063982-11

DOE/OR/20722-251

M-015

Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE COMMERCIAL PROPERTY AT 160 AND 174 ESSEX STREET (NATIONAL COMMUNITY BANK)

Lodi, New Jersey

September 1989

Bechtel National, Inc.

063982

÷

÷.

Bechtel National, Inc.

Systems Engineers — Constructors Jackson Plaza Tower

800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Mail Address: P.O. Box 350. Oak Ridge, TH 37831-0350 Telex: 3785873

SEP 29 1989

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin Technical Services Division

Subject: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of Radiological Characterization Report for seventeen residential properties, four municipa properties, and seven commercial properties in Lodi and Maywood, New Jersey Code: 7315/WBS: 138

Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerate manner. His efforts have allowed us to publish these reports on schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,

R. C. Robertson

Project Manager - FUSRAP

4-

CONCURRENCE

RCR:wfs:1756x Enclosure: As stated

cc: J. D. Berger, ORAU (w/e)
 N. J. Beskid, ANL (w/e)

DOE/OR/20722-232

٨

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE COMMERCIAL PROPERTY AT 160 AND 174 ESSEX STREET LODI, NEW JERSEY

ł

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring, D. J. Whiting, and W. F. Stanley Bechtel National, Inc. Oak Ridge, Tennessee

Bechtel Job No. 14501

TABLE OF CONTENTS

L

Ĩ

I

1

		Page
List	t of Figures	iv
List	t of Tables	iv
Abbr	reviations	v
	-	
1.0		l
	1.1 Introduction	1
	1.2 Purpose	3
	1.3 Summary	3
	1.4 Conclusions	5
2.0	Site History	7
	2.1 Previous Radiological Surveys	8
	2.2 Remedial Action Guidelines	9
3.0	Health and Safety Plan	12
	3.1 Subcontractor Training	12
	3.2 Safety Requirements	12
4.0	Characterization Procedures	14
	4.1 Field Radiological Characterization	14
	4.1.1 Measurements Taken and Methods Used	14
	4.1.2 Sample Collection and Analysis	17
	4.2 Building Radiological Characterization	19
5.0	Characterization Results	22
	5.1 Field Radiological Characterization	22
	5.2 Building Radiological Characterization	26
Refe	erences	33
Appe	endix A - Geologic Drill Logs for 160 and	D -1

iii

LIST OF FIGURES

I

ł

Í

Hereita -

I

. -

ţ

<u>Figure</u>	Title	Page
1-1	Location of Lodi Vicinity Properties	2
1-2	Location of 160 and 174 Essex Street	4
4-1	Borehole Locations at 160 and 174 Essex Street	16
4-2	Surface and Subsurface Soil Sampling Locations at 160 and 174 Essex Street	18
4-3	Gamma Exposure Rate Measurement Locations at 160 and 174 Essex Street	21
5-1	Areas of Subsurface Contamination at 160 and 174 Essex Street	25

LIST OF TABLES

<u>Table</u>	Title	<u>Page</u>
2-1	Summary of Residual Contamination Guidelines for the Lodi Vicinity Properties	10
5-1	Surface and Subsurface Radionuclide Concentrations in Soil for 160 and 174 Essex Street	28
5-2	Downhole Gamma Logging Results for 160 and 174 Essex Street	29
5-3	Gamma Radiation Exposure Rates for 160 and 174 Essex Street	32

ABBREVIATIONS

1

1_

1

Ĺ

1

Í ___

ł

ļ

Cm	centimeter
cm^2	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h	hour
in.	inch
km ²	square kilometer
L	liter
L/min	liters per minute
m	meter
m^2	square meter
MeV	million electron volts
μ R/h	microroentgens per hour
mi	mile
mi ²	square mile
min	minute
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
pCi/g	picocuries per gram
pCi/L	picocuries per liter
WL	working level
yd	yard
yd ³	cubic yard

v

1.0 INTRODUCTION AND SUMMARY

This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 INTRODUCTION

Ľ

Ţ

1

z

Ĩ.

ŧ

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

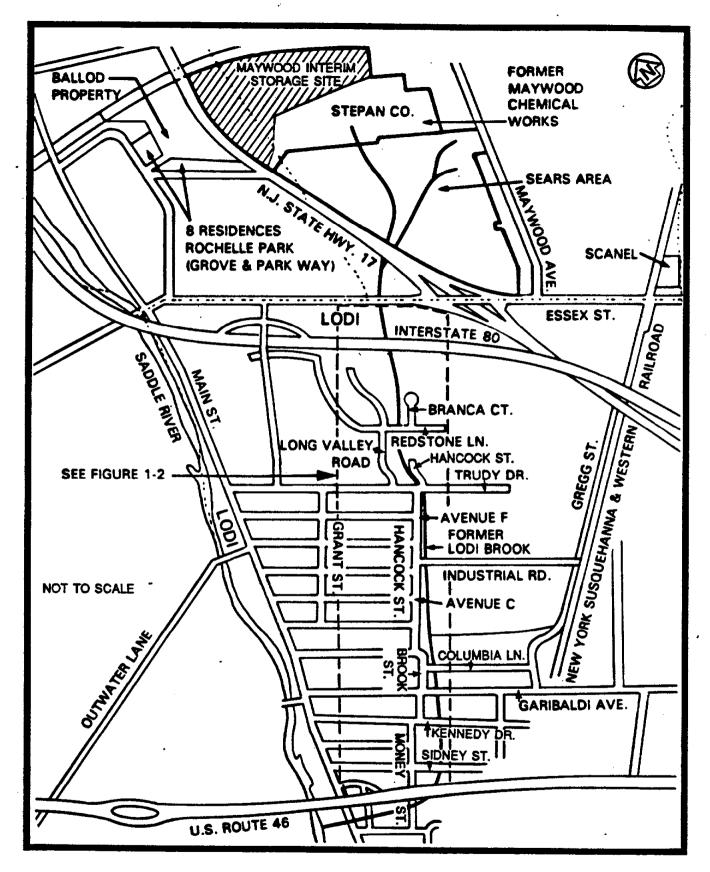


FIGURE 1-1 LOCATION OF LODI VICINITY PROPERTIES

1.2 <u>PURPOSE</u>

The purpose of the 1987 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.

1.3 <u>SUMMARY</u>

l

This report details the procedures and results of the radiological characterization of the property at 160 and 174 Essex Street (Figure 1-2) in Lodi, New Jersey, which was conducted in November 1987. Additional data was obtained in October 1988.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

The commercial properties at 160 and 174 Essex Street consist of a gravel surfaced vacant lot used as a parking lot (160 Essex Street), and a one story stucco building surrounded by an asphalt paved area (174 Essex Street) occupied by the National Community Bank. The properties are situated in a heavily commercialized area along a major thoroughfare (Essex Street) that forms the boundary between the Boroughs of Lodi and Maywood. The properties lie on the Lodi side of Essex Street and are bordered by commercial properties to the north and northwest, an interstate highway to the south, and a military reserve facility to the east. Entrance to the properties is from Essex Street. Access to the properties to conduct radiological characterization was extremely restricted. All work activities were performed during non-business hours on weekdays or on weekends. Access to the interior of the bank building was prohibited, therefore interior measurements could not be made.

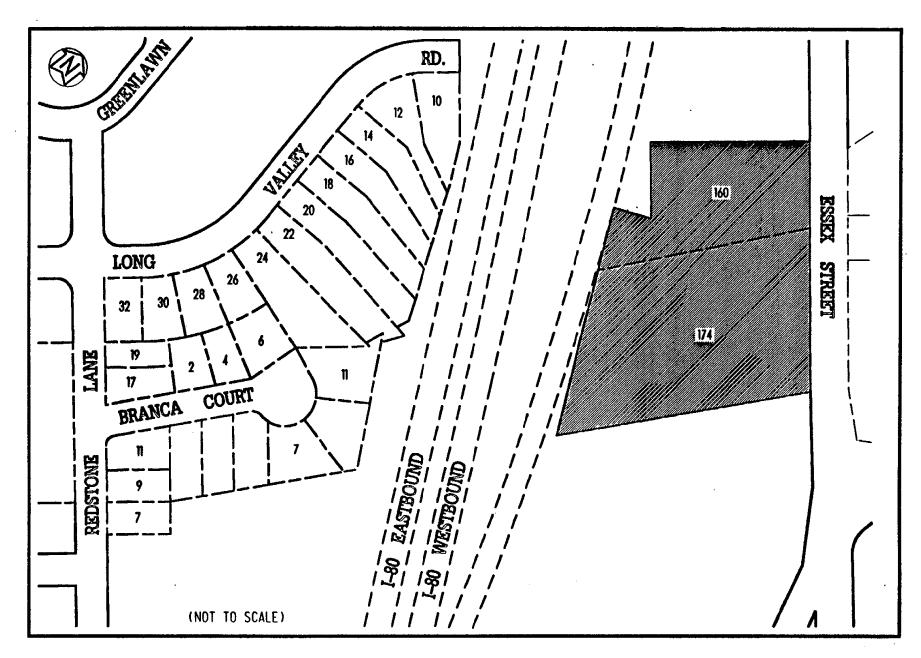


FIGURE 1-2 LOCATION OF 160 AND 174 ESSEX STREET

M38WMS80.DGN

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 160 and 174 Essex Street showed maximum concentrations of thorium-232 and radium-226 to be less than 3.0 and 1.2 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 10.1 pCi/g.

1

1

1

Ì ___

Subsurface soil sample concentrations ranged from 0.7 to 4.6 pCi/g for thorium-232 and from 0.5 to 1.1 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. The concentrations of uranium-238 in subsurface soil samples ranged from less than 4.5 to less than 7.2 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE believes that these guidelines are conservative for considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property did not indicate surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 1.83 m (6.0 ft).

Exterior gamma radiation exposure rates ranged from 5 to 8 μ R/h, including background. No indoor measurements could be obtained because of restricted access to the building.

All data tables for this property appear at the end of this report.

1.4 <u>CONCLUSIONS</u>

Ì.

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the properties located at 160 and 174 Essex Street. This contamination is primarily subsurface contamination ranging from a depth of 15.2 cm (0.5 in.) to 1.83 m (6.0 ft). In addition, the contamination appears to be located mainly on the 160 Essex Street property (area used for parking) and there is a high probability that the contamination extends beneath the street in front of that property. There is a smaller area of contamination in the southeast corner of the 174 Essex Street property. The total affected area is estimated to be approximately 15 percent of the properties. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

It is known from review of aerial photographs prior to the construction of the bank building that the original channel of Lodi Brook flowed through these properties. The former channel was realigned prior to and during commercial development of the area. A portion of the present day realigned channel can be seen above ground in an open culvert at the rear of the 160 Essex Street property near the interstate. The channel is contained, to this point, in buried conduit from a point above ground along New Jersey Route 17 in the Borough of Maywood, passing beneath commercial property in Maywood, Essex Street and the parking area at 160 Essex Street where it surfaces in the open culvert. It then flows into buried conduit and passes beneath the interstate.

2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

ł

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are typically found in monazite sands, which also contain thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of

thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

ľ

Ĩ

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

<u>January 1981</u>--The Nuclear Regulatory Commission directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a $10.3 - \text{km}^2$ (4-mi²⁾ aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984--In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its

"scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

September 1986--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8 and 9).

2.2 <u>REMEDIAL ACTION GUIDELINES</u>

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

TABLE 2-1 SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL GUIDELINES

Radionuciide

Radium-226 Radium-228 Thorium-230 Thorium-232 Soli Concentration (pCi/g) Above Background^{a,b,c}

5 pCi/g when averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over any 15-cm-thick soil layer below the surface layer.

Other Radionuclides

Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

STRUCTURE GUIDELINES

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL^d. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 µR/h.

Indoor/Outdoor Structure Surface Contamination

	Allowable Surface Residual Contamination [®] (dpm/100 cm ²)			
Radionuclide [†]	Average ^{g,h}	Maximum ^{h,i}	Removable ^{h,j}	
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	100	300	20	
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-126, I-131, I-133	1,000	3,000	200	
U-Natural, U-235, U-238, and associated decay products	5,000 a	15,000 a	1,0 00 α	
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 8 - γ	15,000 B - γ	1,000 Β - γ	

0489-0650.1

TABLE 2-1 (CONTINUED)

^aThese guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").

^bThese guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.

^CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.

^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.

^eAs used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

⁹Measurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.

^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

The maximum contamination level applies to an area of not more than 100 cm².

¹The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

0489-0850.2

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 SUBCONTRACTOR TRAINING

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 <u>SAFETY REQUIREMENTS</u>

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

1

4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

4.1 FIELD RADIOLOGICAL CHARACTERIZATION

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this property.

4.1.1 <u>Measurements Taken and Methods Used</u>

1

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 10).

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling 28 boreholes (Figure 4-1), using either a 7.6-cm- (3-in.-) or 15.2-cm-(6-in.-) diameter auger bit, and gamma logging them. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 10).

1

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration

Ĺ

BV Consignation

N-BAR

States and

O UNCONTAMINATED BOREHOLE

CONTAMINATED BOREHOLE

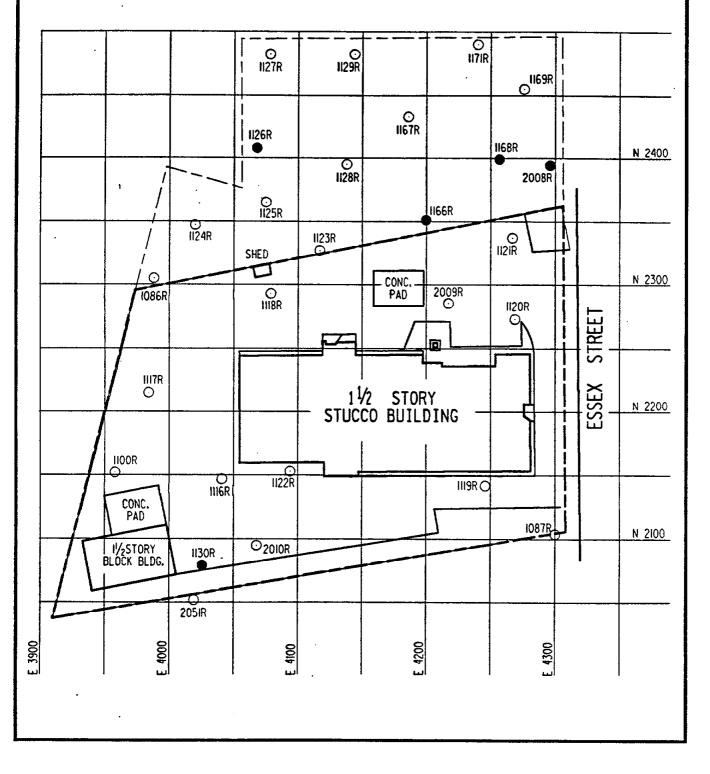


FIGURE 4-1 BOREHOLE LOCATIONS AT 160 AND 174 ESSEX STREET

N38W9855.DGN

of the contamination. The gamma-logging data were reviewed to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 <u>Sample Collection and Analysis</u>

10.000

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, 8, and 9), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at ten locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from twentysix locations (Figure 4-2) using a 7.6-cm (3.0-in.) outside diameter (0.D.) split-spoon sampler mounted on a tripod or attached to a truck-mounted auger stem. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

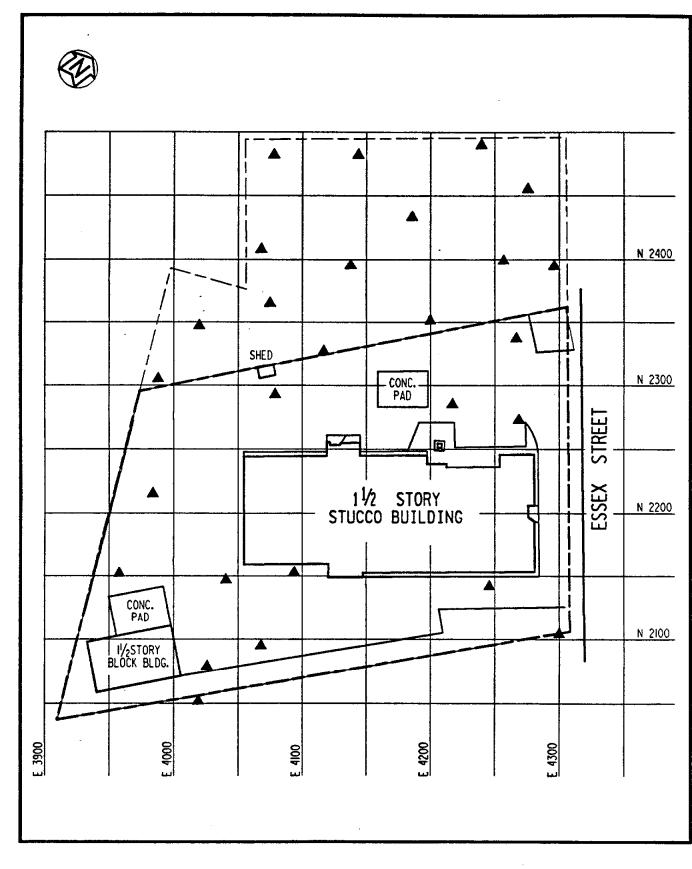


FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS AT 160 AND 174 ESSEX STREET

Ĺ

No.

