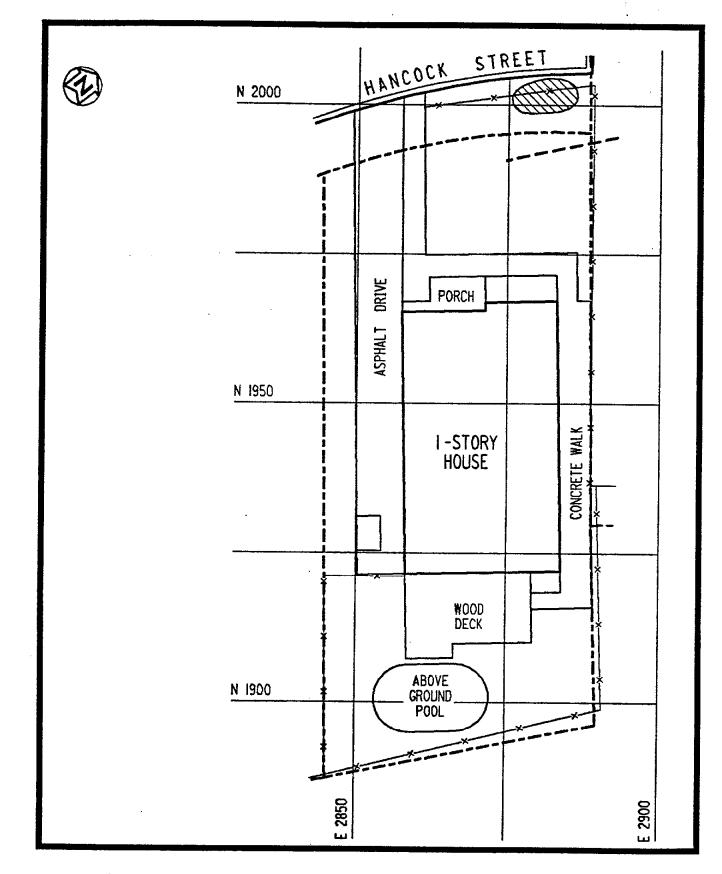
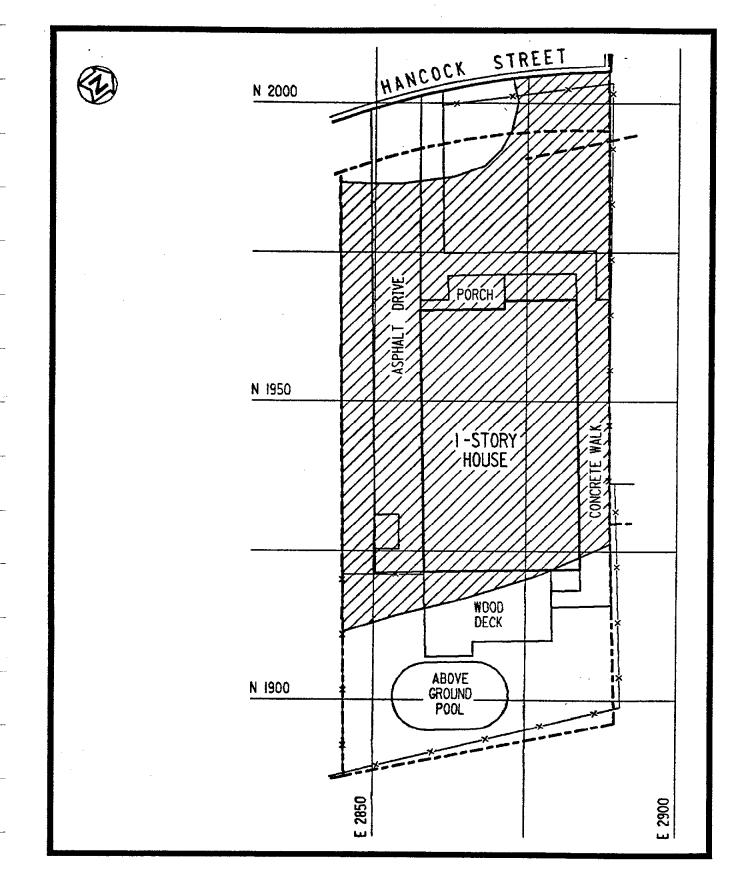


FIGURE 5-1 AREAS OF SURFACE CONTAMINATION AT 10 HANCOCK STREET

quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (\pm) , which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.


Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE quideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower guideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its quideline level. Parameters selected for the thorium-232 analyses also provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below guidelines. However, because of the relatively low gamma photon abundance of uranium-238, many of the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these

concentrations are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 9,000 cpm to 71,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples [taken at depths from 15.2 to 30.4 cm (0.5 to 1.0 ft)] indicated uranium-238 concentrations ranging from less than 5.4 to less than 12.4 pCi/g, thorium-232 concentrations ranging from 2.0 to 6.4 pCi/g, and radium-226 concentrations ranging from

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist primarily of subsurface contamination at depths ranging from 1.52 m (5.0 ft) to 2.43 m (8.0 ft), with an area of isolated surface contamination in the northeast corner of the front yard adjacent to Hancock Street. The areas of surface contamination are shown in Figure 5-1 and areas of subsurface contamination in Figure 5-2. The subsurface contamination appears to extend beneath the residence as well as into the street in front of the property.

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the

subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain. The contamination on this property is similar to contamination found on residential properties in close proximity to this property. It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 10 Hancock Street. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

Results of two indoor radon measurements using the Tedlar bag method indicated concentrations of 0.4 and 0.6 pCi/L, respectively. These measurements were substantially less than the applicable DOE guideline of 3.0 pCi/L above background (Ref. 10).

Results of measurements for radon daughters ranged from 0.002 to 0.005 WL. These results were substantially less than the applicable generic guideline detailed in the Code of Federal Regulations, 40 CFR 192 (Ref. 10), which states that an annual average (or equivalent) radon decay product concentration not exceed 0.02 WL.