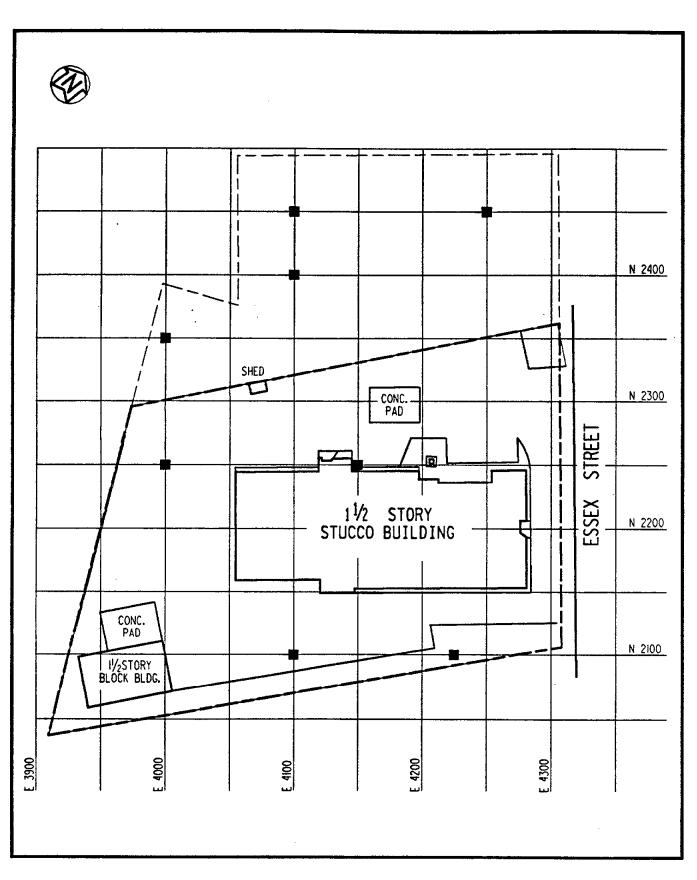
N. LANK

¥.

â.

ĺ

I.


4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

ŧ

Î

Access to the properties at 160 and 174 Essex Street was extremely limited because of heavy traffic during business hours. Because access was prohibited to the building, this element of the characterization activities was not performed.

Exterior gamma exposure rate measurements were made at eight locations throughout the property grid system. To obtain these measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. A conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property.

FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 160 AND 174 ESSEX STREET

M38W9855.DGN

I

l

ļ

Â.

ĺ

[.

5.0 CHARACTERIZATION RESULTS

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

L

Near-surface gamma radiation measurements on the property ranged from 5,000 cpm to approximately 9,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. No areas of surface contamination were indicated by near-surface gamma measurements.

Surface soil samples [depths from 0.0 to 15.2 cm (0.5 in.)] were taken at ten locations on the properties (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from 3.5 to less than 8.7 pCi/g for uranium-238, from less than 0.7 to less than 2.1 pCi/g for thorium-232, and from less than 0.5 to less than 1.4 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 do not exceed DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of less than 2.1 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in concentrations that are quantitative with the instruments and

techniques used. The "less than" value represents the lower bound of the quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (\pm) , which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.

Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE guideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower guideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its guideline level. Parameters selected for the thorium-232 analyses also provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below guidelines. However, because of the relatively low gamma photon abundance of uranium-238, many of

1

the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these concentrations are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 4,000 cpm to 50,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples [taken at depths from 15.2 to 30.4 cm (0.5 to 1.0 ft)] indicated uranium-238 concentrations ranging from less than 1.0 to 7.2 pCi/g, thorium-232 concentrations ranging from 0.5 to 11.9 pCi/g, and radium-226 concentrations ranging from 0.4 to 3.2 pCi/g.

ľ

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist primarily of subsurface contamination at depths ranging from 15.2 cm (0.5 in.) to 1.83 m (6.0 ft). The areas of subsurface contamination are shown in Figure 5-1. The subsurface contamination appears to be primarily on the 160 Essex Street property and there is a high probability that it extends beneath the street in front of that property. There is a smaller area of subsurface contamination in the southeast corner of the 174 Essex Street property that may extend beneath a small, concrete utilities building.

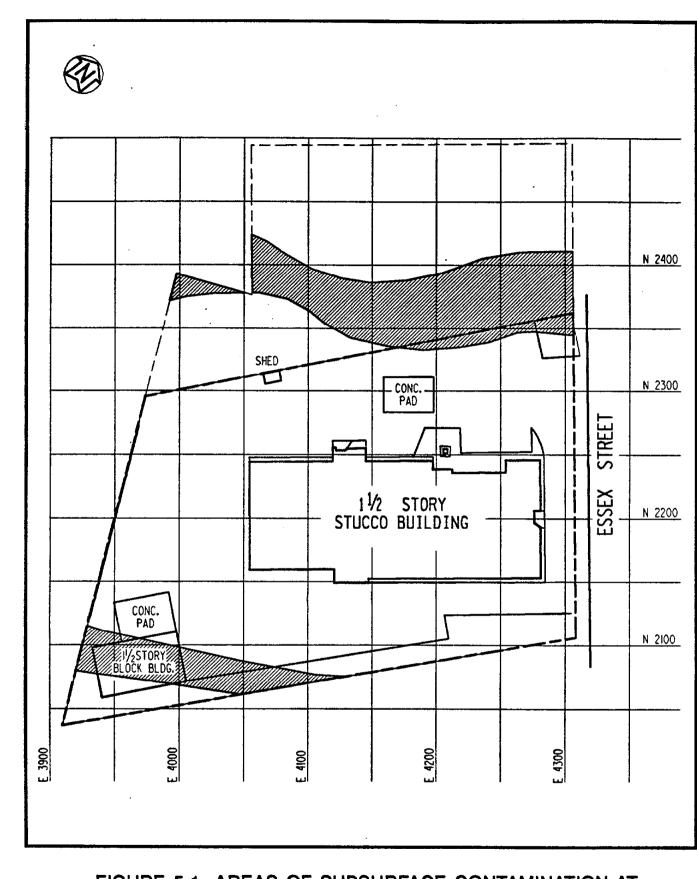


FIGURE 5-1 AREAS OF SUBSURFACE CONTAMINATION AT 160 AND 174 ESSEX STREET

M38W9855.DGN

Contraction of the

.

Å.

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain. The contamination on this property is similar to contamination found on residential and commercial properties in close proximity to this property. It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 160 and 174 Essex Street. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

No indoor measurements were obtained because of restricted access to the building.

Exterior gamma radiation exposure rate measurements ranged from 5 to 8 μ R/h, including background. These results can be found in Table 5-3. The average exposure rate for these properties is 6 μ R/h, which is less than the average background exposure rate of 9 μ R/h (Ref. 11). Therefore, the occupants of the bank receive no dose in excess of average background as a result of contamination on these properties. Based on the above information, the exposure rates at this property are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the Unites States and are often significantly higher than average background for this area.

I

í

• •

£:___

TABLE 5-1

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 160 AND 174 ESSEX STREET

Page 1 of 7

Coordinatesa		Depth	<u>Concentration (pCi/g ± 2 sigma)</u>						
East	North			ium-238		Radium-226		Thorium-232	
3984	2215	0.0 - 1.0	<	4.9	<	1.3	<	1.9	
3984	2215	4.0 - 5.0	<	6.0	<	1.5	<	1.8	
3984	2215	8.0 - 9.0	<	3.8	<	1.1	<	1.7	
3984	2215	9.0 - 10.0	<	4.3	<	1.1	<	1.7	
3988	2305	0.0 - 1.0	<	4.3	<	1.0	<	1.5	
3988	2305	1.0 - 2.2	<	3.6	<	0.9	<	1.6	
3988	2305	2.2 - 2.5	<	4.6	<	1.3	<	1.9	
3988	2305	2.5 - 2.6	<	4.5	<	1.2	<	1.2	
3988	2305	2.6 - 3.3	<	4.0	<	1.1	<	1.1	
3988	2305	3.3 - 4.5	<	4.2	<	1.1	<	1.5	
3988	2305	4.5 - 5.5	<	4.1	<	1.2	<	1.3	
3988	2305	5.1 - 6.4	<	3.8	<	1.0	<	1.3	
3988	2305	6.4 - 6.9	<	3.1	<	0.8	<	1.6	
3988	2305	6.9 - 7.9	<	3.0	<	0.7	<	1.1	
3988	2305	7.9 - 8.5	<	4.6	<	1.2	<	1.7	
3988	2305	8.5 - 9.5	<	2.9	<	0.8	<	1.3	
3988	2305	9.5 - 10.5	<	2.6	<	0.7	<	1.3	
3988	2305	10.5 - 11.5	<	2.4	<	0.7	<	1.0	
3988	2305	11.5 - 12.5	<	2.9	<	0.8	<	1.1	
3988	2305	12.5 - 13.3	<	3.0	<	0.6	<	1.1	
3988	2305	13.3 - 14.5	<	3.6	<	0.8	<	1.3	
3988	2305	14.3 - 15.1	<	2.9	<	0.8	<	1.0	
1019	2051	0.0 - 0.5	<	2.0	0.7	± 0.2	1.2	± 0.	
1019	2051	0.5 - 1.0	<	2.0	<	1.0	<	1.0	

ha. - ani

· (continued)

Page 2 of 7

.