Results of measurements for thoron daughters ranged from 0.001 to 0.002 WL. The generic guideline is more restrictive for radon-222 (radon) than for radon-220 (thoron) according to the National Council on Radiological Protection [see NCRP Report No. 50 (Ref. 11), which was used as the guideline for thoron daughter measurements].

Exterior gamma radiation exposure rate measurements ranged from 8 to 12 μ R/h, including background. These results can be found in Table 5-3. Assuming the resident spends 36 hours per week for 52 weeks per year (1,872 hours or 8 hours per day for 2 days per year and 4 hours per day for 5 days per week) in the yard, the average exterior exposure rate of 10 μ R/h would result in a yearly dose 2 mrem above background (after subtracting average background of 9 μ R/h; Ref. 12).

The indoor exposure rate measurement was 6 μ R/h, including background. The indoor exposure rate does not exceed average background (Table 5-3). For comparison, the DOE guideline for indoor exposure rate is 20 μ R/h.

Based on the above information, the exposure rates and doses at this property are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the United States and are often significantly higher than average background for this area.

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 10 HANCOCK STREET

	<u>inates^a</u>	Depth		<u>tration (pCi/g ± 2 sigm</u>	a)
East	North	(ft)	Uranium-238	Radium-226	Thorium-232
2850	1906	0.0 - 0.5	<11.9	1.3 ± 0.5	- < 3.2
2850	1906	0.5 - 1.0	< 6.9	2.4 ± 0.2	2.1 ± 0.1
2852	1890	0.0 - 0.5	<11.9	1.4 ± 0.1	2.3 ± 1.0
2852	1890	0.5 - 1.0	< 5.4	1.0 ± 0.3	2.3 ± 0.1
2857	1920	0.0 - 0.5	<12.1	1.5 ± 0.4	2.2 ± 1.2
2857	1920	0.5 - 1.0	< 6.4	0.8 ± 0.1	2.1 ± 0.2
2868	2001	0.0 - 0.5	<15.7	1.9 ± 0.3	< 4.0
2868	2001	0.5 - 1.0	<12.4	1.8 ± 2.6	3.7 ± 0.8
2870	1978	0.0 - 0.5	< 6.0	0.8 ± 0.3	1.1 ± 0.7
2870	1978	0.5 - 1.0	<10.7	< 0.2	< 3.4
2880	2002	0.0 - 0.5	< 9.2	1.3 ± 0.2	7.2 ± 0.4
2880	2002	0.5 - 1.0	< 8.3	1.1 ± 0.3	4.9 ± 0.2
2882	1894	0.0 - 0.5	<13.5	1.5 ± 0.3	3.2 ± 0.7
2882	1894	0.5 - 1.0	< 6.0	1.7 ± 0.3	2.0 ± 0.5
2888	1972	0.0 - 0.5	< 7.7	1.8 ± 0.3	4.9 ± 1.2
2888	1972	0.5 - 1.0	< 6.9	2.5 ± 0.5	6.4 ± 1.0
2889	1917	0.0 - 0.5	< 8.4	1.6 ± 0.5	< 3.4

^aSampling locations are shown in Figure 4-2.

~

TABLE 5-2

.

•----

DOWNHOLE GAMMA LOGGING RESULTS

FOR 10 HANCOCK STREET

Page 1 of 5				
<u>Coordinates^a</u> East North		Depth ^b (ft)	Count Rate ^C (cpm)	
Borehole	<u>517R</u> d			
2850	1906	0.5	15000	
2850	1906	1.0	16000	
2850	1906	1.5	19000	
2850	1906	2.0	20000	
2850	1906	2.5	21000	
2850	1906	3.0	22000	
2850	1906	3.5	23000	
2850	1906	4.0	21000	
2850	1906	4.5	22000	
2850	1906	5.0	20000	
2850	1906	5.5	20000	
2850	1906	6.0	22000	
2850	1906	6.5	24000	
2850	1906	7.0	15000	
2850	1906	7.5	11000	
2850	1906	8.0	10000	
2850	1906	8.5	9000	
2850	1906	9.0	10000	
2850	1906	9.5	10000	
2850	1906	10.0	9000	
Borehole	<u>518R</u> d			
2852	1890	0.5	11000	
2852	1890	1.0	12000	
2852	1890	1.5	12000	
2852	1890	2.0	12000	
2852	1890	2.5	12000	
2852	1890	3.0	12000	
2852	1890	3.5	11000	
2852	1890	4.0	11000	
2852	1890	4.5	10000	
2852	1890	5.0	10000	
2852	1890	5.5	10000	
2852	1890	6.0	10000	
2852	1890	6.5	9000	
2852	1890	7.0	9000	
2852	1890	7.5	8000	

\$

30

-

١.

TABLE 5-2

(continued)

Page 2 of 5

Coord	inates ^a	Depthb	Count Rate ^C
East	North	(Ît)	(cpm)
Borehole	<u>516R</u> đ		
2859	1920	0.5	13000
2859	1920	1.0	13000
2859	1920	1.5	13000
2859	1920	2.0	12000
2859	1920	2.5	13000
2859	1920	3.0	14000
2859	1920	3.5	18000
2859	1920	4.0	20000
2859	1920	4.5	21000
2859	1920	5.0	22000
2859	1920	5.5	24000
2859	1920	6.0	28000
2859	1920	6.5	52000
2859	1920	7.0	70000
2859	1920	7.5	30000
2859	1920	8.0	34000
2859	1920	8.5	15000
2859	1920	9.0	13000
2859	1920	9.5	10000
2859	1920	10.0	10000
Borehole	<u>513R</u> d		
2868	2001	0.5	9000
2868	2001	1.0	16000
2868	2001	1.5	21000
2868	2001	2.0	21000
2868	2001	2.5	19000
2868	2001	3.0	16000
2868	2001	3.5	15000
2868	2001	4.0	17000
2868	2001	4.5	19000
2868	2001	5.0	22000
2868	2001	5.5	28000
2868	2001	6.0	28000
2868	2001	6.5	26000
2868	2001	7.0	18000
2868	2001	7.5	14000