1

EastNorth($\hat{\mathbf{ft}}$)Uranium-238Radium-226Thorium-240192051 $1.0 - 1.5$ < 2.0 < 1.0 < 1.0 < 1.0 40192051 $1.5 - 2.0$ < 1.0 0.8 ± 0.3 1.1 ± 0.3 40192051 $2.0 - 2.5$ < 2.0 0.6 ± 0.1 0.8 ± 0.3 40192051 $2.5 - 3.0$ < 2.0 < 1.0 < 1.0 40192051 $3.0 - 3.5$ < 3.0 < 1.0 < 1.0 40192051 $3.5 - 4.0$ < 2.0 < 1.0 $1.1 \pm 0.13 \pm 0.3$ 40192051 $4.5 - 5.0$ < 2.0 < 1.0 $1.1 \pm 0.13 \pm 0.3$ 40192051 $5.0 - 5.5$ < 2.0 0.5 ± 0.3 1.0 ± 0.4 40192051 $5.0 - 5.5 < 2.0$ 0.8 ± 0.3 $1.1 \pm 0.1 \pm 0.3$ 40192051 $5.0 - 6.5$ 2.0 ± 1.7 0.8 ± 0.3 $1.1 \pm 0.1 \pm 0.3$ 40192051 $6.0 - 6.5$ 2.0 ± 1.7 0.8 ± 0.3 $1.1 \pm 0.1 \pm 0.3$ 40192051 $6.0 - 6.5$ 2.0 ± 1.7 0.8 ± 0.3 $1.1 \pm 0.1 \pm 0.3$ 40202347 $0.0 - 0.5 < 2.0 \pm 1.0$ 1.2 ± 0.3 1.5 ± 0.3 40202347 $0.0 - 2.0 < 4.8$ $< 0.9 < 1.9$ < 1.3 40202347 $0.0 - 7.0 < 3.4$ < 1.0 < 1.3 40202347 $7.0 - 8.0 < 3.1$ < 0.8 < 0.9 < 1.4 40202347 $0.0 - 0.5 < 4.5$ < 1.3 < 1.7 40202347 $0.0 - 4.0 < 3.1$ < 0.8	<u>Coordinates^a</u>		Depth	Concentration (pCi/g ± 2 sigma)							
4019 2051 $1.5 - 2.0$ $<$ 1.0 0.8 \pm 0.3 1.1 \pm 4019 2051 $2.0 - 2.5$ $<$ 2.0 0.6 \pm 0.1 0.8 \pm 4019 2051 $2.5 - 3.0$ $<$ 2.0 $<$ 1.0 $<$ 1.0 4019 2051 $3.0 - 3.5$ $<$ 3.0 $<$ 1.0 $<$ 1.0 4019 2051 $3.5 - 4.0$ $<$ 2.0 $<$ 1.0 $<$ 1.0 4019 2051 $4.5 - 5.0$ $<$ 2.0 $<$ 1.0 1.3 \pm 4019 2051 $4.5 - 5.0$ $<$ 2.0 0.5 \pm 0.3 1.0 \pm 4019 2051 $5.5 - 6.0$ $<$ 2.0 0.5 \pm 0.3 1.0 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 0.8 \pm 0.3 1.1 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 1.2 \pm 0.3 1.1 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 1.2 \pm 0.3 1.1 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 $<$ 0.5 $<$ 0.8 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 <t< th=""><th></th><th></th><th></th><th></th><th>Urani</th><th colspan="2"></th><th colspan="2"></th><th colspan="2">Thorium-232</th></t<>					Urani					Thorium-232	
4019 2051 $2.0 - 2.5$ $<$ 2.0 0.6 \pm 0.1 0.8 \pm 4019 2051 $2.5 - 3.0$ $<$ 2.0 $<$ 1.0 $<$ 1.0 4019 2051 $3.0 - 3.5$ $<$ 3.0 $<$ 1.0 $<$ 1.0 4019 2051 $3.5 - 4.0$ $<$ 2.0 $<$ 1.0 $<$ 1.0 4019 2051 $4.0 - 4.5$ $<$ 3.0 $<$ 1.0 1.3 \pm 4019 2051 $4.5 - 5.0$ $<$ 2.0 0.5 \pm 0.3 1.0 \pm 4019 2051 $5.5 - 6.0$ $<$ 2.0 0.9 \pm 0.6 1.2 \pm 4019 2051 $6.5 - 5.5$ $<$ 2.0 0.8 \pm 0.3 1.0 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 0.8 \pm 0.3 1.1 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 1.2 \pm 0.3 1.5 \pm 4020 2347 $0.0 - 0.5$ $<$ 2.0 $<$ 0.5 $<$ 0.8 4020 2347 $0.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $0.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4026 2079 <	4019	2051	1.0 - 1.5	<	2.0	<	1.0	<	1.0		
4019 2051 $2.5 - 3.0$ < 2.0 < 1.0 < 1.0 4019 2051 $3.0 - 3.5$ < 3.0 < 1.0 < 1.0 4019 2051 $3.5 - 4.0$ < 2.0 < 1.0 $1.3 \pm$ 4019 2051 $4.0 - 4.5$ < 3.0 < 1.0 $1.1 \pm$ 4019 2051 $4.5 - 5.0$ < 2.0 $0.5 \pm$ 0.3 $1.0 \pm$ 4019 2051 $5.0 - 5.5$ < 2.0 $0.9 \pm$ 0.6 $1.2 \pm$ 4019 2051 $5.5 - 6.0$ < 2.0 $0.8 \pm$ 0.3 $1.0 \pm$ 4019 2051 $6.5 - 7.0$ < 2.0 $0.8 \pm$ 0.3 $1.1 \pm$ 4019 2051 $6.5 - 7.0$ < 2.0 $1.2 \pm$ 0.3 $1.5 \pm$ 4019 2051 $6.5 - 7.0$ < 2.0 $1.2 \pm$ 0.3 $1.5 \pm$ 4020 2347 $0.0 - 0.5$ < 2.0 < 0.5 < 0.8 4020 2347 $0.0 - 6.0$ < 2.2 < 0.6 < 0.8 4020 2347 $0.0 - 7.0$ < 3.4 < 1.0 < 1.3 4020 2347 $7.0 - 8.0$ < 3.1 < 0.9 < 1.4 4026 2079 $0.0 - 1.0$ < 3.2 < 0.9 < 1.4 4026 2079 $0.0 - 1.0$ < 3.2 < 0.9 < 1.4 4026 2079 $0.0 - 1.0$ < 3.2 < 0.9 < 1.4 4026 2079 $0.0 - 4.7$ < 7.0 < 1.8 < 2.7 4026 207		2051	1.5 - 2.0	<	1.0	0.8	± 0.3	1.1	± 0.3		
4019 2051 $3.0 - 3.5$ $<$ 3.0 $<$ 1.0 $<$ 1.0 4019 2051 $3.5 - 4.0$ $<$ 2.0 $<$ 1.0 $1.3 \pm$ 4019 2051 $4.0 - 4.5$ $<$ 3.0 $<$ 1.0 $1.1 \pm$ 4019 2051 $4.5 - 5.0$ $<$ 2.0 $0.5 \pm$ 0.3 $1.0 \pm$ 4019 2051 $5.0 - 5.5$ $<$ 2.0 $0.9 \pm$ 0.6 $1.2 \pm$ 4019 2051 $5.5 - 6.0$ $<$ 2.0 $0.8 \pm$ 0.3 $1.0 \pm$ 4019 2051 $6.0 - 6.5$ $2.0 \pm$ \pm 1.7 $0.8 \pm$ 0.3 $1.1 \pm$ 4019 2051 $6.5 - 7.0$ $<$ 2.0 $1.2 \pm$ 0.3 $1.5 \pm$ 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $0.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $0.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 </td <td></td> <td>2051</td> <td>2.0 - 2.5</td> <td><</td> <td>2.0</td> <td>0.6</td> <td>± 0.1</td> <td>0.8</td> <td>± 0.2</td>		2051	2.0 - 2.5	<	2.0	0.6	± 0.1	0.8	± 0.2		
4019 2051 $3.0 - 3.5$ $<$ 3.0 $<$ 1.0 $<$ 1.0 4019 2051 $3.5 - 4.0$ $<$ 2.0 $<$ 1.0 $1.3 \pm$ 4019 2051 $4.0 - 4.5$ $<$ 3.0 $<$ 1.0 $1.1 \pm$ 4019 2051 $4.5 - 5.0$ $<$ 2.0 $0.5 \pm$ 0.3 $1.0 \pm$ 4019 2051 $5.0 - 5.5$ $<$ 2.0 $0.9 \pm$ 0.6 $1.2 \pm$ 4019 2051 $5.5 - 6.0$ $<$ 2.0 $0.8 \pm$ 0.3 $1.0 \pm$ 4019 2051 $6.0 - 6.5$ 2.0 ± 1.7 $0.8 \pm$ 0.3 $1.1 \pm$ 4019 2051 $6.5 - 7.0$ $<$ 2.0 $1.2 \pm$ 0.3 $1.5 \pm$ 4019 2051 $6.5 - 7.0$ $<$ 2.0 $1.2 \pm$ 0.3 $1.5 \pm$ 4020 2347 $0.0 - 0.5$ $<$ 2.0 $<$ 0.5 $<$ 0.8 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $0.0 - 1.0$ $<$ 3.2 $<$ 0.6 $<$ 0.8 4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 1.0 $<$ 1.3 4020 2347 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 -$	4019	2051	2.5 - 3.0	<	2.0	<	1.0	<	1.0		
4019 2051 $4.0 - 4.5$ < 3.0 < 1.0 $1.1 \pm$ 4019 2051 $4.5 - 5.0$ < 2.0 0.5 ± 0.3 $1.0 \pm$ 4019 2051 $5.0 - 5.5$ < 2.0 0.9 ± 0.6 $1.2 \pm$ 4019 2051 $5.5 - 6.0$ < 2.0 0.8 ± 0.3 $1.0 \pm$ 4019 2051 $6.0 - 6.5$ 2.0 ± 1.7 0.8 ± 0.3 $1.1 \pm$ 4019 2051 $6.5 - 7.0$ < 2.0 1.2 ± 0.3 $1.5 \pm$ 4019 2051 $6.5 - 7.0$ < 2.0 1.2 ± 0.3 $1.5 \pm$ 4020 2347 $0.0 - 0.5$ < 2.0 < 0.5 < 0.8 4020 2347 $0.0 - 2.0$ < 4.8 < 0.9 < 1.9 4020 2347 $6.0 - 7.0$ < 3.4 < 1.0 < 1.3 4020 2347 $6.0 - 7.0$ < 3.4 < 1.0 < 1.3 4020 2347 $6.0 - 7.0$ < 3.4 < 1.0 < 1.4 4020 2347 $7.0 - 8.0$ < 3.1 < 0.9 < 1.4 4020 2347 $7.0 - 8.0$ < 3.1 < 0.9 < 1.4 4020 2347 $6.0 - 7.0$ < 3.4 < 1.0 < 1.3 4020 2347 $0.0 - 2.0$ < 3.4 < 1.0 < 1.3 4020 2347 $7.0 - 8.0$ < 3.1 < 0.9 < 1.4 4020 2079 $0.0 - 1.0$ < 3.2 < 0.9 < 1.4 4026 2079 $0.0 - 1.0$ < 3.2 < 0.8 </td <td>4019</td> <td>2051</td> <td>3.0 - 3.5</td> <td><</td> <td>3.0</td> <td><</td> <td>1.0</td> <td><</td> <td></td>	4019	2051	3.0 - 3.5	<	3.0	<	1.0	<			
4019 2051 $4.0 - 4.5$ $<$ 3.0 $<$ 1.0 $1.1 \pm$ 4019 2051 $4.5 - 5.0$ $<$ 2.0 0.5 ± 0.3 $1.0 \pm$ 4019 2051 $5.0 - 5.5$ $<$ 2.0 0.9 ± 0.6 $1.2 \pm$ 4019 2051 $5.5 - 6.0$ $<$ 2.0 0.8 ± 0.3 $1.0 \pm$ 4019 2051 $6.0 - 6.5$ 2.0 ± 1.7 0.8 ± 0.3 $1.1 \pm$ 4019 2051 $6.5 - 7.0$ $<$ 2.0 1.2 ± 0.3 $1.5 \pm$ 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $0.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $0.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $0.0 - 8.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $0.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $0.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $0.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 <td>4019</td> <td>2051</td> <td>3.5 - 4.0</td> <td><</td> <td>2.0</td> <td><</td> <td>1.0</td> <td>1.3</td> <td>± 0.5</td>	4019	2051	3.5 - 4.0	<	2.0	<	1.0	1.3	± 0.5		
4019 2051 $4.5 - 5.0$ $<$ 2.0 0.5 ± 0.3 1.0 ± 4.5 4019 2051 $5.0 - 5.5$ $<$ 2.0 0.9 ± 0.6 1.2 ± 4.5 4019 2051 $5.5 - 6.0$ $<$ 2.0 0.8 ± 0.3 1.0 ± 4.5 4019 2051 $6.0 - 6.5$ 2.0 ± 1.7 0.8 ± 0.3 $1.1 \pm 4.5 \pm 1.7$ 4019 2051 $6.5 - 7.0$ $<$ 2.0 1.2 ± 0.3 $1.5 \pm 1.5 \pm 1.5 \pm 1.7$ 4020 2347 $0.0 - 0.5$ $<$ 2.0 1.2 ± 0.3 $1.5 \pm 1.5 \pm 1.5 \pm 1.5 \pm 1.2$ 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 4020 2347 $0.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 4020 2347 $0.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 4020 2347 $6.0 - 7.0$ $<$ 3.1 $<$ 0.9 $<$ 4020 2347 $0.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 4020 2347 $0.0 - 1.0$ $<$ 3.1 $<$ 0.9 $<$ 4020 2347 $0.0 - 2.0$ $<$ 4.5 $<$ 1.3 $<$ 4020 2347 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 4020 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 4026 207	4019	2051	4.0 - 4.5	<	3.0	<	1.0	1.1	± 0.8		
4019 2051 $5.0 - 5.5$ $<$ 2.0 0.9 \pm 0.6 1.2 \pm 4019 2051 $5.5 - 6.0$ $<$ 2.0 0.8 \pm 0.3 1.0 \pm 4019 2051 $6.0 - 6.5$ 2.0 \pm 1.7 0.8 \pm 0.3 1.1 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 \pm 1.2 \pm 0.3 1.1 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 \pm 1.2 \pm 0.3 1.5 \pm 4020 2347 $0.0 - 0.5$ $<$ 2.0 $<$ 0.5 $<$ 0.8 $<$ 0.9 $<$ 1.9 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $4.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $4.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $0.0 - 1.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$	4019	2051	4.5 - 5.0	<	2.0	0.5	± 0.3				
4019 2051 $6.0 - 6.5$ 2.0 \pm 1.7 0.8 \pm 0.3 1.1 \pm 4019 2051 $6.5 - 7.0$ $<$ 2.0 1.2 \pm 0.3 1.5 \pm 4020 2347 $0.0 - 0.5$ $<$ 2.0 $<$ 0.5 $<$ 0.8 \pm 0.3 1.5 \pm 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $4.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $0.0 - 1.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2	4019	2051	5.0 - 5.5	<	2.0	0.9	± 0.6				
4019 2051 $6.5 - 7.0$ $<$ 2.0 1.2 \pm 0.3 1.5 \pm 4020 2347 $0.0 - 0.5$ $<$ 2.0 $<$ 0.5 $<$ 0.8 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $4.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4020 2347 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4020 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 <td>4019</td> <td>2051</td> <td>5.5 - 6.0</td> <td><</td> <td>2.0</td> <td>0.8</td> <td>± 0.3</td> <td>1.0</td> <td></td>	4019	2051	5.5 - 6.0	<	2.0	0.8	± 0.3	1.0			
4019 2051 $6.5 - 7.0$ $<$ 2.0 1.2 \pm 0.3 1.5 \pm 4020 2347 $0.0 - 0.5$ $<$ 2.0 $<$ 0.5 $<$ 0.8 4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $4.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4020 2347 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4020 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 $<$ 1.5 4041 2147 $3.0 - 4.0$ $<$ 4.3 $<$ 1.2 <td>4019</td> <td>2051</td> <td>6.0 - 6.5</td> <td>2.0</td> <td>± 1.7</td> <td>0.8</td> <td>± 0.3</td> <td>1.1</td> <td></td>	4019	2051	6.0 - 6.5	2.0	± 1.7	0.8	± 0.3	1.1			
4020 2347 $0.0 - 2.0$ $<$ 4.8 $<$ 0.9 $<$ 1.9 4020 2347 $4.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 0.5$ $<$ 4.5 $<$ 1.3 $<$ 1.7 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.9 $<$ 1.1 $<$ 1.5 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 $<$ 1.6	4019	2051	6.5 - 7.0	<	2.0	1.2					
4020 2347 $4.0 - 6.0$ $<$ 2.2 $<$ 0.6 $<$ 0.8 4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 0.5$ $<$ 4.5 $<$ 1.3 $<$ 1.7 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.9 $<$ 1.1 $<$ 1.5 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 $<$ 1.5 4041 2147 $3.0 - 4.0$ $<$ 4.3 $<$ 1.2 $<$ 1.6	4020	2347	0.0 - 0.5	<	2.0	<	0.5	<	0.8		
4020 2347 $6.0 - 7.0$ $<$ 3.4 $<$ 1.0 $<$ 1.3 4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 0.5$ $<$ 4.5 $<$ 1.3 $<$ 1.7 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.9 $<$ 1.1 $<$ 1.5 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 $<$ 1.5 4041 2147 $3.0 - 4.0$ $<$ 4.3 $<$ 1.2 $<$ 1.6	4020	2347	0.0 - 2.0	<	4.8	<	0.9	<	1.9		
4020 2347 $7.0 - 8.0$ $<$ 3.1 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 0.5$ $<$ 4.5 $<$ 1.3 $<$ 1.7 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.9 $<$ 1.1 $<$ 1.5 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 $<$ 1.5 4041 2147 $3.0 - 4.0$ $<$ 4.3 $<$ 1.2 $<$ 1.6	4020	2347	4.0 - 6.0	<	2.2	<	0.6	<	0.8		
4026 2079 $0.0 - 0.5$ $<$ 4.5 $<$ 1.3 $<$ 1.7 4026 2079 $0.0 - 1.0$ $<$ 3.2 $<$ 0.9 $<$ 1.4 4026 2079 $1.0 - 2.0$ $<$ 3.9 $<$ 1.1 $<$ 1.5 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 $<$ 1.5 4041 2147 $3.0 - 4.0$ $<$ 4.3 $<$ 1.2 $<$ 1.6	4020	2347	6.0 - 7.0	<	3.4	<	1.0	<	1.3		
4026 2079 $0.0 - 1.0$ < 3.2 < 0.9 < 1.4 4026 2079 $1.0 - 2.0$ < 3.9 < 1.1 < 1.5 4026 2079 $2.0 - 4.0$ < 3.1 < 0.8 < 1.3 4026 2079 $4.0 - 4.7$ < 7.0 < 1.8 < 2.7 4041 2147 $0.0 - 2.0$ < 4.3 < 1.2 < 1.5 4041 2147 $3.0 - 4.0$ < 4.3 < 1.2 < 1.6	4020	2347	7.0 - 8.0	<	3.1	<	0.9	· <	1.4		
4026 2079 $1.0 - 2.0$ $<$ 3.9 $<$ 1.1 $<$ 1.5 4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 $<$ 1.5 4041 2147 $3.0 - 4.0$ $<$ 4.3 $<$ 1.2 $<$ 1.5	4026	2079	0.0 - 0.5	<	4.5	<	1.3	<	1.7		
4026 2079 $2.0 - 4.0$ $<$ 3.1 $<$ 0.8 $<$ 1.3 4026 2079 $4.0 - 4.7$ $<$ 7.0 $<$ 1.8 $<$ 2.7 4041 2147 $0.0 - 2.0$ $<$ 4.3 $<$ 1.2 $<$ 1.5 4041 2147 $3.0 - 4.0$ $<$ 4.3 $<$ 1.2 $<$ 1.6	4026	2079	0.0 - 1.0	<	3.2	<	0.9	<	1.4		
4026 2079 4.0 - 4.7 < 7.0	4026	2079	1.0 - 2.0	<	3.9	<	1.1	<	1.5		
4026 2079 4.0 - 4.7 < 7.0	4026	2079	2.0 - 4.0	<	3.1	<	0.8	<	1.3		
4041 2147 3.0 - 4.0 < 4.3 < 1.2 < 1.6	4026	2079									
4041 2147 3.0 - 4.0 < 4.3 < 1.2 < 1.6	4041	2147	0.0 - 2.0	<	4.3	<	1.2	<	1.5		
	4041	2147	3.0 - 4.0	<	4.3	<	1.2	<	1.6		
4041 2147 4.0 - 6.0 < 3.8 < 0.9 < 1.1	4041	2147	4.0 - 6.0	<	3.8	<	0.9	<	1.1		

~

.