31

TABLE 5-	-2
----------	----

(continued)

Page 3 of 5

Coord	<u>inates^a</u>	Depthb	Count Rate ^C
East	North	(Ít)	(cpm)
Borehole	<u>514R</u> d		
2870	1978	0.5	9000
2870	1978	1.0	12000
2870	1978	1.5	12000
2870	1978	2.0	12000
2870	1978	2.5	17000
2870	1978	3.0	14000
2870	1978	3.5	18000
2870	1978	4.0	20000
2870	1978	4.5	20000
2870	1978	5.0	20000
2870	1978	5.5	21000
2870	1978	6.0	31000
2870	1978	6.5	33000
2870	1978	7.0	37000
2870	1978	7.5	22000
2870	1978	8.0	22000
2870	1978	8.5	16000
2870	1978	9.0	12000
2870	1978	9.5	11000
2870	1978	10.0	10000
<u>Borehole</u>	<u>512R</u> d		
2880	2002	0.5	12000
2880	20 02	1.0	20000
2880	2002	1.5	21000
2880	2002	2.0	20000
2880	2002	2.5	18000
2880	2002	3.0	15000
2880	2002	3.5	13000
2880	2002	4.0	16000
2880	2002	4.5	21000
2880	2002	5.0	37000
2880	2002	5.5	38000
2880	2002	6.0	52000
2880	2002	6.5	52000
2880	2002	7.0	33000
2880	2002	7.5	16000
2880	2002	8.0	12000
2880	2002	8.5	10000
2880	2002	9.0	9000

Ł

32

TABLE	5-2
-------	-----

.

(continued)

Page 4 of 5

<u>Coordi</u> East	nates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehole	<u>519R</u> d		
2882	1894	0.5	15000
2882	1894	1.0	18000
2882	1894	1.5	18000
2882	1894	2.0	16000
2882	1894	2.5	12000
2882	1894	3.0	12000
2882	1894	3.5	12000
2882	1894	4.0	12000
2882	1894	4.5	11000
2882	1894	5.0	10000
2882	1894	5.5	10000
2882	1894	6.0	10000
2882	1894	6.5	10000
2882	1894	7.0	10000
2882	1894	7.5	9000
Borehole	<u>515R</u> ð		
2888	1972	0.5	10000
2888	1972	1.0	14000
2888	1972	1.5	16000
2888	1972	2.0	15000
2888	1972	2.5	21000
2888	1972	3.0	22000
2888	1972	3.5	22000
2888	1972	4.0	22000
2888	1972	4.5	23000
2888	1972	5.0	26000
2888	1972	5.5	66000
2888	1972	6.0	71000
2888	1972	6.5	69000
2888	1972	7.0	30000
2888	1972	7.5	26000
2888	1972	8.0	25000
2888	1972	8.5	12000
2888	1972	9.0	11000
2888	1972	9.5	10000
2888	1972	10.0	11000

TABLE	5-2
-------	-----

ſ	co	\mathbf{nt}	ir	าบ	ed	١
•	$\sim \sim$	***	_		~~	

Page 5 of 5

<u>Coord</u> East	<u>inates</u> a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehole	<u>520R</u> d		
2889	1917	0.5	12000
2889	1917	1.0	15000
2889	1917	1.5	17000
2889	1917	2.0	20000
2889	1917	2.5	22000
2889	1917	3.0	21000
2889	1917	3.5	23000
2889	1917	4.0	21000
2889	1917	4.5	21000
2889	1917	5.0	19000
2889	1917	5.5	20000
2889	1917	6.0	16000
2889	1917	6.5	13000
2889	1917	7.0	13000
2889	1917	7.5	12000

Ł

^aBorehole locations are shown in Figure 4-1.

^bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

^CInstrument used was 5.0- by 5.0-cm (2-in. by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

dBottom of borehole collapsed.

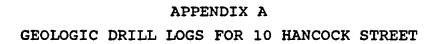
TABLE 5-3

GAMMA RADIATION EXPOSURE RATES

Rateb <u>Coordinates</u>a North (µR/h) East 2850 1943 8 2863 1985 10 2878 1913 10 2885 1980 12 Interior of Residence 6

FOR 10 HANCOCK STREET

^aMeasurement locations are shown in Figure 4-3.


^bMeasurements include background.

REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- 2. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.
- 3. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> <u>Chemical. Maywood, New Jersey</u>, November 1983.
- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area, Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- 7. Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- 8. Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 10 Hancock Street (LJ031), Lodi,</u> <u>New Jersey</u>, ORNL/RASA-88/42, Oak Ridge, Tenn., June 1989.

- 9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.
- 10. <u>U.S. Code of Federal Regulations</u>. 40 CFR 192, "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," Washington, D.C., July 1986.
- National Council on Radiation Protection and Measurements. <u>Environmental Radiation Measurements</u>, NCRP Report No. 50, Washington, D.C., December 27, 1986.
- 12. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