(15,21) (

TABLE 5-1

(continued)

Page 3 of 7

<u>Coordinates</u> a		Depth	Conce	tration (pCi/g ± 2 sigma)			
East North	North		Uranium-238	Radium-226	Thorium-232		
4041	2147	6.0 - 8.0	< 3.1	< 0.8	< 1.4		
4041	2147	8.0 - 9.0	< 4.9	< 1.3	< 1.7		
4041	2147	9.0 - 10.0	< 5.6	3.2 ± 0.3	4.1 ± 0.6		
4068	2095	1.0 - 1.5	1.5 ± 0.6	0.6 ± 0.1	0.7 ± 0.1		
4068	2095	1.5 - 2.0	2.7 ± 2.6	0.8 ± 0.2	1.6 ± 0.8		
4068	2095	2.0 - 2.5	< 2.0	0.8 ± 0.2	1.2 ± 0.4		
4068	2095	2.5 - 3.0	< 3.0	1.1 ± 0.2	1.1 ± 0.7		
4068	2095	3.0 - 3.5	< 2.0	0.7 ± 0.3	1.2 ± 0.2		
4068	2095	3.5 - 4.0	< 2.0	0.7 ± 0.5	1.3 ± 0.6		
4068	2095	4.0 - 4.5	< 2.0	< 1.0	< 1.0		
4068	2095	4.5 - 5.0	< 2.0	0.7 ± 0.2	1.0 ± 0.3		
4068	2095	5.0 - 5.5	< 2.0	0.9 ± 0.3	1.4 ± 0.7		
4068	2095	5.5 - 6.0	< 2.0	0.8 ± 0.2	1.3 ± 0.5		
4068	2095	6.0 - 6.5	< 2.0	0.9 ± 0.1	1.1 ± 0.4		
4068	2095	6.5 - 7.0	2.3 ± 1.1	1.1 ± 0.3	1.6 ± 0.4		
4068	2095	7.0 - 7.5	2.1 ± 1.4	0.8 ± 0.5	1.1 ± 0.3		
4068	2095	7.5 - 8.0	3.9 ± 1.3	1.1 ± 0.2	1.6 ± 0.5		
4068	2095	8.0 - 8.5	< 2.0	< 1.0	< 1.0		
4068	2095	8.5 - 9.0	< 2.0	0.9 ± 0.2	1.4 ± 0.5		
4068	2095	9.0 - 9.5	< 3.0	1.4 ± 0.2	1.3 ± 0.4		
4068	2095	9.5 - 10.0	< 2.0	1.1 ± 0.3	1.4 ± 0.4		
4068	2408	0.0 - 1.0	< 3.1	1.8 ± 0.1	7.7 ± 0.3		
4068	2408	1.0 - 2.0	< 7.2	< 1.4	< 2.3		
4068	2408	4.0 - 6.0	< 4.7	< 1.3	< 1.4		
4068	2408	6.0 - 7.0	< 2.0	< 0.5	< 0.7		
4068	2408	7.0 - 8.0	< 2.6	< 0.6	< 0.9		
4068	2408	8.0 - 10.0	< 3.4	< 0.7	< 1.2		

TABLE 5-1

٢

(continued)

Page 4 of 7

Coordinates ^a		Depth		Concer	ntration (pCi/g ± 2 sigma)		
East	North	(Īt)	Uran:	ium-238		ium-226	Thorium-232
4075	2365	0.0 - 2.0	<	3.8	<	0.9	< 1.5
4075	2365	2.0 - 4.0	<	4.8	<	1.0	6.2 ± 0.4
4075	2365	5.0 - 6.0	<	3.0	<	0.6	< 1.0
4075	2365	6.0 - 6.5	<	4.6	<	1.2	< 1.6
4078	2482	0.0 - 2.0	<	4.8	<	0.9	< 1.6
4078	2482	4.0 - 5.0	<	2.9	<	0.7	< 1.1
4078	2482	5.0 - 6.0	<	3.5	<	0.8	< 1.4
4078	2482	6.0 - 7.0	<	4.6	<	1.3	< 1.7
4078	2482	7.0 - 8.0	<	2.9	<	0.8	< 1.2
4079	2273	0.0 - 2.0	<	1.8	<	0.5	< 0.7
4079	2273	3.0 - 4.0	<	3.8	<	1.0	< 1.6
4079	2273	6.0 - 7.0	<	3.8	<	1.0	< 1.4
4079	2273	7.0 - 8.0	<	6.4	<	1.4	< 2.0
4079	2273	8.0 - 10.0	<	1.8	<	0.5	1.7 ± 0.1
4094	2025	0.0 - 1.0	<	5.1	<	1.5	< 2.3
4094	2025	4.0 - 6.0	<	4.7	<	1.3	< 2.1
4094	2025	6.0 - 8.0	<	3.9	<	1.0	< 1.4
4094	2025	8.0 - 10.0	<	6.0	<	1.5	< 2.1
4117	2327	0.0 - 2.0	<	4.2	<	0.9	< 1.6
4117	2327	6.0 - 8.0	<	2.1	<	0.6	< 0.8
4138	2395	0.0 - 0.5	<	4.8	<	1.3	< 2.1
4138	2395	0.0 - 1.0	<	4.6	<	0.9	< 1.9
4138	2395	1.0 - 2.0	<	6.2	<	1.4	< 2.2

(continued)

Page 5 of 7

East North		1 641	Timond	<u>Concentration (pCi/g ± 2 g</u> Uranium-238 Radium-226		Thorium-232		
	MOI CII	(ft)		Lum-238	Radi	Lum-226	Thori	.um-232
4138	2395	2.0 - 3.0	<	5.3	<	1.0	<	2.2
4138	2395	4.0 - 5.0	<	2.9	<	0.7	<	1.2
4138	2395	6.0 - 7.0	<	3.3	<	0.7	<	1.0
4138	2395	7.0 - 8.0	<	2.4	<	0.7	<	1.0
4144	2482	0.0 - 0.5	3.5	± 0.7	<	0.6	<	0.7
4144	2482	0.0 - 2.0	<	3.3	<	0.9	<	1.4
4144	2482	4.0 - 6.0	<	4.5	<	1.0	<	1.8
4144	2482	6.0 - 8.0	<	2.2	<	0.5	<	0.8
4186	2433	0.0 - 0.5	<	5.2	<	0.9	<	1.3
4186	2433	0.0 - 2.0	<	2.3	<	0.5	<	0.9
4186	2433	5.0 - 6.0	<	5.6	<	1.0	<	1.6
4186	2433	8.0 - 10.0	<	2.6	<	0.5	<	0.8
4200	2351	0.0 - 0.5	<	6.1	<	0.8	<	2.0
4200	2351	0.0 - 2.0	<	1.2	<	1.7	11.9	± 0.
4200	2351	4.0 - 5.0	<	3.9	<	0.6	<	1.3
4200	2351	8.0 - 10.0	<	4.2	<	0.6	<	1.1
1217	2285	0.5 - 1.0	<	2.0	0.8	± 0.3	0.7	± 0.
1217	2285	1.0 - 1.5	<	3.0	<	1.0	<	1.0
4246	2142	0.0 - 1.0	<	4.1	<	1.1	<	1.5
4246	2142	4.0 - 5.0	<	5.0	<	1.1	<	2.1
1246	2142	6.0 - 7.0	<	4.0	<	1.1	<	1.3
1246	2142	7.0 - 8.0	<	3.2	<	0.9	<	1.3
1246	2142	8.0 - 9.0	<	1.5	<	0.4	<	0.5

31

~

.

(continued)

Page 6 of 7

<u>Coord</u>	<u>inates^a</u>	Depth		Concent	tration ($pCi/q \pm 2 s$	igma)	
East	North	(ft)	Urani	.um-238		um-226		.um-232
4257	2399	0.0 - 0.5	<	7.4	<	1.1	<	2.0
4257	2399	0.0 - 1.0	<	5.8	<	0.9	<	1.5
4257	2399	4.0 - 5.0	<	1.2	<	1.7	8.0	± 0.2
4257	2399	5.0 - 6.0	<	7.0	<	0.9	7.3	± 0.7
4257	2399	9.0 - 10.0	<	3.9	<	0.8	<	1.2
4267	2337	0.0 - 1.0	<	4.7	<	0.8	<	1.6
4267	2337	4.0 - 6.0	<	4.0	<	0.8	<	0.9
4267	2337	8.0 - 10.0	<	3.9	<	0.7	<	1.2
4269	2273	0.0 - 2.0	<	2.2	<	0.6	<	0.9
4269	2273	2.0 - 4.0	<	5.1	<	1.5	<	2.3
4269	2273	4.0 - 5.0	<	3.1	<	0.7	<	1.2
4269	2273	5.0 - 6.0	<	2.7	<	0.6	<	1.0
4269	2273	6.0 - 7.0	<	3.4	<	0.7	<	1.3
4269	2273	7.0 - 8.0	<	2.4	<	0.6	<	0.8
4269	2273	8.0 - 9.0	<	4.8	<	1.1	<	1.6
4269	2273	9.0 - 10.0	<	4.3	<	1.0	<	1.6
4269	2273	10.0 - 12.0	<	3.2	<	0.9	<	1.0
4276	455	0.0 - 0.5	<	8.7	<	1.4	<	2.1
4276	455	0.0 - 1.0	<	5.3	<	0.9	<	1.5
4276	455	3.0 - 4.0	<	6.8	<	1.0	<	1.9
4276	455	6.0 - 8.0	<	3.4	<	0.6	<	1.1
4296	2394	1.0 - 1.5	1.6	± 1.6	0.7	± 0.3	0.8	± 0.2
4296	2394	1.5 - 2.0	<	2.0	<	1.0	<	1.0
4296	2394	2.0 - 2.5	<	2.0	<	1.0	0.8	± 0.4

_

(continued)

Page 7 of 7

East	<u>inates^a</u> North	Depth	The set	lum-238		pCi/g ± 2 g		
	NOTUN	(ft)			Radi	.um-226	Thor	Lum-232
4296	2394	2.5 - 3.0	<	3.0	<	1.0	<	1.0
4296	2394	4.0 - 4.5	2.8	± 2.8	1.1	± 0.6	1.7	± 0.9
4296	2394	4.5 - 5.0	<	2.0	0.7	± 0.1	<	1.0
4296	2394	5.0 - 5.5	<	2.0	0.6	± 0.1	0.7	± 0.4
4296	2394	5.5 - 6.0	<	2.0	<	1.0	<	1.0
4296	2394	6.0 - 6.5	<	1.0	0.4	± 0.1	0.5	± 0.3
4296	2394	6.5 - 7.0	1.2	± 1.0	0.4	± 0.1	<	1.0
4296	2394	7.0 - 7.5	<	2.0	0.4	± 0.1	0.6	± 0.1
4296	2394	7.5 - 8.0	<	3.0	0.6	± 0.3	1.0	± 0.1
4300	2104	0.0 - 1.0	<	3.6	<	0.9	<	1.2
4300	2104	1.0 - 2.0	<	6.2	<	1.2	<	1.6
4300	2104	2.0 - 2.8	<	3.7	<	0.9	<	1.2
4300	2104	3.4 - 3.9	<	7.0	<	0.8	<	1.6
4329	2476	0.0 - 0.5	<	4.3	<	0.8	<	1.1
4329	2476	0.0 - 2.0	<	6.6	<	1.2	<	1.6
4329	2476	2.0 - 3.0	<	4.3	<	0.8	<	1.2
4329	2476	3.0 - 4.0	<	4.7	<	0.8	<	1.3
4329	2476	4.0 - 5.0	<	4.6	<	0.8	<	1.2
4329	2476	5.0 - 6.0	<	3.6	<	0.8	<	1.0
4329	2476	6.0 - 8.0	<	4.2	<	0.8	<	1.4

^aSampling locations are shown in Figure 4-2.

^bNo soil data was obtained for Borehole 1100R (E 3958, N 2152).

DOWNHOLE GAMMA LOGGING RESULTS

FOR 160 AND 174 ESSEX STREET

Page 1 of 11

l

l

Ł

Ĺ

I.

Ľ

1

ſ

Ľ

E. S. 1976.

<u>Coordi</u> East	nates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehole	1100R ^d		
3958 3958 3958 3958 3958 3958 3958 3958	2152 2152 2152 2152 2152 2152 2152 2152	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	10000 9000 13000 13000 14000 15000 13000 14000 13000 13000 13000
3958 <u>Borehole</u>	2152	6.5	13000
3984 3984 3984 3984 3984 3984 3984 3984	2215 2215 2215 2215 2215 2215 2215 2215	$\begin{array}{c} 0.5\\ 1.0\\ 1.5\\ 2.0\\ 2.5\\ 3.0\\ 3.5\\ 4.0\\ 4.5\\ 5.0\\ 5.5\\ 6.0\\ 6.5\\ 7.0\\ 7.5\\ 8.0 \end{array}$	7000 10000 11000 10000 10000 10000 10000 9000 10000 8000 8
Borenole 3988 3988 3988	<u>1086R</u> 4 2305 2305 2305	0.5 1.0 1.5	10000 14000 14000

TABLE	5-2
-------	-----

<u>|</u>____

1

.

(continued)

Coord	<u>inates^a</u>	Depth ^b	Count Rate ^C
East	North	(Ît)	(cpm)
Borehol	<u>e 2051R</u> d		
4019	2052	0.5	9000
4019	2 052	1.0	10000
4019	2052	1.5	12000
4019	2052	2.0	11000
4019	· 2 052	2.5	13000
4019	² 052	3.0	12000
4019	2052	3.5	12000
4019	2052	4.0	13000
4019	2052	4.5	13000
4019	2052	5.0	12000
4019	2052	5.5	13000
4019	2052	6.0	13000
4019	2052	6.5	14000
4019	2052	7.0	16000
<u>Borehol</u>	<u>= 1124R</u> d		
4020	2347	0.5	12000
4020	2347	1.0	14000
4020	2347	1.5	18000
4020	2347	2.0	18000
4020	2347	2.5	16000
4020	2347	3.0	17000
4020	2347	3.5	14000
4020	2347	4.0	13000
4020	2347	4.5	12000
4020	2347	5.0	11000
4020	×2347	5.5	10000
4020	2347	6.0	11000
4020	2347	6.5	11000
Borehold	<u>= 1130R</u> d		
4026	2079	0.5	36000
4026	2079	1.0	36000
4026	2079	1.5	36000
Borehold	<u>= 1116R</u> d		
4041	2147	0.5	6000
4041	2147	1.0	10000

35

L

Ì.

1

İ

1

..... ۱.....

Ľ í :___

۲. ____

(continued)

<u>Coord</u>	<u>inates^a</u> North	Depthb	Count Rate ^C
<u></u>	Nortn	(ft)	(cpm)
Borehold	≥ 1116R (con	tinued) ^d	
4041	2147	1.5	10000
4041	2147	2.0	10000
4041	2147	2.5	10000
4041	2147	3.0	12000
4041 4041	2147	3.5	11000
4041	2147 2147	4.0	10000
4041	2147	4.5	10000 7000
4041	2147	5.0	8000
4041	2147	6.0	10000
4041	2147	6.5	12000
4041	2147	7.0	12000
Borehole	<u>2010R</u> đ		
4068	2095	0.5	8000
4068	2095	1.0	7000
4068	2095	1.5	8000
4068	2095	2.0	9000
4068	2095	2.5	12000
4068	2095	3.0	14000
4068	2095	3.5	15000
4068	2095	4.0	16000
4068	2095	4.5	16000
4068	2095	5.0	16000
4068	2095	5.5	16000
4068	2095	6.0	15000
4068	2095	6.5	15000
4068	2095	7.0	14000
4068	2095	7.5	13000
4068	2095	8.0	15000
4068	2095	8.5	15000
4068	2095	9.0	16000
4068	2095	9.5	16000
Borehole	<u>= 1126R</u> d		
4068	2408	0.5	12000
4068	2408	1.0	14000
4068	2408	1.5	18000
4068	2408	2.0	18000

E

[____

(continued)

<u>Coord</u> East	<u>inates^a</u> North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehol	e 1126R (con	tinued) ^d	<u></u>
4068	2408	2.5	16000
4068	2408	3.0	17000
4068	2408	3.5	14000
4068	2408	4.0	13000
4068	2408	4.5	12000
4068	2408	5.0	11000
4068	2408	5.5	10000
4068	2408	6.0	11000
4068	2408	6.5	11000
Borehold	<u>e 1125R</u> d		
4075	2365	0.5	8000
4075	2365	1.0	10000
4075	2365	1.5	11000
4075	2365	2.0	12000
4075	2365	2.5	13000
4075	2365	3.0	17000
4075	2365	3.5	17000
4075	2365	4.0	15000
4075	2365	4.5	13000
4075	2365	5.0	10000
4075	2365	5.5	9000
Borehold	<u>e 1127R</u> d		
4078	2482	0.5	13000
4078	2482	1.0	17000
4078	2482	1.5	15000
4078	2482	2.0	13000
4078	2482	2.5	10000
4078	2482	3.0	11000
4078	2482	3.5	11000
4078	2482	4.0	11000
4078	2482	4.5	11000
4078	2482	5.0	11000
Borehold	<u>= 1118R</u> d		
4079	2273	0.5	7000
4079	2273	1.0	9000

37

ŧ

ŀ

l

ĺ

.

[

-

-

ſ

Į

(continued)

e

Page 5 d	Page 5 of 11				
<u>Coord</u> : East	inates ^a North	Depth ^b (ft)	Count Rate ^C (Cpm)		
Borehole	e 1118R (cont	tinued) ^d			
4079	2273	1.5	10000		
4079	2273	2.0	12000		
4079	2273	2.5	12000		
4079	2273	3.0	13000		
4079	2273	3.5	11000.		
4079	2273	4.0	11000		
4079	2273	4.5	11000		
4079	2273	5.0	11000		
4079	2273	5.5	12000		
4079	2273	6.0	12000		
4079	2273	6.5	13000		
Borehole	<u>≥ 1122R</u> d				
4094	2025	0.5	5000		
4094	2025	1.0	5000		
4094	2025	1.5	6000		
4094	2025	2.0	8000		
4094	2025	2.5	11000		
4094	2025	3.0	11000		
4094	2025	3.5	12000		
4094	2025	4.0	12000		
4094	20 25	4.5	12000		
4094	2 025	5.0	12000		
4094	2025	5.5	11000		
Borehole	<u>= 1123R</u> đ				
4117	2327	0.5	4000		
4117	2 327	1.0	9000		
4117	2327	1.5	10000		
4117	· 2327	2.0	10000		
4117	2327	2.5	9000		
4117	2327	3.0	11000		
4117	2327	3.5	11000		
4117	2327	4.0	11000		
4117	2327	4.5	11000		
4117	2327	5.0	11000		
4117	2327	5.5	11000		
4117	2327	6.0	12000		

38

.

ŀ

I

ŧ **)**

And a state of the
t I.

[_____

(continued)

Page 6	Page 6 of 11				
<u>Coord</u> East	<u>inates^a</u> North	Depth ^b (ft)	Count Rate ^C (Cpm)		
Borehold	e 1123R (con	tinued) ^d			
4117	2327	6.5	12000		
Borehole	<u>= 1128R</u> d				
4138	2395	0.5	11000		
4138	2395	1.0	14000		
4138	2395	1.5	16000		
4138	2395	2.0	22000		
4138	2395	2.5	29000		
4138	2395	3.0	28000		
4138	2395	3.5	15000		
4138	2395	4.0	10000		
4138	2395	4.5	10000		
4138	2395	5.0	10000		
4138	2395	5.5	10000		
4138	2395	6.0	11000		
4138	2395	6.5	10000		
<u>Borehol</u>	<u>= 1129R</u> d				
4144	2482	0.5	5000		
4144	2482	1.0	6000		
4144	2482	1.5	9000		
4144	2482	2.0	9000		
4144	2482	2.5	11000		
4144	- 2482	3.0	12000		
4144	2482	3.5	12000		
4144	2482	4.0	12000		
4144	2482	4.5	12000		
4144	2482	5.0	10000		
<u>Borehole</u>	<u>1167R</u> d				
4186	2433	0.5	6000		
4186	2433	1.0	8000		
4186	2433	1.5	8000		
4186	2433	2.0	9000		
4186	2433	2.5	10000		
4186	2433	3.0	11000		

39

(continued)

ľ

ļ

CONTRACTOR OF

No. of Concession, Name

-

TABLE	5-2
-------	-----

I

I

I show

And the set of the

Statistics of

ſ

1

[____

|

Į

(continued)

Coord	inates ^a	Depth ^b	Count Rate ^C
East	North	(ft)	(cpm)
Borehold	<u>= 1119R</u> d		
4246	2142	0.5	4000
4246	2142	1.0	6000
4246	2142	1.5	10000
4246	2142	2.0	10000
4246	2142	2.5	11000
4246	2142	3.0	11000
4246	2142	3.5	4000
4246	2142	4.0	8000
4246	2142	4.5	8000
4246	2142	5.0	7000
4246	2142	5.5	7000
4246	2142	6.0	6000
Borehole	<u>= 1168R</u> d		
4257	2399	0.5	9000
4257	2399	1.0	10000
4257	2399	1.5	9000
4257	2399	2.0	9000
4257	2399	2.5	10000
4257 ′	2399	3.0	10000
4257	2399	3.5	11000
4257	2399	4.0	18000
4257	2399	4.5	27000
4257	2399	5.0	31000
4257	2399	5.5	25000
4257	2399	6.0	32000
4257	2399	6.5	13000
4257	2399	7.0	10000
4257	2399	7.5	10000
4257	2399	8.0	10000
4257	2399	8.5	9000
4257	2399	9.0	8000
Borehole	<u>= 1121R</u> d		
42'67	2337	0.5	5000
4267	2337	1.0	7000
4267	2337	1.5	11000
4267	2337	2.0	10000
4267	2337	2.5	13000

41

L

Ĺ

Dents of all

(continued)

Page 9	of 11		
Coord	inates ^a	Depthb	Count Rate ^C
East	North	(ft)	(cpm)
Borehol	e 1121R (cont	tinued) ^d	
4267	2337	3.0	13000
4267	2337	3.5	12000
4267	2337	4.0	10000
4267	2337	4.5	9000
4267	2337	5.0	10000
4267	2337	5.5	11000
4267	2337	6.0	10000
4267	2337	6.5	10000
4267	2337	7.0	10000
Borehold	<u>e 1120R</u> d		
4269	2273	0.5	5000
4269	2273	1.0	6000
4269	2273	1.5	5000
4269	2273	2.0	5000
4269	2273	2.5	5000
Borehold	<u>e 1169R</u> d		
4276	2455	0.5	7000
4276	2455	1.0	10000
4276	2455	1.5	11000
4276	2455	2.0	12000
4276	2455	2.5	12000
4276	2455	3.0	11000
4276	2455	3.5	10000
4276	2455	4.0	9000
4276	2455	4.5	10000
4276	2455	5.0	10000
4276	2455	5.5	10000
4276	2455	6.0	12000
Borehole	<u>2008R</u>		
4296	2394	0.5	6000
4296	2394	1.0	8000
4296	2394	1.5	12000
4296	2394	2.0	16000
4296	2394	2.5	31000
4296	2394	3.0	43000
4270	2374	3.0	43000

×.

١

.

92.5-90.02 ·

-

1

1

:

[_____

(continued)

Coord	inates ^a	Depthb	Count Rate ^C
East	North	(f t)	(cpm)
Borehole	2008R (con	tinued)	
4296	2394	3.5	31000
4296	2394	4.0	19000
4296	2394	4.5	16000
4296	2394	5.0	12000
4296	2394	5.5	10000
4296	2394	6.0	10000
4296	2394	6.5	9000
4296	2394	7.0	9000
4296	2394	7.5	9000
4296	2394	8.0	10000
4296	2394	8.5	10000
4296	2394	9.0	9000
4296	2394	9.5	9000
4296	2394	10.0	9000
Borehole	<u>= 1087R</u>		
4300	2104	0.5	6000
4300	2104	1.0	7000
4300	2104	1.5	11000
4300	2104	2.0	11000
4300	2104	2.5	12000
4300	2104	3.0	11000
4300	2104	3.5	12000
4300	2104	4.0	12000
4300	2104	4.5	13000
Borehole	1171R ^d		
4329	2476	0.5	6000
4329	2476	1.0	8000
4329	2476	1.5	8000
4329	2476	2.0	10000
4329	2476	2.5	11000
4329	2476	3.0	11000
4329	2476	3.5	10000

43

(continued)

Page 11 of 11 **Coordinates**^a Depthb Count Rate^C East North (ft) (cpm) Borehole 1171R (continued)^d 4329 2476 4.0 10000 4329 2476 4.5 11000 4329 2476 5.0 12000 4329 2476 5.5 12000 4329 2476 6.0 12000

^aBorehole locations are shown in Figure 4-1.

^bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

^CInstrument used was 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

dBottom of borehole collapsed.

1

ł

TABLE 5-3 GAMMA RADIATION EXPOSURE RATES

ŧ.

ľ

I

Ì.

1000

į.

Coord	inates ^a	Rate ^b
East	North	(µR/h)
4000	2250	5
4000	2350	5
4100	2100	6
4100	2400	6
4100	2450	8
4150 [.]	2250	8
4225	2100	7
4250	2450	5

FOR 160 AND 174 ESSEX STREET

^aMeasurement locations are shown in Figure 4-3.

^bMeasurements include background.

REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.
- 3. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> <u>Chemical, Maywood, New Jersey</u>, November 1983.

Ĩ

1

- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area, Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- 7. Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 160 Essex Street (LJ072)</u>, Lodi, New Jersey, ORNL/RASA-88/49, Oak Ridge, Tenn., June 1989.

9. Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 174 Essex Street (LJ073)</u>, Lodi, New Jersey, ORNL/RASA-88/50, Oak Ridge, TN, June 1989.

ł

I

L

Ì

- 10. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.
- 11. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

APPENDIX A GEOLOGIC DRILL LOGS FOR 160 AND 174 ESSEX STREET

Ĩ

L

1

		EO	LOG	IC D	RIL			<u> </u>		FUSRAP	4501-1	SHEET A		1
SITE		74]	Essex S	St. AL	וזמכ		COORDIN	ATES	1	2,215 E 3,984	AN	GLE FRON		IN
BEGL	IN	8	MPLETED	DRILL			. <u>l</u>	1			VERBURDEN	Vertica		AL
			1-5-87		Pove	E.D.			M	OBILE B-57 6.5"	8.1	1.9		1(
		1.4/1			DUNE	5	ESEL. N	JP LAS.	ING C	ROUND EL. DEPTH/EL. GROUND	WATER	DEPTH/EL.	TOP OF R	101
SAMP			WEIGHT		CA!				A./LE	NGTH LOGGED BY:	<u> </u>	·	<u></u> /	
1 11	· · · · ·		bs/30 i				NO	NE I	1 1		D. Harni	sh	AS -	
DIAH.	N H	REC.	ᄪᆠᆇᄥ	PR	ESSU	RE		+	8			NO	TES ON:	
0	10		BLOUS "N" X CORE RECOVERY	Ω_Σ.	ฏ้พ่	삝	ELEV.	DEPTH	GRAPHICS EXHIFT	DESCRIPTION AND CLA	ASSIFICAT	ION WA	TER LEU	JE
Samp Prove Dra	E E E	E C C C C C C C C C C C C C C C C C C C	S S S S S S S S S S S S S S S S S S S	LOSS IN G.P.	PRESS. T	TINE NINE NINE		ā	H			СН	ARACTER ILLING,	2
SS	2.0	1.5	9-15-9		<u><u> </u></u>			<u> </u>	9.00	- 0.0 - 0.3 Ft. Silty GRAVEL P	ILL (GM).	r Bo	rehole adv	/81
							. ,	·		Broken basalt gravel. 0.5 - 3.0 Ft. SAND and CLAY	(SM_CL)	فمال	10 Ft. with l. hollow st rer.	
SS	2.0	1.4	5-5-5 13							0.3 - 3.0 Ft. SAND and CLAY Dark grayish brown (10YR very fine-grained, finely in	4/2) and gra terbedded.	\$81	ring radio npled and	lo
55	20	14	2-13-27					.		0.3-2.6 Ft. SAND, 1-3 mm (10YR5/6) and black (N1)	n yellowish b		nma-logge (A-Eberlin	ed.
			27					5_		2.6-3.0 Ft. Interbeds of da		11	MET read	4.
SS	2.0	1.8	10-13					.		gray (10YR5/1) clay.			m at 1.0 F le is 6.0 Ft	t.
			18-21							3.0 - 8.1 Ft. <u>SAND</u> (SM-SP). very fine-grained, silty in p interbedded silt.	Fine- to places, some	÷		
SS	2.0	1.3	9-15 35-80				-	1 .		3.0-4.3 Ft. Dark gray (10)		_ d		
					1		-	10		4.3-6.0 Ft. Dark grayish b silty, hard but crumbles wi		- H		
										silty, hard but crumbles wi pressure.	th finger			
										6.0-6.3 Ft. Greenish gray,	wet.			
										6.7-7.3 Ft. SILT, dark yell (10YR4/4), some sand inte	lowish brown rbeds.			
										7.3-8.1 ft. SAND, dark bro clayey toward base.	own (7.5YR4	/2),		
											rk reddish			
				{						8.1 - 10.0 ft. <u>BEDROCK</u> . Dai brown (5YR3/2) New Brun hard, fractured.	swick sands	ione,		
								1		Bottom of borehole at 10.0 Ft.				
										Borehole backfilled with spoils	i, 11/5/87.			
											_			
	1													
								ļ.						
								1						
												cla	scription a sification	o
								l					nples by vi mination.	
SS =	SPL	IT SP	DON; ST	= SHEL	BY TU	, ,	ITE		 			HOL	E NO.	
v = 1	UENN	I SON ;	P = PI	ICHER;	0 = 0	THER			110 A·	Essex St. (LODI)	<u> </u>		1117	1

ITE		EC	DLO	Gl	<u>C</u> D	RIL		_		PROJE	СТ		FUSRAP		JOB NO. 14501-	138 1		HOLE NO. 1086F
	17				re. (L)		DORDIN			_	2,305 E 3,		A.	Vert		BEARING
	5-8	7 1	1-6-	-87		G.	Eng	el;	BNI		М		uteman Auge	size r 4"	OVERBURDEN 15.1	ROCI	((FT.)	TOTAL DEF
ORE		DVER1 4.3/		./%	CORE	BOXE		PLES	EL. TO	OP CAS	ING	GR	OUND EL. DEP	TH/EL. GRO	JUND WATER	DEPTH	/EL. TOP	
AMP	LE W	WHĖ: 1	r wei N/A			1			IN HO NO		IA./I	LEN	GTH LOGGED BY:	<i></i>	R. Migu	_l	Y	
	1.0 1.2 0.1 0.7 1.0 0.8 1.3 0.5 1.0 0.6 1.0 1.0 1.0 0.8 1.0 0.6 1.0 0.6 1.0 0.6 1.0 0.6 1.0 0.6 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1.2			PŘ	ATEFU ESST Southand	RE	AIN.	ELEV. - - -	¥ 4 10 10		ALAXANAN ANANAN SAMPLE	0.0 - 3.0 Ft. B Very dusky medium-gra gravel-sized 2.2-2.6 Ft. (10YR2/2). 3.0 - 3.9 Ft. S Moderate re 3.3-3.9 Ft. 3.9 - 5.1 Ft. S Dark yellow 5.1 - 6.4 Ft. C brown (5YR (5YR6/4) at brown (10Y. 6.4 - 11.0 Ft. brown (5Y4	ilty Sandy red (10R2/ ined, with clasts of vi Dusky yello ilty CLAY d (5R4/6). Brownish b andy Silty (ish brown (layer SILT 5/2) mottle d specks o R2/2). SILT (ML). /4).	Dack (5YR2/1). CLAY (CL-ML 10R4/2). (ML-CL). Pal ed with light br f dusky yellowis Moderate).	WATER CHARAC DRILLI Borehold 0-15.1 F i.d. split sampler solid ste Borehold radiolog and gan TMA-E	LEUELS RETURN CTER OF (NG, ET) e advanced t. using 3 -spoon and 4" o.c m augers.
3S 3S 3S (1.0	1.0 0.7 0.8							-	15_			flecks of bro 11.0 - 11.7 Ft. Moderate re coarse-grain 11.7 - 13.7 Ft. red (5R4/6) with slight s 13.7 - 14.8 Ft. Moderate re medium-gra- greenish bia 14.8 - 15.1 Ft.	wnish blaci Silty SAN d (5R4/6), ed. SAND (SV Very fine- ilt. Pebbly SA d (5R4/6) 1 ined sand v ck (5G2/1) Clayer Silt a brown (10 ed with pel hole at 15.1	D (SM). very fine- to V). Moderate to medium-gra- to medium-gra- ND (SG). fine- to with small pebbl siltstone. by SAND (SM). DR3/4). Fine- t bbles.	sined es of	shearing	Ft. after attempts a the auger butting
5 *	SPLI	TSP		ST	= SHEL	BY THE	RF.	SIT									Descript classifics soils by examina HOLE NO.	ation of visual tion.
					CHER;						17	4	Essex Av	e. (LO I	DI)			186R

ŀ

l

İ

l

ł

{

ł

Į

		EC	<u> IO</u>	G	IC D	RIL)G	PROJE		JOB NO. SHEET NO. HOLE NO FUSRAP 14501-138 1 OF 1 2051
SI TE			د	A		(1.0)		COORDIN	ATES		ANGLE FROM HORIZBEARING
EGU					DRILL		UI)			DRIL	N 2,052 E 4,019 Vertical MAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) TOTAL D
	the second second second second second second second second second second second second second second second s		l-16			EM)	PIRE	SOILS			CKER AD-TI 3" 45 35 90
ORE		OVER' 7.0/1	r (FT. RR	./%	> CORE	BOXE	S SAMPI 4	LESEL. T	OP CAS	ING	GROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF ROCK
AMP				GHT,	/FALL	CAS		EFT IN HO	LE: D	IA./L	ENGTH LOGGED BY:
			<u>s./ 2</u>					NO			J. Lord
بچا	<u> </u>		BLOUS "N"	יצ	PR	JATER	RE			2	
DIAM.	٩ß		1.0	S S S		ESTS		ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION WATER LEVELS WATER RETURN
	E N	NPL SORE	S S	, W	LOSS IN G.P.M	PRESS. P. S. I.	HIN NIN NIN.		B	NAK	WATER RETURN CHARACTER OF
ตั ^น SS	ଡ଼ା 2.0	1.0	8-5-1	-9	- 0	<u>ăa</u>			_		DRILLING, ET
											0.0 - 1.0 Ft. <u>TOPSOIL</u> . Blackish red (5R2/2) to dusky red (5R3/4). Organics, roots, silty sand, and some clay. D-8 Ft. using 3 ir
ss	2.0	2.0	7-8-						1	-	
			19				•			-[]]	brown (5YR6/4). Dry, loose, poorly sorted Sampled and material. No bedding. Some gravel. No gamma-logged by
ss	2.0	2.0	17-3					.	5_	11	cohesion, no odor. 4.5 - 8.0 Ft. <u>SANDSTONE</u> . Dark reddish
									-]	brown (10R3/4). Mostly weathered, No groundwater
SS	2.0	2.0	52-3 47-5	0							Very slightly moist to dry. Compact, dense, slightly brittle. Undisturbed
			·	_					4.		material.
					ł						Bottom of borehole at 8.0 Ft. Borehole backfilled with spoils, 11/16/88.
		1									
											Top of undisturb
											soil (bedrock?) at Ft.
							-				
					Í						
	·										
						ļ					
							;				
					ł						Description and
					ļ						classification of soils by visual
											examination of samples.
					= SHEL			ITE	NI-	+ '1	Guard Armany (LODI)
- 1		un;	r =	-11	CHER;	U = U	INCK		149	1L I	Guard Armory (LODI) 2051R

l

Į

Į

Ĺ

à

Street.