Ŀ,

10 Flancock St. (LODI) N 1906 E 2,850 Vertical 11-3-56 MORTTRENCH BASSIMPLES PALLE MAR AN ROZEL STEE DOCK (Tr.) [074.02574 11-3-56 MORTTRENCH BASSIMPLES TO CASING MARKER PALLE MARK AN ROZEL STEE DOCK (Tr.) [074.02574 2028 RECOVERY (Tr./Z) CORE BACKSIMPLESIEL. TOP CASING MARKER ESC (Tr.) [074.02574 DOCK (Tr.) [074.02574 2028 RECOVERY (Tr./Z) CORE BACKSIMPLESIEL. TOP CASING MARKER ESC (Tr.) [074.02574 DOCK (Tr.) [074.02574 2039 RECOVERY (Tr./Z) CORE BACKSIMPLESIEL. TOP CASING MARKER DOCK (Tr.) [074.02574 DOCK (Tr.) [074.02574 2040 RECOVERY (Tr./Z) CORE BACKSIMPLESIEL. TOP CASING MARKER DOCK (Tr.) [074.02574 DOCK (Tr.) [074.02574 2040 RECOVERY (Tr./Z) CORE BACKSIMPLESIEL. TOP CASING MARKER DOCK (Tr.) [074.02574 DOCK (Tr.) [074.02574 2040 RECOVERY (TR./Z) DOCK (TR.) [074.02574 DOCK (TR.) [074.02574 DOCK (TR.) [074.02574 2040 RECOVERY (TR./Z) DOCK (TR.) [074.02574 DOCK (TR.) [074.02574 DOCK (TR.) [074.02574 2050 RECOVERY (TR./Z) DOCK (TR.) [074.02574 DOCK (TR.) [074.02574 DOCK (TR.) [074.02574 2050 RECOVERY (TR./Z) DOCK (TR.) [074.02574 DOCK (TR.) [074.02574 DOCK (TR.) [074.02574 2050 RECOVERY (TR./Z) DOCK [074.02574 DOCK [074.025744 DOCK [074.02574 <th>GEOLOGIC DRILL LOC</th> <th>PROJECT FUSRAP</th> <th>JOB NO. SHEET NO. HOLE NO. 14501-138 1 OF 1 517R</th>	GEOLOGIC DRILL LOC	PROJECT FUSRAP	JOB NO. SHEET NO. HOLE NO. 14501-138 1 OF 1 517R
BECUM EXPONENTIAL DELLA MAGE AND ROCEL BILL MAKE AND ROCEL BILL AND EXAMPLES IN THE AND EXAMPLES AND EXAM		OORDINATES	ANGLE FROM HORIZBEARING
11-3-85 11-3-85 MORETRENCH MASS LITTLE BEAYER 12.0 12.0 CEE RECORDER (17.75) DORE BORESLAWELSEL. TO DASING BORNDEL. DEFINICE. GROUP WATER DEFINICE. TO O FROM AMPLE WAVER MEIDURALL DASING LETT IN HOLE: DASING LE			
AMPLE MARKER WEIGHT/FALL CASHO LEFT IN MOLE: DIA:/LEAGTH LOGGED SY: D. MCGRANE Bit of the structure PHESSURE FLEU. To the structure D. MCGRANE Bit of the structure PHESSURE FLEU. To the structure DESCRIPTION AND CLASSIFICATION Bit of the structure PHESSURE FLEU. To the structure NOTES ON: Bit of the structure PHESSURE FLEU. To the structure NOTES ON: Bit of the structure PHESSURE FLEU. To the structure NOTES ON: Bit of the structure PHESSURE FLEU. To the structure NOTES ON: Bit of the structure PHESSURE FLEU. To the structure NOTES ON: Bit of the structure PHESSURE FLEU. To the structure NOTES ON: Bit of the structure PHESSURE PHESSURE PHESSURE NOTES ON: Bit of the structure PHESSURE PHESSURE PHESSURE PHESSURE Bit of the structure <		NCH B&S LITTLE BEAVER 4"	12.0 12.0
N/A NONE D. McGRANE Big b	JURE RECOVERT (F1.7%) CORE BUXES SAMPLES		
How the second secon	-		D. MCGRANE
Ster SPLIT SPOR: ST = SHELAY TUBE: SITE Site SPLIT SPOR: ST = SHELAY TUBE: Site Site Split Spl			
Ster SPLIT SPOR: ST = SHELAY TUBE: SITE Site SPLIT SPOR: ST = SHELAY TUBE: Site Site Split Spl	SAMP SAMP AND DIAN SAMP. AD LEN CORE SAMPLE RE CORE X. CORE X.	ELEV, H CH H DESCRIPTION AND C	LASSIFICATION WATER LEVELS, WATER RETURN, CHARACTER OF
35 = SPLIT SUB or Clay due to mechanical mixing at time of lill emplotement. Very low danaity. Soft, Monomolidated, moist. 10.0 Ft. groundwater 10.0 - 12.0 Ft. Siter SAND (SM). 10.0 Ft. groundwater 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical moist. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical moist. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 10.0 - 12.0 Ft. Siter SAND (SM). Pine- to mechanical motion. 11/3/86. Pine- to mechanical motion. 11/3/86. Pine- to mechanical motion. 10.0 - 12.0 Ft. Site Sand (SM). Pine- to mechanical motion. 11/3/86. Pine- to mechanical motion. 10.0 - 12.0 Ft. Site Sand (SM). Pine- to mechanical motion. 11/3/86.		Image: Solution of the second state	w to numerous rular gravel. blogies. t, unconsolidated rown (5YR3/4). ish brown k reddish brown Mixed Ish fill) and pents. Block (N1). Borehole drilled 0.0-12.0 Ft. using 4" solid-stem augers. Site checked for radioactive contamination and hole gamma-logged by TMA-Eberline, Corp.
SS = SPLIT SPOON: ST = SHELBY TUBE: SITE HOLE NO.		 ↓ 10 ↓ iiit or clay due to mech- time of fill emplacement density. Soft, unconsoli 10.0 Ft. Piece of metal. 10.0 Ft. Piece of metal. 10.0 - 12.0 Ft. Silty SANI Undisturbed, natural m medium-grained. Soft. (loose), saturated at 10. yellowish brown (10YR- decomposed sandstone. Bottom of borehole at 12.0 Auger spoils were replaced 	Anical mixing at Very low dated, moist. 2 (SM). aterial. Fine- to poorly consolidated 0 Ft. Dark k/2). May be Ft.
			classification of soil samples by visual
D = DENNISON; P = PITCHER; O = OTHER 10 Hancock St. (LODI) 517R			

IE COORDINATES ANGLE FROM HORIZBEARING 10 Hancock St. (LODI) N 1,890 E 2,852 Vertical		G	ΕO	LOC	GIC		RILI	LO	G	PROJE	T			JOB NO.	SHEE		HOLE NO.
10 Hancock St. (LODI) N 1,890 E 2,852 Vertical	TE									ATES			FUSRAP		·		518R BEARING
DUM ECHAPLETED PRILLER PALLER PALL LAKE AUD NOCEL 512E DOREBURDEN GOCC (FT.) TOTAL DE 1-3-56 [11-3-56] MORETRENCH BAS LITTLE BEAVER 4" 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0		10)				N 1	890 E 2,852				
ER RECOVEY (TT.7%) CODE BOXESSAMPLESEL. TOP CASING BROWD EL. BEPTW/EL. GROWD WATER DEPTH/EL. TOP OF ROCK APLE NAMMER METANT/TALL CASING LEFT IN NOLE: DIA./LENTH LOGGED BY: N/A NONE NONE D. McGRANE CODE DY: SUPERATION AND CLASSIFICATION NOTES DY: D. MCTES DY: NOTES DY: NOTES DY: NOTES DY: NOTES DY: D. MCTES DY: NOTES DY: D. MCTES DY: DY: D. MCTES DY: DY: D. MCTES DY:	GUN								_				E AND MODEL SIZE	OVERBURDEN	ROCK	(FT.)	TOTAL DE
APLE NAME CASING LEFT IN NOLE: DIA./LENGTH LOGGED BY: NONE D. McGRANE NA PATESTOR TESTOR												_		the second s			
N/A NONE D. McGRANE Image: State of the state of th	RER	RECU	IVERT	(FI.,	/%)	CORE	BOXE	SSAMPL	ESIEL. TO	OP CAS	ING	GROL	ID EL. IDEPTH/EL. GROU	JND WATER	DEPTH/I	EL. TOP	OF ROCK
N/A NONE D. McGRANE Image: State of the state of th	MPLE	E HA	/	WÉIG	HT/	FALL	CAS	ING LE	FT IN HO	LE: DI	A./1	ENGT	LOGGED BY:		_		0
Example 1 PATER TESTS ELEV. T <														D. McGRA	NE	Y	T
 Color SD PC. Shirt SAMD. 1984. Color SD PC. Shirt SAMD. 1984. Color SD PC. Shirt SAMD. 1984. Borbole drilled or casional cobbie) of various libbolgies in the finance start. Bet, uscondition and occasional cobbie. Color SP. Mathematical Start (SCOR). Molet. Color SP. Dark redish brown (1083/4). So-5.3 FL. Garyish black (N2). Numerous organize. May be buried upper soil borbole at 90 Ft. Auger spoils were replaced in hole, 11-3-86. Description and dastification of set assisting and provide structure. 		1]	La series a		J					1	_	Π			<u> </u>		<u></u>
 Color SD PC. Shirt SAMD. 1984. Color SD PC. Shirt SAMD. 1984. Color SD PC. Shirt SAMD. 1984. Borbole drilled or casional cobbie) of various libbolgies in the finance start. Bet, uscondition and occasional cobbie. Color SP. Mathematical Start (SCOR). Molet. Color SP. Dark redish brown (1083/4). So-5.3 FL. Garyish black (N2). Numerous organize. May be buried upper soil borbole at 90 Ft. Auger spoils were replaced in hole, 11-3-86. Description and dastification of set assisting and provide structure. 	SAMP. ADU	LEN CORE	CORE REC	SAMPLE BLOUS "N % CORE	RECOVERY	T 	ESTS	3	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION AND C	LASSIFICAT	ION 	WATER WATER CHARA(LEVELS RETURN CTER OF
										5			material. Color stratifie medium-grained with fe pieces of rounded to any occasional cobbles) of vi in the fill material. Soft (loose), sometimes claye 0.0-0.3 Ft. Moderate b: Numerous grass roots an 0.3-5.0 Ft. Dark reddis 5.0-5.3 Ft. Grayish bla organics. May be buriet horizon. 5.3-9.0 Ft. Dark yellow (10YR4/2). May be det cottom of borehole at 9.0 J	d. Fine- to w to numerous pular gravel (and arious lithologies , unconsolidated y (SC-OH). Mo rown (5YR3/4). nd organics. h brown (10R3/ ck (N2). Numer d upper soil vish brown composed sandst	ist. 4). ous one.	Borehol 0.0-9.0 solid-st. Site che radioact contami hole gar by TML ² Corp. No grou observe:	e drilled Ft. using 4 Em augers. cked for ive nation and nma-logge -Eberline ndwater d.

~___

.