P-040224

ł

ſ

	G	GEC	DLO	GIC	D	RIL	LLC	G	PROJE	CT		FUSRAP		JOB NO		EET NO. 1 OF 1	HOLE
SITE			*			·····		COORDIN	ATES			- UUNAI		14201		FROM HORIZ	11 BEARIN
EGU			Essex MPLETE					<u> </u>				2,347 E 4,02			Ve	rtical	
			1-9-		DKILL	.EK	E.D.	I.				AKE AND MODEL BILE B-57	\$1ZE 6.5"	OVERBURDE	N IRC	CK (FT.) 1.6	TOTAL
	REC	OVER	Y (FT.		CORE	BOXE	SAMPL	ESEL. TO	P CAS	ING	GR	WIND EL. DEPTH	/EL. GROL	JND WATER	DEP	TH/EL. TOP	
AMD		4.8/	60 R WEIG	UT / 5		IC.A.	4	ET IN HO	1 E . D			TH LOGGED BY:	11/9/8/			6.4	\$/
			bs/30				DING LE	NO		IA./I	LENG	UN LOGGED BY:		D. Ha	rnish	M	?
	ว่าม	<u>.</u>	=	7	ا 20	ATE	R				Π	·····					+
DIAN.	뮉뗤	R R	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	TEST	5	ELEV.	₹	GRAPHICS		DESCRIPTION			ATTON	NOTES	ON:
	ê Z	집문	E SO		D.P.M	SH SH	Hzz.		DEPTH	Ē	SIGNELE					WATER	RETU
		R S S S S	BILOUS "N" X CORE		1.0		HIN. MIN.			8	ľ					DRILL	
SS	2.0	1.0	13-6-2	-							Ń	0.0 - 4.3 Ft. Silty SILT FILL (G	GRAVE	and Grave	<u>llv</u>	Borehol 0-8 Ft.	with 6
	<u></u>					:					N	0.0-0.6 Ft. Sil	ty GRAV	EL, broken	basalt	hollow 1	item ai
85	2.0	0.7	1-2-2	-2							N	gravel, black si				Boring	and
SS	2.0	15	2-10-	12				_		_	A)	0.6-4.3 Ft. Gr with soft silt p yellowish brow	ebbles, gr	T, gray (5) ayish brown	R5/1), and	TMA-E	berlin
			12	1				-	5.	-	N	of charcoal.				Л	
SS	2.0	1.6		5							N	4.3 - 6.4 Ft. SAN (10YR4/1) wit fine-grained, st	D (SP). I	Dark gray		6.0 Ft.	Groun
			28-21	8						-	N	fine-grained, so stained at base	aturated i	at top, iron-	oxide	At TD.	d. ENMI
				\dashv				-	1	<u> </u>	╊	6.4 - 8.0 Ft. WEA	THEREI	BEDROC	<u>K</u> .	/_/100 mmm	n toxic
												6.4 - 8.0 Ft. WEA Dusky red (10) grayish brown downward. Ne	sand. Be	dstone, som comes harde	e coarse	/	
										1.		downward. Me	W Brunsv	VICK SEIGSCO	ne.	1	
		ļ					1					Bottom of borehol Borehole backfille	le at 10.0 d with sp	Ft. oils. 11/9/8;	7.		
														,, -, -, -			
									1								
													-				
							1										
		•								1							
												*				Descrip	tion a
																classific samples examina	by vi
										1							
	<u>.</u>										\prod	······································			<u> </u>		
			POON;					ITE		1(60	Essex St.	(LOD	n –		HOLE NO	124
			, ,				THER	· · · · ·			-4	and the second second second second second second second second second second second second second second secon	(200	·/		_	

SITE										FUSRAP 14501-138 1 OF	
		_ · ·	_				COORDIN	ATES		ANGLE FROM	
DE OUT		<u>74</u>]	Essex S	<u>St. (L</u>	<u>DDI)</u>					2,079 E 4,026 Vertica	•
BEGU 11.		1	MPLETED		.ER	E.D.	т			AKE AND MODEL SIZE OVERBURDEN ROCK (F	
					BOXE	E.D.	L. ESEL. TO	P CAS	1100	DBILE B-57 6.5" 2.5 2.1 OUND EL. DEPTH/EL. GROUND WATER DEPTH/EL.	
-		2.3/4				3				Who LL. DEPTHYEL. GROUND WATER DEPTHYEL.	TOP OF ROC
SAMP			R WEIGHT		CAS	ING LE	FT IN HO	LE: D	IA./L	GTH LOGGED BY:	
			bs/30				NO	NE	ينتعاق	D. Harnish	
Ë	N N N	С Ш С		PR	JATER ESSU	RE			9		
E E	- CO	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAMPLE BLOWS "N" X CORE RECOVERY	σΞ	EST:		ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION WA	TES ON: TER LEVEL
		COR	80 80 80 80 80 80 80 80 80 80 80 80 80 8	LOSS IN G. P. M	PRESS. P. S. I	TIME MIN.		δ	GRA	СН	TER RETUR ARACTER C Illing, B
SS	2.0	1.8	26-29 36-33					. <u> </u>		0.0 - 2.5 Ft. SAND and Silty GRAVEL Bo	rehole advance
SS			17-27				•			0.0-1.5 Ft. Silty GRAVEL, dark brown silt.	6.7 Ft. with 6 l. hollow stem ger.
			28-33			•				i jen	ring radiologi mpled and
SS (0.7	0.5	13-50/2'				-			1.5-2.5 Ft. SAND, yellowish red (5YR4/6) on top, yellowish brown and weak red below; very fine-grained.	mma-logged b A-Eberline,
								-		2.5 - 4.7 Ft. WEATHERED BEDROCK. Dusky red decomposed New Brunswick sandstone; hardens downward.	of asphalt at fface.
										Bottom of borehole at 4.7 ft. Borehole backfilled with spoils, 11/8/87.	
										borenoie backfilled with spolis, 11/8/87. Au	iger refusal at
			ĺ								
			:								
					Ì						
							1				
							-				
										D	scription and
-										cia sar	ssification of nples by visu mination.
			00N; ST P = PI				TE		<u>لــــ</u> ۹۳	Essex St. (LODI)	E NO. 1130R

.

ľ

		EC	LO	GIC		RILI	L LO	_	PROJE	51		FUSRAP		јов но. 14501-	138 1	OF 1	HOLE NO 1116
SITE		74]	Essex	St.	. (LC)DI)		COORDIN	ATES		N	2,147 E 4,04	1	4	NGLE FRO Verti	M HORIZ	BEARING
EG.	W	α	MPLET	ED	DRILL			_L			L M	KE AND NODEL	SIZE	OVERBURDEN			TOTAL DI
			1-5-		ICOP5	DOVE	E.D.	I. ESEL. TO	N 640		MO	BILE B-57	6.5"	8.2		3.6	11.
		5.1/4		/~/		DUAL	6			ING	GRU	UND EL. DEPTH/	EL. GROU	IND WATER	DEPTH/	EL. TOP 8.4	
ANP			R WEIG			CAS	ING LE			A./I	LENG	TH LOGGED BY:			,	<u> </u>	/
	1	40 1	<u>bs/3(</u>	<u>) in</u>				NO	NE		T 7			D. Harn	ish	CH1	
AND DIAN.	SAMP. ADV. LEN CORE	BAMPLE REC.	BLOUS "N" X CORE	RECOVERY	- PRI	ATEF ESSU ESSU .I.S.L	RE	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION			TION	NOTES WATER WATER CHARAC DRILLI	LEVEL
53	2.0 2.0	0.9	16-1 16-1 9-4-	7							N	0.0 - 4.3 Ft. GRA FILL (GP, GM 0.0-2.4 Ft. GR angular broken	-ML). LAVEL, c	oarse-grained		Borehole 0-11.8 F o.d. holls auger. Boring r	t. with 6 ow stem
55	2.0	1.5	12 3-18 22-2					-		Ш	N	brown silt. 2.4-2.5 Ft. SII 2.5-3.1 Ft. SII	.T, black	(5YR2.5/1).		sampled gamma- TMA-E 3.1-4.3 I chemical	and logged b berline, (ft. Fain
ss	2.0	0.0	31-23- 25/1								N	gravel. 3.1-4.3 Ft. SII and greenish gr Brunswick sand	T, grayis	h brown (10Y			
ŝS	2.0	1.5	31-3 32-3		-			-	10_		N	4.3 - 8.2 Ft. <u>SANI</u> Fine-grained.	Q (SP-SC	;).		8-10 Ft. wet.	Sample
SS	1.8	0.0	9-15- 50/3					-			Ň	4.3-4.9 Ft. Gr fine-grained wi brown sand. 4.9-6.7 Ft. Ver	rv dark g				
												fine-grained, v 6.7-8.0 Ft. Cla 8.0-8.2 ft. SAJ (2.5YR4/4), fin	yey SAN				
						ł						(2.5YR4/4), fin 8.2 - 11.8 ft. <u>BED</u> (2.5YR4/4), ha Sandstone; top	ROCK	eddish brown Brunewick			
												Bottom of borehol Borehole backfille	e at 11.8	 Ft.	J		
								:									
	•																
			- - - -													Descript classifics samples examina	tion of by visu
			200N; P=				/ /	ITE	J	1	74	Essex St.	(LOD	I)		HOLE NO	16R

		EO	LOG	IC D	RIL	LLC		PROJE	CT		FUSRAP		JOB NO 14501	. she -138 1	ET NO. OF 1	HOLE NO. 20101
SITE		74 I	lssex S	St /T 4	יזתר		COORDIN	ATES		N 2 4	06 E 4 64	(0			ON HORIZ	
BEGL	the second second second second second second second second second second second second second second second s		WPLETED						DRIL		95 E 4,00	SIZE	OVERBURDEN	Ver	((FT.)	TOTAL DE
		8 1	0-7-88	3	EMI		SOILS			СМ	E 45B	12"	10.0		~ ~ ~ 1 # #	10.0
	8	.1/9	0			5	ESEL. TO				₹ 9.	/EL. GROU .0/ 10/7/8	ND WATER	DEPTH	/EL. TOP	
SAMF			WEIGHT 5./ 24		CAS	SING LE	EFT IN HO		A.71	ENGTH	LOGGED BY:		J. Lo	ord		
Ш. С.,					JATEF ESSU	RE			n							
AND DIAN.	SAMP. AD	BAMPLE RI CORE RE(SAMPLE BLOWS "N" X CORE RECOVERY	LOSS IN A.P.M	EST	HINE ALINE ALINE ALINE	ELEV.	DEPTH	GRAPHICS	308	ESCRIPTIO			ATION	WATER	ON: LEVELS RETURN CTER OF ING, ET
	1.0	1.0	25-22].		H	- 1.5 Ft. <u>ASI</u> Nat'l. Comm.	Bank drive	way.		_0-10 Ft.	e advance . using 6 1
SS	2.0	2.0	25-29 43-29							1.5	- 10.0 Ft. W SANDSTONE (10R3/4) New	EATHERF Dark rec Brunswich	D dish brown formation.		i.d. holle augers.	ow stem
SS	2.0	1.7	12-15 20-28			· ·	· ·			N	1.5-2.0 Ft. M crumbley silty	ostly weat sand. Slip	hered, comp phily moist.	act but	Radiolog	gically
SS	2.0	1.4	8-12-12 20					-•		R	2.0-8.0 Ft. Gi fractured sand sandstone rock hard sandston	lstone soil, k. Substan	to a compet tial 3" chun	ent	TMA-E Ground	logged by berline, In
SS	2.0	2.0	15-22 38-49					↓ . ¥ .		Ŋ	7.0-8.0 Ft. La and limestone chunks up to l	yer of wear gravel. And 1" in diame	thered sand ngular limes ster.	stone, tone		
								10.	<u> </u>	Bo Bo	9.0 FtSatura ttom of boreho rehole backfille asphalt to the	ble at 10.0	ils to 6" and	1	1.5 Ft.	Top of rbed soil.
								: : :	-							
	-															
							ł									
															Descript classific soils by examina samples	visual stion of
			OON; ST				ITE					/			HOLE NO	· · ·
			P = PI						1 A-		ssex St.	(LOD	I)		2	010R

SITE			LOG		•		COORDIN	ATES		FUSRAP 14501-138 1 OF 1 11 ANGLE FROM HORIZBEARIN
	1		Essex S							N 2,408 E 4,068 Vertical
BECL			MPLETED		ER.		*			NAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) TOTAL
			1-9-8		BOXE	E.D.				IOBILE B-57 6.5" 8.4 1.6 10 GROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF ROL TOP OF ROL
		5.2/				5				1 Set 1 S
SAMP		-	R WEIGHT	• • • • • • • • •	CAS	ING LE	FT IN HO		A./L	INGTH LOGGED BY:
	_		<u>bs/30</u>				NO	NE		D. Harnish
ž.	22		SAMPLE BLOUS "N" X CORE RECOVERY	PR	IATEF ESSU FESTS	RE		-	2	
DIAH .	€ S		1000	σ Σ			ELEV.	DEPTH	Ŧ	DESCRIPTION AND CLASSIFICATION WATER LEVE WATER RETU CHARACTER
	<u>루</u> 피	E B	S S S S S S S S S S S S S S S S S S S	L039 L039 G.P.	PRESS P.S.I	TIME MIN.		8	GRAPHICS	WATER RETU
SS SS	2.0	G O	5-11-7	- 0	<u>Ľ</u> a			<u> </u>		DRILLING,
22	4.U	4.0	6			-		.		0.0 - 4.3 Ft. Gravelly SILT FILL Borehole advar (GM-ML). 0-10 Ft. with 6 o.d. hollow ster
55	2.0	0.0					-	.		0.0-0.7 Ft. Mixed dark brown (10YR3/3) and dark gray. Boring radiolog
						•		.		Inter bar bar bar bar bar bar bar bar bar ba
55	2.0	0.8	4-4-8			•	-	·		0.7-4.3 Ft. Mixed dark brown (10YR3/3), reddish brown (2.5YR4/4) and dark gray SILT, pieces of wood, dusky red New
			15					5_	:::	Brunswick sandstone, soft reddish brown silt pebbles, and other gravel.
SS	2.0	2.0	16-17				-	.		1 300 ppm 2 bar
			18-17					•		4.3 - 6.3 Ft. SAND (SP) Dark reddish gray (5YR4/2), fine- to medium-grained, minor silt, rare round gravel.
SS	2.0	1.1	19-22							6.3 - 8.4 Ft. Clayer SAND (SC). Grayish
1			37-42					•	.	brown (10YR5/2), medium-grained, some clay.
								10.		6.3-6.6 Ft. CLAY.
										8.0-8.4 Ft. Clayey SAND.
										8.4 - 10.0 Ft. WEATHERED BEDROCK, dusky red, fractured weathered New
										Brunswick sandstone.
										Bottom of borehole at 10.0 ft.
										Borehole backfilled with spoils, 11/9/87.
				{						
										· ·
										Description and classification of
									1	samples by vist examination.
									1	
								<u> </u>	[
			POON; S1 ; P = P1				ITE		16	0 Essex St. (LODI)
<u> </u>	~~~~		,	GOGK	v - L	TINER			_ ~ `	

		EC	LOG		D 11 1	10	n l	PROJE	CT		IEET NO. NOLE NO.
SITE			200				COORDINA	TES		FUSRAP 14501-138	1 OF 1 1125R FROM HORIZBEARING
			Essex S							1	rtical
DEGU		1	MPLETED		ER		T				CK (FT.) TOTAL DEP
			1-9-8	_	BOXE	E.D.		P CAS		IOBILE B-57 6.5" 6.5 ROUND EL. DEPTH/EL. GROUND WATER DEP	0.2 6.7
		.4/				4				4.9/ 11/9/87	6.5/
iamp:			R WEIGHT bs/30		CAS	ING LE	FT IN HOL NOI		A./LI	NGTH LOGGED BY: D. Harnish	OPP
ш.	-1		13/30	6	ATER					D. Haruisi	
AND DIAN	AMP. ADV LEN CORE	MPLE REC	BLOWS "N" RECOVERY	PR' H.d.B	ESSU ESSU FESTS SOUTH SOUTH	5	ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETG
SS S	ອ 2.0	0.8	7-7-10	- 0						0.0 - 4.9 Pt. Silty GRAVEL and Gravelly SILT FILL (GM).	Borehole advanced
55	2.0	1.2	5 3-2-1-4							0.0-0.7 Ft. Broken basalt gravel, brown silt.	0-6.7 Ft. with 6.5" o.d. hollow stem auger. Boring radiological sampled and
55	2.0	1.8	25-28 28-25			-	2	7 5.		0.7-2.5 Ft. Gravelly SILT, dark brown (7.5YR3/2), pebbles of soft yellowish brown silt and hard dusky red New Brunswick sandstone, damp.	gamma-logged by TMA-Eberline, Co
<u>s</u> s	0.6	0.6	50-25/0				=			2.5-4.9 Ft. Dusky red New Brunswick sandstone gravel fixed in weathered clay and silt (FILL?).	Auger refusal at 6.
										4.9 - 6.5 Ft. <u>SAND</u> (SP). Grayish brown (10YR5/2), fine-grained, medium-grained toward top, wet. (Brook sediments?) 6.5 - 6.7 Ft. <u>BEDROCK</u> . Dusky red, hard New Brunswick	
, ,										New Brunswick Bottom of borehole at 6.7 Ft. Borehole backfilled with spoils, 11/9/87.	}
										-	
	•										
											Description and classification of samples by visual examination.
			POON; S ; P = P			/	SITE	<u> </u>	16	0 Essex St. (LODI)	HOLE NO. 1125R

ł

1.12 A.

ſ

1.

	9-8	7 1	NPLETED	7		E.D.			RILL	NAKE AND NODEL SIZE OVERBURDEN DOBILE B-57 6.5" 6.8	ertical ICCK (FT.) TOTA
	5	5.2/6	55			4				塗り	PTH/EL. TOP OF R 6.8/
SAMP			weight bs/30 i	•	CA	SING LE	FT IN HO		A./LE	IGTH LOGGED BY: D. Harnish	OPP
DIAH.	ADU.	REC.	N N N N N N N N N N N N N N N N N N N	PR	LATE ESSL TEST	RE	ELEV.		ICS		NOTES ON:
SAND'D	SAP.	SAMPLE CORE	BLOWS "N" X CORE RECOVERY	LOSS IN B.P.M	PRESS. P. S. I.	TINE MIN.	ELEV.	DEPTH	GRAPHICS SAMPLE	DESCRIPTION AND CLASSIFICATIO	N WATER LEU WATER RET CHARACTER DRILLING,
SS	2.0	1.1	7-4-4-5					-		0.0 - 4.4 Ft. Gravelly SILT FILL and Silty SAND (GM-ML, SM).	Borehole adv 0-8 Ft. with hollow stem 1
SS	2.0	1.4	2-3-1-6				·	-		0.0-0.3 Ft. Silty GRAVEL, black silt, broken basalt gravel.	Boring radiol
SS	2.0	1.4	4-6-18 16					5		0.3-2.8 Ft. Gravelly SILT, silt is black and dark brown, pebbles of soft red silt, pieces of wood, coal ash.	TMA-Eberlir
SS	2.0	1.3	23-34 50/2"				-			2.8-4.4 Ft. Silty SAND, reddish gray (5YR4/2), fine-grained, small (< 1 cm) pieces of decomposed wood, some reddish brown slightly decomposed New Brunswick	F
			50/2"				-		N	sandstone gravel.	
										4.4 - 6.0 Ft. <u>Clavey SILT</u> (ML-CL). Reddish brown (5YR5/S) with yellowish brown iron-oxide stain, grayish green on top.	
										6.0 - 6.8 Ft. <u>SILT and SAND</u> (ML-OL, SP). Greenish gray sand, yellowish brown silt.	
										6.5-6.6 Ft. SILT, black, organic.	
										6.8 - 8.0 Ft. WEATHERED BEDROCK. Dusky red New Brunswick sandstone, becomes harder downward.	
										Bottom of borehole at 8.0 Ft. Borehole backfilled with spoils, 11/9/87.	-
						-				-	
											Description a
											classification samples by vi examination.
1											

•

•

	G	ΞE	0	LO	GI	CD	RIL	L LO	G	PROJE	CT		FUSRAP		JOB NO 14501		SHEET NO. 1 OF 1	HOLE NO. 1118
SITE		74	Б		~ ~	t. (L	מח		COORDIN	ATES		B.T	1 171 E 4 07				FROM HORIZ	BEARING
EGU				IPLE		DRILL			1		DRIL		2,273 E 4,079		OVERBURDEN		ertical	TOTAL DE
11-	-5-8	37	11	1-5-	-87	<u>'</u>		E.D.	.I.				DBILE B57	6.5"	8.0	ľ	2.0	10.0
ORE					./%) CORE	BOXE		ESEL. TO	P CAS	ING	GR	DUND EL. DEPTH/	EL. GROU	ND WATER	DEF	PTH/EL. TOP	
ANP		4.7			GHT,	/FALL	CA	5 SING LE	FT IN HO	LE: DI	A./I	ENC					8.0	/
				os/3					NO						D. Har	nish		
μ. 4.Σ	SAMP. ADU.	с Ш	<u>ن</u> ا.	z i.	≻	PR	JATE	IRE			ņ	Π	<u></u>					
DIAM.	2 Q	2	삐		В В В В В В В	Σ	rest:	1	ELEV.	DEPTH	Ĭ		DESCRIPTION	AND CI	ASSIFIC		NOTES N WATER	
Samp.	e z	F				LOSS B. P. P	PRESS.	HIN HIN		Ш.	GRAPHICS	Sahere					WATER	
5 S S	SAI	N	៥		ā	<u> </u>	ñ.a.	Σ ⊣			Ø	[]					DRILLI	
SS	2.0	0.	3	15-1 12	1-0								0.0 - 6.6 Ft. Silty FILL (GM, ML	GRAVEL	and SILT		0-10 Ft.	e advance with 6.5
													0.0-2.1 Ft. Silt	v GRAVI	EL. black br	oken	auger.	ow stem
SS	2.0	1.	9	5-13 14						.			basalt gravel; lo	• -	• •		sampled	adiologic and
SS	20	1		4-7-						.			2.1-6.6 Ft. SIL light brown (7.1 soft pebbles, ye	T, weak f 5YR6/4)	ed [2.5¥4/2 iome sub-ro	unded	TMA-E	logged b berline, (
33	2.0	0.	<u> </u>		y - y		1		1	5			brown; few piec Brunswick sand	es of hard	l dark red N	ew		'reads 10
SS	2.0		5	4-6-	7-8					.			Drumswick skild	atone.			ppm at i	0.5 Ft. w
									-	.			6.6 - 8.0 Ft. SILT (2.5YR4/2), few	(ML). W	eak red bbles.			
SS	2.0	0.	71	4-18	3-18					₽.								Groundw
				25/	1"					•		•	8.0 - 10.0 Ft. WE/ BEDROCK. D hard, New Brur	usky red (nswick for	(2.5YR3/2), mation.		observed	1.
_		1	+						-	1	ř-		Better of beech al			•		
													Bottom of borehold Borehole backfilled	l with spo	ils, 11/5/87			
		İ								i i								
										1								
						l												
												il.						
											ł							
											ļ							
																	Descript	ion and
		1															samples	by visua
											l							
		<u> </u>											· · · · · · · · · · · · · · · · · · ·					
						= SHEI		,	ITE		4.	7 A	East St. 4)		HOLE NO.	
/ # 1	VENN	120	N;	۳ =	PII	CHER;	0 * 0	DTHER			1	4	Essex St.		<u> </u>		11	1 18 R

.

		EC	LOG	IC D	RIL	L LC	G	PROJE	CT		FUSRAP		JOB NO	. she -138 1		HOLE NO
SITE							COORDIN	ATES							OH HORIZ	1122 BEARING
BEGL			Essex S							N	2,025 E 4,094			Ver	ical	
r i			1-6-87		EK.	E.D.	T				MAKE AND MODEL S OBILE B-57		OVERBURDEN	ROCI		TOTAL D
					BOXE	SAMPL	ESEL. TO	P CASI	ING			6.5"	4.0	DEPTH	6.0 /EL. TOP	10.
		5.1/				5					₹ /				4.0	
SAN			NEIGHT		CAS	SING LE			A. /	LEN	GTH LOGGED BY:	•				
Ш.					JATER	2	NO	NE I	-	T			D. Hai	nish		
SAMP . TYPI	SAMP. ADU LEN CORE	SAMPLE REC	SAMPLE SAMPLE X CORE X CORE	PR' W.G.B	ESSU TESTS	IRE	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION	AND CL	ASSIFIC	ATION	NOTES WATER WATER CHARAC DRILLI	LEVEL: RETURI
SS	2.0	1.6	26-20 15-14				-				0.0 - 0.3 Ft. Slilty (Broken basalt gr	avel. loos	FILL (GM	I). /	Borehole 0-10 Ft.	advance
SS	2.0	1.5	10-23 16-17					-			easily; silt is blac 0.3 - 4.0 Ft. SILT (yellowish brown round gravel.	ck.		1	o.d. holle auger. Boring r sampled	ow stem adiologic and
SS		0.9	50-46 29-34				_	- 5_			4.0 - 10.0 Ft. WEA Dusky red to red fine-grained. Va New Brunswick a	l. silty sau	nd. fine- to	Verv	TMA-E	berline, (
SS	2.0	1.4	7-14-13 12								6.0-8.0 Ft. Grav				6-10 Ft. weathere	d bedro
SS	2.0	0.7	9-24-9 5	,				-			fine-grained. 8.0-10.0 F.ft. Cl fine-grained, mo	layey san: ist.	dstone; wea	ak red,	7.7-8.0 1	t. Soft.
							-				Bottom of borehole Borehole backfilled	at 10.0 ft with spoi	i. l s, 11/6/ 87	<u> </u>	Hole cav Ft.	ed in to
					(
						-										
										Н						
														•		
															Descripti classifica samples examinat	tion of by visua
			00N; ST P = PI				ITE		1	∐ 7∧	Essex St. (I	וחסו			HOLE NO.	22R

		EC	LOG	IC D	RIL	L LO	G	PROJE	T	FUSRAP	- <u></u>	JOB NO. 14501-1)F 1	HOLE
SITE		60 1	Essex S	St. (LO	וומכ		COORDIN	ATES		N 2,327 E 4,11	7	AN	GLE FROM Vertic		BEARIN
BEGL	JN	6	MPLETED	DRILL			1	1				OVERBURDEN	ROCK		TOTAL
			1-6-8		POVE	E.D.				OBILE B-57	6.5"	4.0		.0	8
		3.1/3			BUAE	4		P LAS	NG	ROUND EL. DEPTH/	EL. GROUN	D WATER	DEPTH/E	L. TOP 4.0	
SANF	PLEN	AME	R WEIGHT		CAS	SING LE			A./L	NGTH LOGGED BY:				O	1
	1	<u>40 1</u>	<u>bs/30</u>	in .			NO	NE	7 1			D. Harni	sh	4	~
Ŀ;	CORE .		SAMPLE BLOUS "N" X CORE RECOVERY	PR	JATES ESSU IESTS	RE		-	8						•
DIAH	E B	L L L	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ωΣ			ELEV.	DEPTH	BRAPHICS	DESCRIPTION	AND CL	ASSIFICAT	FION JU	IOTES	LEVE
SAMP AND	SAMP.	SAMPLE CORE F	SAMP SAMP BLOUS RECOU	LOSS IN G.P.	PRESS. P.S.I.	HIN. HIN.		B	RA				ļa	JATER CHARAC	TER
	00	0.8	14-42	- 0	än	- I			Ŭ	0.0 2.0 Ft. Silty	ODAVOL	PITT /CM		Borehold	•
		0.0	13-15					.		Broken basalt g	ravel; silt	is dark brown	. {	0-8 Ft. hollow s	with 6.
SS	2.0	0.8	1-3-7				-		.1 1	0.4 Ft. Yellow 2.0 - 4.0 Ft. SILT SM]. Silt is red	powder di and Silty	stributed in fi SAND (ML.	<u>n</u>		
			12					.		SM). Silt is red medium-graine	ldish brow d.	n; sand is gra	y,	Boring r ampled ramma-	and logged
SS	2.0	0.8	15-17 17-17					· •	μ	4.0 - 8.0 Ft. WEA	THERED	BEDROCK.		ramma-E	berline
			17-17					5_		Dusky red sand damp at base.	stone, har New Brun	d, clayey at to swick sandsto	ne.		
SŚ	2.0	0.7	9-11					.							
-			38-40												
							-	1.		Bottom of borehold		<u> </u>			
										Borehole backfilled	i with spoi	ils, 11/6/87.			
													1	Hole is a	lry.
								1							
													ļ		
:		i i				1							ļ		
			ļ												
]															
1								1							
	<i>.</i>												1		
1															
1				}	1			1							
1								1							
1		1												Descript	tion an
1					1									elassific: samples	ation o by vis
1		1								1				examina	tion.
															•
			POON; ST				ITE	<u>.</u>	نىيىتىك مەرب		() ^>'	<u> </u>		HOLE NO	
P =	DENN	I SON	; P = P)	TCHER;	0 = (DTHER		<u>.</u>		0 Essex St.		<u>)</u>		1	1231
									2	-13					

			LOG				_	<u> </u>		FUSRAP 14501-138 1 OF 1 11
SITE		4 0 3	F (COORDIN	ATES		ANGLE FROM HORIZBEARI
BEGL			Essex S		ER .					N 2,395 E 4,138 Vertical MAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) ITOTAL
11.	-9-8	1	1-9-8			E.D.	I.	Γ		MAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) TOTAL IOBILE B-57 6.5" 7.5 0.5
CORE				CORE	BOXE		ESEL. TO	P CAS	NG	GROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF RO
CANE		5.3/	79 R WEIGHI			4	ET 711 40			7.5/
ann			bs/30	-)144 FE	NO		A./L	INGTH LOGGED BY: D. Harnish
Ψ.		0.			JATE					
DIAM.	S R	N N N N N	BILOUS "N" X CORE RECOVERY		ESSU TEST:	5		Ŧ	BRAPHICS	NOTES ON:
, E		5	F acs	<u>س</u> _۲	ņн	ш	ELEV.	DEPTH	E	DESCRIPTION AND CLASSIFICATION WATER LEVI WATER RETU CHARACTER
SAND	Ш Ц Ц Ц Ц	불跷	90 × 5		Щ. П.	TIME IN MIN.		ā	B	
SS	90 2.0	1.5	15-11-7		<u>ā</u> a					DRILLING, 0.0 - 5.7 Ft. SILT and Gravelly SILT Borehole adva
			7					-		FILL (ML, ML-GL). hollow stem a
S 5	2.0	1.5	3-4-5-4					-		0.0-0.4 Ft. Silty GRAVEL, black silt, broken basalt gravel. Boring radiolo
						·		-		0.4-2.0 Ft. Gravelly SILT, black sampled and
55	2.0	1.3	3-4-16					-		0.4-2.0 Ft. Gravelly SILT, black (2.5YR2.5/0), with pieces of wood, dusky red New Brunswick sandstone, other rock.
•			23					5_		2.0-5.7 Ft. SILT, black, small pieces of 6.0 Ft. ENMI
SS	2.0	2.0					-	1 •		greenish gray silt, minor coarse-grained 300 ppm with round sand, medium-grained reddish gray 1 at top of hole.
			22-26				-	ļ •	\square	silty sand mixed in.
			* <u></u> ,				-	{ ·		4.0-5.0 Ft. Green stain.
										5.7 - 7.5 Ft. <u>SAND</u> (SP).
										5.7-6.9 Ft. Reddish gray (5YR5/2), fine-grained, saturated, runny. Borehole is dr
										6.9-7.5 Ft. Yellowish brown (10YR5/6),
										fine-grained.
										7.5 - 8.0 Ft. WEATHERED BEDROCK. Dusky red, New Brunswick sandstone, hard pieces separated by more weathered soft
										clayey areas.
										Bottom of borehole at 8.0 Ft.
										Borehole backfilled with spoils, 11/9/87.
										-
										· .
								1		
, i										
								ĺ		
								ĺ		
										Description as
										elassification elassification a samples by vi
										examination.
- 22	CDI		200N; ST				ITE	<u> </u>		HOLE NO.
			; P = PI						16	0 Essex St. (LODI)
										-14