STE CONDINATES Description and the set of the consideration of consideratis the consideratis the consideration of th		G	EC	LOG	IC D	RILI	L LO	G	PROJE	ĊT			ET NO. HOLE NO.
BEGUN DOPLETED DATLER DOTAL 1 DATLER DATLER<	SITE								ATES			ANGLE F	
11-3-86 11-3-86 MORETRENCH B&S Little Beaver 12.0 12 CORE RECOVERY (17.78) CORE BOXES BANFLESEL. TOP CASING GROUND EL. DETIVEL GROUND MICH DEPIN/EL. TOP OF RECU SAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT HE DOWN HE DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT HE DOWN HE DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT HE DOWN HE DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT HE DOWN HE DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT HE DOWN HE DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT HE DOWN HE DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL CASING LEFT IN NOLE: DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RALL DIA./LENGT ICOGED BY: NAMPLE HAWNER VEIGHT/RA	DE OU)						· · · · · · · · · · · · · · · · · · ·
CORE RECOVERY (FT./X) CORE BODESIANPLESIEL: TOP CASING BADDING EL. DEPTWICEL, DECUMO WATER DEPTWICEL: TOP OF RECI- SAMPLE NAMMER VEIGHT/FALL CASING LEFT IN NOLE: DIA./LERGTN [LOGGD N: N/A D. MCGRANE SAMPLE NAMMER VEIGHT/FALL CASING LEFT IN NOLE: DIA./LERGTN [LOGGD N: DESCRIPTION AND CLASSIFICATION STATESTIC CONTENT OF OF RECI- DESCRIPTION AND CLASSIFICATION STATESTIC CONTENT OF OF RECI- DESCRIPTION AND CLASSIFICATION MATER LEVUE DESCRIPTION AND CLASSIFICATION NOTES ON: MATER LEVUE DESCRIPTION AND CLASSIFICATION DESCRIPTION	1 .						RETR	ENCH					(FT.) TOTAL DEPTH
N/A NONE D. McGRANE We store in the st	_	_						the second s	P CAS			OUND EL. DEPTH/EL. GROUND WATER DEPTH	
Here of the second state of the sec	SAMPL	EĶ			/FALL	CAS	ING LE			A./L	ENC		QAL
 10. * 10.* i. 2012 Marking * 10.* i. 10.* i.	W.	- اس								6	Π	D. MUGRANE	<u>NO</u>
 10. * 10.* i. 2012 Marking * 10.* i. 10.* i.	SAMP. TY	LEN COR	SAMPLE RE CORE REC	BLOWS "N RECOVER"	LOSS IN G.P.M	rests	3	ELEV.	DEPTH	GRAPHICS	SAMPLE		NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC.
	<u>04</u>	<u>w</u> i				Ξα		-				 medium-grained with few to numerous pieces of rounded to angular gravel. Gravel is of various lithologies. Occasional cobbles. Soft, unconsolidated (loose), moist. 0.0-0.3 Ft. Moderate brown (5YR3/4). Numerous grass roots and organics. 0.3-5.0 Ft. Dark yellowish brown (10YR4/2), mottled dark reddish brown (10R3/4). 5.0 - 8.0 Ft. SAND (SP). Mixed carbonaceous sand (coal ash fill) and indigenous stream sediments. Black (N1). Fine- to coarse-grained. Some inorganic silt or clay due to mechanical mixing at time of fill emplacement. Very low density. Soft, unconsolidated, moist. 8.0 - 12.0 Ft. Silty SAND (SM). Undisturbed, natural material. Fine- to medium-grained. Soft, poorly consolidated (loose). Moist to saturated at 10.0 Ft. 8.0-8.5 Ft. Moderate brown (5YR3/4). May be buried upper soil horizon. 8.5-12.0 Ft. Dark yellowish brown (10YR4/2). May be decomposed sandstone. 	Borehole drilled 0.0-12.0 Ft. using 4" solid-stem augers. Site checked for radioactive contamination and hole gamma-logged by TMA-Eberline, Corp. 10.0 Ft. groundwater observed.
SS = SPLIT SPOON; ST = SHELBY TUBE; SITE D = DENNISON; P = PITCHER; O = OTHER 10 Hancock St. (LODI) 516R								SITE		10	╵┣		

	PROJE	JOB NO.	SHEET NO. HOLE NO.
			1 OF 1 513R
10 Hancock St. (LODI)	COORDINATES	N 2,001 E 2,868	LE FROM HORIZBEARING Vertical
BEGUN COMPLETED DRILLER		DRILL MAKE AND MODEL SIZE OVERBURDEN	ROCK (FT.) TOTAL DEPTH
11-3-86 11-3-86 MORI	ETRENCH AMPLESEL. TOP CAS	B&S Little Beaver 4" 9.0	9.0 DEPTH/EL. TOP OF ROCK
/		v / 11/3/86 ↓	/
N/A	G LEFT IN HOLE: D	A./LENGTH LOGGED BY: D. McGRA	NE 9PL
AND DIAN AND DIANA AND DIANA		DESCRIPTION AND CLASSIFICAT:	ION WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC.
	5.	 0.0 - 1.0 Ft. Silty SAND (SM). Moderate brown (\$YR3/4). Fine- to medium-grained, soft, poorly consolidate (loose), dry. 1.0 - 3.0 Ft. <u>VOID</u>. Fill apparently settled around concrete conduit. 3.0 - 6.0 Ft. <u>NO SAMPLES</u>. Auger spoils not returning to surface, scraped off by conduit below surface. 	bd Borehole drilled 0.0-9.0 Ft. using 4" solid-stem augers. Site checked for radioactive contamination and hole gamma-logged by TMA-Eberline.
		6.0 - 9.0 Ft. <u>Silty SAND</u> (SM). As above; dark yellowish brown (10YR4/2). May mixed fill and decomposed sandstone.	Corp.
		Bottom of borehole at 9.0 Ft. Auger spoils were replaced in the hole, 11/3/86.	
			Description and classification of soil samples by visual examination.
SS = SPLIT SPOON; ST = SHELBY TUBE) = DENNISON; P = PITCHER; O = OTH		10 Hancock St. (LODI)	HOLE NO. 513R

GEOLOGIC DRILL LO		иов но FUSRAP 14501	-138 1 OF 1 514R
SITE 10 Hancock St. (LODI)	COORDINATES N 1,9		ANGLE FROM HORIZBEARING Vertical
3EGUN COMPLETED DRILLER	DRILL MAKE	AND MODEL SIZE OVERBURDEN	ROCK (FT.) TOTAL DEPTH
11-3-86 11-3-86 MORET		ttle Beaver 4" 12.0 EL. DEPTH/EL. GROUND WATER	DEPTH/EL. TOP OF ROCK
/ /		10.0/ 11/3/86	/
N/A	EFT IN HOLE: DIA./LENGTH	LOGGED BY: D. McG	rane 987
AND DIAM SAMP DIAM SAMP LEN CORE SAMP CORE SAM	ELEAT C	ESCRIPTION AND CLASSIFIC	ATION WATES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC.
		 3.0 Ft. Silty SAND (SM). Fill material. Dark yellowish brown (10) mottiled dark reddish brown (10RS/4 Fine- to medium-grained with few t numerous pieces of rounded to angul gravel. Gravel is of various lithologi Occasional cobbles. Soft, unconsolid (loose), moist. - 8.0 Ft. SAND (SP). Mixed carbonaceous sand (coal ash fill) and indigenous stream sediments. Black Fine- to coarse-grained. Some inorg silt or clay due to mechanical mixing time of fill emplacement. Very low density. Soft, unconsolidated, moist - 12.0 Ft. Silty SAND (SM). Undisturbed, natural material. Fine medium-grained. Soft, poorly conso (loose), moist to saturated at 10.0 F 8.0-9.0 Ft. Moderate brown (5YR3, be buried upper soil horizon. 9.0-12.0 Ft. Dark yellowish brown (10YR4/2). May be decomposed saturation (10YR4/2). May be decomposed saturation (10YR4/2). Soft. 	YR4/2), i). Borehole drilled 0.0-12.0 Ft. using 4" solid-stem augers. es. iated Site checked for radioactive contamination and hole gamma-logged by TMA-Eberline, Gorp. - to lidated t. (4). May 0.0 Ft. groundwater observed.
SS = SPLIT SPOON; ST = SHELBY TUBE; D = DENNISON; P = PITCHER; O = OTHER	SITE 10 Ha	ncock St. (LODI)	HOLE NO. 514R

	G	EC		DGI	C D	RILI	LLO	G	PROJEC	T		FUSRA	D		JOB N		SHEET		HOLE NO.	
ITE								COORDINA	TES					****	14201	ANGLE	FROM	HORIZ	512R BEARING	<u>.</u>
EGU					St. (L	_)	<u> </u>	ŀ			002 E	2,880	7F	OVERBURDE	the second s	Prtica			-
11-	3-8	6 1	1-:	3-86	5	MO		ENCH		Bå	<u>ks</u> L	ittle Bear	ver	4"	12.0			_	TOTAL DE 12.0	
ORE	REC	OVER' /	Y (I	FT./%) CORE	BOXE	SSAMPL	ESEL. TO	P CASI	ING	1	ID EL. D	EPTH/EL.	. GROUI	ND WATER	DE	PTH/EL	TOP	OF ROCK	
AMP	LE H		R WE		/FALL	CAS	ING LE	FT IN HO		A./L		LOGGED B	¥:		D. McG	D AN	П. С	70P	,	
Щ.	<u>مالح</u>	0		-,) -	1	JATER ESSU	2				Π				D. MCG	KAN		ψr		
SAND DIAN.	TP. ADI	PLE RE	SAMPLE	X CORE	LOSS IN G.P.M	ESTS		ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPT	FION A	ND CI	LASSIFI	CATIO	DN Wi Wi	ATER	ON: LEVELS RETURN	وا
T		<u> </u>	Ĩ	¦¦.,≞	9. L	PRESS	5-5	43.1		ē									NG, ET	
									- - - - -		0	medium-g pieces of r occasional in the fill (loose), so saturated 0.0-0.3 Ft Numerous 0.3-5.0 Ft (10YR4/2 (10R3/4). 5.0-7.0 Ft numerous	Color st grained w rounded i l cobbles material at 9.0 F t. Moder grass ro t. Dark y t), mottle t. Grayin organics	ratified with fev to angu- of var- l. Soft, clayey t. rate bro- cots and yellowi ed dark sh blac	(SM). Fill (5.0-12.0) i. Fine- to v to numer- ular gravel rious litholi v (SC-OH). own (5YR3 d organics. sh brown t reddish bi k (N2). Cl be stream	ous (and ogies lated Mois /4).	t; rechib	.0-12.0 olid-ste adioact ontami ole gan y TMA orp. .0 Ft. g	nation and nma-logge -Eberline roundwat	d ad
								31.1_				sediments 7.0-12.0 H (10YR4/2 Rottom of bouger spoils	Ft. Dark 2). May	be deco			ne.	lassific	tion and ation of so by visual	
					SHE			SITE		10	 - :	ncock	St. (LOL)))		H	OLE NO		

	(GE	EC)L(OG	IC	D	RIL	L LO	G	PROJE	СТ		FUSRAP	JOB NO 14501		EET NO. 1 OF 1	HOLE NO. 519R
ITE		n .	н.		oct	S +	(1	ODI	\	COORDIN	ATES		*			ANGLE I	FROM HORIZ	
EGU		<u>.</u>					RILL		/	1		DRII		1,894 E 2,882 MAKE AND MODEL SIZE	OVERBURDE		rtical CK (FT.)	TOTAL DEP
					3-8		0005			ENCH		<u>&S</u>	I	ITTLE BEAVER 4"	9.0			9.0
UKE	KE	.01	/ER	T ()	FT./3	•)	CURE	BOXE	SISAMPL	ESEL. T	OP CAS	ING	G	ROUND EL. DEPTH/EL. GROUN ↓ 7.5/ 11/3/8	ND WATER 6	DEPI	TH/EL. TOP	OF ROCK
]	N//		•	ALL	CAS	ING LE	FT IN HONO		IA.7	LE	IGTH LOGGED BY:	D. McG	RANE	9	£
AND DIAM.	SAMP. ADU. I EN CODF		CORE REC.	SAMPLE		LOSS	PR	ATER ESSU EST SU SU SU SU SU SU SU SU SU SU SU SU SU	RE	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION AND CL	LASSIFIC	ATION	WATER	LEVELS, RETURN, CTER OF
	SAM						0 9. F				5.		1.	 0.0 - 0.3 Ft. Silty SAND (S material. Moderate brown to medium-grained. Soft (loose), dry. Numerous g organics. 0.3 - 2.5 Ft. SAND (PT). (Black (N1). Fine- to coal low density. Soft, uncom 2.5 - 9.0 Ft. Silty SAND (S Undisturbed, natural mas stratified. Fine- to medi poorly consolidated (loos 7.5 Ft. 2.5-5.5 Ft. Moderate br cobbles and organics. Mi soil horizon. 5.5-9.0 Ft. Dark yellowin (10YR4/2). May be deco Bottom of borehole at 9.0 F Auger spoils were replaced in 11/5/86. 	t, unconsoli rass roots a Coal ash fill rse-grained solidated, n (M). terial. Cold um-grainec e), saturate own (5YR3 ay be burie sh brown omposed saturate t.	dated and . Very noist. . Soft, . Soft, . d at /4). Few d upper	DRILL: Borehol 0.0-9.0 solid-st Site che radioact contami by TMJ Corp. 7.5 Ft., observe	tion and ation of soi by visual
								LBY TI	/	ITE							HOLE NO	
) =	DEN		SON	; P	= P	ITC	HER;	0 = 0	DTHER			1(<u>)</u>	Hancock St. (LOD	ハ)	<u> </u>		519R

ŧ

	G	EO	LOG	IC E	DRIL	L LO	G	PROJE	T		FUSRAP		JOB NO.	SHEE 138 1	T NO.	HOLE NO.
SITE							COORDIN	ATES			TUSKAI				ON HORIZ	515R BEARING
3EGU			MPLETE		LODI)					1,972 E 2,88			Vert		
			1-3-8			RETR	ENCH	[KE AND MODEL Little Beaver	SIZE 4"	OVERBURDEN 12.0	ROCK	(FT.)	TOTAL DEPTH
							ESEL. TO	PCAS			UND EL. DEPTH	I/EL. GROU	ND WATER	DEPTH	EL. TOP	OF ROCK
SAMP	LEH	/	R WEIGH	T/FALL	CAS	ING LE	FT IN HO	LE: DI	A./L	ENGI	TH LOGGED BY:				/	0
		1	N/A				NO						D. McGR	ANE	<u> </u>	Ĺ
SAMP. TYPE AND DIAM.	SAMP. ADU. LEN CORE	SAMPLE REC.	SAMPLE BLOWS "N" Z CORE	LOSS LOSS IN LOSS	WATER RESSU TESTS SSUC	RE	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTIO	n and C	Lassifica	YTION	WATER CHARAC	ON: LEVELS, RETURN, CTER OF ING, ETC.
Ωα	<u>~~</u>							5			 0.0 - 3.0 Ft. Silt material. Columedium-grain pieces of round Gravel is of varies Occasional col (loose), moist. 0.0-0.6 Ft. Bl roots and orgs 0.6-3.0 Ft. D (10YR4/2), m (10R3/4). 3.0 - 8.0 Ft. SAI carbonaceous indigenous str Fine- to coars silt or clay du time of fill em density. Soft, 6.0 - 12.0 Ft. Sil Undisturbed, i medium-graven (loose). Moist 6.0-8.0 Ft. M pieces of grave horizon. 8.0-12.0 Ft. I (10YR4/2). M 	or stratified hed with fer- hed with fer- hed with fer- hed with fer- bilack (N1). anics. 'ark yellowin ottled dari- 'ark yellowin ottled dari- 'ark yellowin ottled dari- 'sand (coal ream sedim se-grained. te to mecha se-grained. te to mecha placement. ', unconsolid lity SAND (natural ma hed. Soft, j t to saturati foderate br el. May be Dark yellow May be dec	d. Fine- to w to numerou uiar gravel. logies. , unconsolids Numerous gr ish brown a reddish brown areddish brown mical mixing . Very low lated, moist. (SM). terial. Fine- poorly consol ted at 9.0 Ft. own (5YR3/4 buried uppe wish brown omposed sam	Ated arden wn (N1). anic at idated 4). Few r soil	Borehol 0.0-12.0 solid-sta Site che radioact contami hole gar by TMA Corp.	e drilled Ft. using 4" em augers. cked for ive ination and nma-logged A-Eberline,
		-													classific	tion and ation of soil by visual ation.
					IELBY TI R; 0 = 1		SITE		10	H	ancock St	t. (LO	DI)		HOLE NO	515R

.

.

		EC	LOG	IC D	RILI	L LO	G	PROJE	CT	FUSRAP 14501-138	· · · · · · · · · · · · · · · · · · ·
SITE		Ha	ncock	St. (L	ODI.)	COORDIN	ATES			ROM HORIZBEARING
BEGU	N	20	MPLETED	DRILL	ER				DRILL	MAKE AND NODEL SIZE OVERBURDEN ROM	K (FT.) TOTAL DEPT
			1-3-8				ENCH	E CAS	&S	LITTLE BEAVER 4" 9.0 ROUND EL. DEPTH/EL. GROUND WATER DEPT	9.0 H/EL. TOP OF ROCK
		1								₹ /	/
		1	R WEIGHT N/A	• • • • • • •			FT IN HO NO		A./L	D. McGRANE	J.Z.
SAMP. TYPE AND DIAM.	SAMP. ADU. LEN CORE	SAMPLE REC.	SAMPLE BLOWS "N" X CORE RECOVERY	COSS LUN G. P. M. d. G. P. M. J.	JATEF ESSU FESTS SSUA	RË	ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	, NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC
20		Ŭ						5.		 0.0 - 1.0 Ft. Silty SAND (SM). Fill material. Multi-colored. Fine- to medium-grained with few to numerous pieces of rounded to angular gravel of various lithologies. Occasional cobbles. Soft, unconsolidated (loose), moist. 0.0-0.3 Ft. Moderate brown (5YR3/4). Numerous grass roots and organics. 0.3-1.0 Ft. Dark yellowish brown 10YR4/2) 1.0 - 7.0 Ft. SAND (PT). Coal ash fill. Black (N1). Fine- to coarse-grained. Very low density. Soft, unconsolidated, moist. 7.0 - 9.0 Ft. Silty SAND (SM). Undisturbed, natural material. Fine- to medium-grained. Soft, poorly consolidated (loose), moist. Dark yellowish brown 10YR4/2). May be decomposed sandstone. Bottom of borehole at 9.0 Ft. Auger spoils were replaced in the hole, 11/3/86. 	DRILLING, ETC Borehole drilled 0.0-9.0 Ft. using 4" solid-stem augers. Site checked for radioactive contamination and hole gamma-logged by TMA-Eberline, Corp. No groundwater observed.
			POON; ST ; P = P				ITE		10	Hancock St. (LODI)	HOLE NO. 520R

ł

i.