	G	iΕO	LOG	IC D	RIL	L LO	G	PROJE	61	FUSRAP		JOB NO.	SHEET NO. 38 1 OF 1	HOLE I
SITE							COORDIN	ATES		I CORAI	·		LE FROM HORIZ	
			Essex S				<u> </u>			N 2,482 E 4,14			Vertical	
BEGU 11-		1	NPLETED		.EK	E.D.	T			MAKE AND MODEL	\$1ZE 6.5"	OVERBURDEN	ROCK (FT.)	TOTAL
					BOXE			P CAS	ING	ROUND EL. DEPTH	/EL. GROU		DEPTH/EL. TOP	OF RO
		5.3/0			- 100					1 X /	.0/ 11/9/8	57	/	,
SAMP			NEIGHT bs/30		CAS	SING LE	ift in ho NO		IA./L	NGTH LOGGED BY:		.	. Cua	P.
Ш.)					JATEI	2		T		1		D. Harnis	n <u>yp</u>	<u> </u>
DIAH		REC	BLOUS "N" X CORE RECOVERY	PR	ESSU FESTS	RE S		Ŧ	5				NOTES	ON:
			<u> </u>	<u>س</u> ۲	ю́н	₩	ELEV.	DEPTH	GRAPHICS	DESCRIPTIO	N AND C	LASSIFICAT	ON WATER	LEVE
	ΞĒ	ŤΫ	90×2	LOSS LOSS LOSS	PRESS PARSe	HIN.		Δ	GRA				CHARA	CTER
SS S	<u>ທີ</u> 2.0	0.9	9-9-6-3	- 6	<u>ā</u> a	<u> </u>				0.0 - 2.4 Ft. SAN	D and Silt	Y GRAVEL	DRILL: Borehol	
								1		0.0 - 2.4 Ft. SAN FILL (SP, GM			0-8 Ft. hollow	with 6.
SS	2.0	1.8	2-3-2-3					1		0.0-0.4 Ft. Si angular basalt	ity GRAV. gravel.	EL, dark brown	silt, Boring	radiolos
									Ш	0.4-2.4 Ft. S.	AND, brow	n (7.5YR5/4),	sampled gamma- TMA-E	l and logged
SS	2.0	0.8	10-18-18						th	fine-grained.				berline
			17					5.	Ш	2.4 - 6.0 Ft. <u>Silts</u> (SM, ML).	SAND an	d Sandy SILT wn $(2.5YR4/4)$,		
SS	2.0	1.8	15-20 23-31				-	¥		🔰 🔰 Diant Dieces, r	oots, decoi	mposed organic	[[6.0 Ft.	
			40-01							material, bedd	֥		observe	۵.
							-	1	Ť	decomposed N	ew Brunsv	7.5YR3/2), vick formation.	Id	
										6.0 - 8.0 Ft. SAN	D (SP). I)ark grayish grained, compac		
										wet.	<i>., ∎),</i> -(ramed, compac		
										6.3-6.5 Ft. M	edium-gra	ined.		
										Bottom of boreho	le at 8.0 F	` t .		
	:									Borehole backfill	ed with spo	oils, 11/9/87.		
ł														
						-				_				
						· .								
								1						
·														
						•		1						
				ł				1						
										-				
								1					Descrip	
								1					classific samples	by vis
								1					examin	B61011.
								1						
SS =	SPL	IT SF	POON; ST	= SHE	LBY TI		ITE		• •		() ^ ~	••	HOLE NO	
0 =	DENN	I SON ;	P = P1	TCHER;	0 = 0	DTHER				0 Essex St.	LOD	<u>I)</u>		129
										A-15			\ •	

		EO	LOG	CD	RIL		-			FUSRAP 4501-138 1 OF 1 11
SITE		4 0 1	lssex S	4 /7 /	101		COORDIN	ATES		ANGLE FROM HORIZBEARI
EGU	_		MPLETED							N 2,433 E 4,186 Vertical MAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) TOTA
			-24-8			E.D.				Mobile B-57 6.5" 10.0
ORE) CORE	BOXE		ESEL. TO	P CAS	ING	GROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF R
ANP	_	.8/4	WEIGHT	/FALL	ICAS	5 51NG LE	FT IN HO	LE: DI	A./L	
	14	O Ib	s./ 30	in.			NO			D. Harnish
Ш. А	تر الح	<u>.</u>	BLOUS "N" * CORE		JATE! ESSU				0	
u He I G	B Š	REC		1	EST		ELEV.	Ŧ	GRAPHICS	NOTES ON: Description and classification water Lev
÷	az	년 년 문		97. 97.	юн Ю	HIN HIN HIN		DEPTH	đ	WATER RET
	S S S S	ΣÖ		LOSS IN G. P. M	PRESS. P. S. I.	부려분		-	6	DRILLING,
SS	2.0	0.8	7-14-8					1		(ML-GL, ML-OL). 0.0 - 4.6 Ft. Gravelly SILT. SILT FILL (ML-GL, ML-OL). 0-10 Ft. with
			•							V i.d. hollow st
55	2.0	1.3	3-5-4-4] .				(7.5YRS/4); gravel is New Brunswick Boring radiol sampled and sampled and
						.				2.6-2.9 Ft. SILT and Silty SAND. TMA-Eberlin
SS	2.0	1.4	2-7-10 22				-	5.	1.1	horisontally interlayered gray fine-grained 2" of asphalt silty sand, reddish gray very fine-grained [surface.
			10 60				.			silty sand and black silt. Hole caved in
SS	2.0	0.0	19-36 25-16						4	2.9-4.6 Ft. SILT, black. 4.6 - 6.0 Ft. <u>Silty SAND</u> (SM). Dark
\$S	20	1.3	5-9-7					¥.	Щ	grayish brown (10YR4/2), fine-grained.
55	4.U	2.0	12					ļ .		6.0 - 8.0 Ft. SILT (ML). Dark gray observed.
_							-	10	11	Decon tube
									·	8.0 - 10.0 Ft. Silty SAND (SM). Weak red (2.5YR5/2), fine-grained, subangular grains, saturated.
						{				
										bottom of borehole at 10.0 Ft. Borehole backfilled with spoils, 11/24/87.
						ļ	ļ		ļ	
ļ										
]	{	ļ			
				1		1	1			
1										
						.			1	-
	ļ			}	ļ	l				
	l			ļ						
									1	
		1						1		
					ľ	[Description classification
	1	1			1					classification samples by v examination
			1							examination
		1				1		}		
	ł									
			POON; \$1				SITE			HOLE NO.
D =	DEN	ISON	; P = P	TCHER;	0 =	OTHER				50 Essex St. (LODI) 116
	DENN	ISON	; P = P)	TCHER;	0 =	OTHER				-16

		EC	LOG	IC D	RIL)G			FUSRAP		јов но. 14501-	138 1	TNO. OF 1	HOLE
SITE		<i>.</i>					COORDIN	ATES					NGLE FRO	M HORIZ	
BEGU			Essex S						Dar.	N 2,351 E 4,2			Verti		
F			-24-8			E.D.	I.			Mobile B-57	SIZE 6.5"	OVERBURDEN 10.0	ROCK	(FT.)	TOTAL
					BOXE	SISAMPI	ESEL. TO	OP CAS	ING		VEL. GROU	ND WATER	DEPTH/	EL. TOP	OF RO
	_	1.2/4				5				l¥ ?	.2/ 11/24/	/87		/	
SAMP			R WEIGHT		CAS	ING LE			14.71	INGTH LOGGED BY:				14	१
Hi	14		os./30		IATE		NO	NE		1		D. Harn	lish		1
SAND DIAN.	LEN CORE	AMPLE REC.	BLOWS "N" X CORE RECOVERY	Loss Loss A.P. M. B. P. M.	ATEN ESSU EST: OH BUS	RE	ELEV.	DEPTH	GRAPHICS	DESCRIPTIO	n and C	Lassifica		NOTES WATER WATER CHARAC	LEVE RETU TER
SS	2.0	<u>ñ</u> 1.0	8-8-6-7		00		 	╉────		0.0 - 3.2 Ft. Silt	GRAVEL	. Gravelly SI		Borehole	
SS	2.0	1.5	1-2-4 12							and SILT FIL 0.0-2.0 Ft. Si basalt, cemen sandstone.	L (GM, G) ity GRAV and New	M-ML, OL). EL, broken pi Brunswick	eces of	0-10 Ft. o.d. holl suger. Boring r sampled	with (ow step adiolog and
55	2.0	1.7	3-3-7-4						傠	2.0-2.7 Ft. G of soft silt, gr	ravelly SII ayish green	T, black, piec, brownish gr	:es ay.	TMA-E	berline
							-	- 5.	-	2.7-3.2 Ft. S			Н	Elevated	i readi
SS			9-11-12 11							3.2 - 4.9 Ft. Silt ML). Grayist medium-grain thick; sand an	ed sand, b	e-grained, sor eds are 0.3 ft.	ne II	with HP 2.7-3.2	-260 f Ft.
\$S	2.0		2-2-8-8					ŧ]				<u>.</u>	8.2 Ft. observed	
							-	10		4.9 ~ 10.0 Ft. Sil SP). Reddish brown downw	gray (5YR ard, fine- t	5/2), becomi o medium-gr	ng ained, _		
										Some gravel o	I New Brun	ISWICK SANGED	one.	At TD, 90 ppm, with pro	ENME 1 bar
										5.8 Ft. Some	-			with pro	be at I
									1	6.3-6.4 Ft. S		• •			
	:								1	6.4-8.2 Ft. Si may be distur	bed fill.	prown (1034	(4/3);		
										8.2-10 Ft. SA	ND, brown	a (10YR4/2),	very		
							{			fine-grained t	egging evi	dent, saturate	<u>. </u>		
										Bottom of boreh Borehole backfill	ole at 10.0 ad with spo	Ft. bils, 11/24/87			
										-					
									1						
.															
									1						
										-				Descript classific: samples examina	tion c by vis
	601				BY -		ITE							HOLE NO	
			POON; ST : P = P1						11	0 Essex St.		n			1661

نــــ

		EC	DLOG	IC D	RIL	L LO	<u>)</u> G	PROJE	••	FUSRAP 14501-138 1 OF 1	LE NO
SITE		74]	Essex S	St. (L	נומח		COORDIN	ATES		2,285 E 4,217 ANGLE FROM HORIZBEAN	RING
BEG	M	R	MPLETED	DRIL	LER		1	Ĭ	DRIL		TAL
			0-7-8		EM	PIRE	SOILS	0.040	140	CME 45B 12" 2.1	2.
		.0/(1	ESEL. 10	Puls	1106	OUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF	ROCK
SAMP			R WEIGHT		CAS	SING LE	FT IN HO		A./L		
81.6		1.1	<u>s./ 24</u>		HATE		NO	NE	-	J. Lord	
DIAH.	S R		ᆈ <mark>ᆠ</mark> ᇕᆎᇟ	PR	ESSU	RE		I I	2	NOTES ON	1:
SAND DI	SAMP.	SAMPLE CORE R	SAMPLE BLOUS "N" 7 CORE RECOVERY	LOSS LN A.P.M	PRESS. P. S. I.	TIME MIN.	ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION WATER LE WATER RE CHARACTE DRILLING	IVEL ITUR
SS			20-30-7:	ļ	[0.0 -1.5 Ft. ASPHALT & GRAVEL. Nat'l Comm. Bank driveway. Borehole ad	lvand
55	0.1	0.0	100/1-				-		-	1.5 - 2.0 Ft. <u>GRAVEL</u> (G). Driveway i.d. hollow a diameter in the second secon	ing (item
										diam.	
					1	•				2.0 - 2.1 Ft. SANDSTONE. New Brunswick formation. Radiologica sampled and	dly d
										Bottom of borehole at 2.1 Ft. Borehole backfilled with spoils to 6", and asphalt to the surface, 10/7/88. Borehole backfilled with spoils to 6", and detected.	ged l line.
										Top of undi soil 2.1 Ft.	isturi
										Spoon & au at 2.1 Ft. E	iger i Bedro
										Description classification soils by visu examination samples.	n of Jal
			200N; ST				ITE			HOLE NO.	
			; P = PI						17	Essex St. (LODI) 200	<u>9R</u>

SITE		EC	LOG	IC D	RIL	LLC)G	PROJE	CT	FUSRAP			-138	SHEET NO. 1 OF 1	HOLE
		74	Essex S	St. (L	ODI)		COORDIN	ATES		N 2,142 E 4,24	6			FROM HORI	ZBEARI
BEGL	IN	α	MPLETED	DRILI			-		DRIL	NAKE AND NODEL	SIZE	OVERBURDE	the second second second second second second second second second second second second second second second s	ROCK (FT.)	TOTA
			1-5-87		BOYE	E.D.	I.		1	GROUND EL. DEPTH	6.5*	10.0			
		7.3/	B0			5			1110		/EL. GROU 11/5/87	IND WATER	DE	PTH/EL. TO	POFR /
SANP			R WEIGHT	-	CAS	SING LE			IA./L	ENGTH LOGGED BY:				an	/
101			bs/30		JATE		NO	NE	-			D. Hai	nish	- MI	_
AND DIAN.	SAMP. ADU.	BAMPLE REC.	BLOUS "N" X CORE RECOVERY	C. P. M. B.	ESSU TESTS	RE	ELEV.	DEPTH	GRAPHICS	DESCRIPTION	i and c	LASSIFIC	ATIO	NOTES N WATER WATER CHARA DRILL	LEU RET
SS	2.0	1.6	21-25 25-24					1		0.0 - 6.0 Ft. Silty (GM,SM,SP).	GRAVE	and SAND		Boreho 0-10 F	le adv:
SS	2.0	1.9	13-13 17-15				•			0.0-1.0 Ft. Sil gravel, reddish				o.d. ho auger. Boring	llow st radiole d and
SS	2.0	1.7	8-15-13 17					5.		1.0-2.0 Ft. Sil (2.5 Y7/4), ver iron-oxide stai				TMA-	-logge
SS	2.0	1.8	7-12-14 19				=		-	2.0-6.0 Ft. SA (10YR5/6), fin poorly compact		yellowish bi , some grave	rown il,	ENME ppm/1 Ft.; ho deep.	T read bar LI le is 8.0
SS	1.0	0.3	15-35 35/0"				-			5 Ft. Some gra 6.0 - 6.3 Ft. <u>Clave</u> brown (7.5 YR6		ML-CL). Li	ght	8.0 Ft.	
										6.3 - 9.0 Ft. SAN (7.5YR5/2), fir	<u>D</u> (SP). E ne-grained	Brown i, wet.		Hole cz	wed in
										Bottom of borehol Borehole backfiller	e at 9.0 F d with spo	't. Dils, 11/5/87	•		
· ·															
				ļ											
										-				Descrip classific sampler	ation (by vi
														examin	ation.
ss =	SPLI	T SP	00N; ST	= SHEL	BY TU	BE; SI	TE				·····			HOLE NO	
D = 1	DENNI	SON;	P = PI1	CHER;	0 = 0	THER			17	4 Essex St.	(LOD	IJ		1	119

SITE			LOG				COORDIN	ATES	<u> </u>	N -	FUSRAP	••	<u>14501-:</u> w	IGLE FR	ON HORIZ	116 BEARING
BEGU	N	C 0	Essex S	DRILL			!	Ă		L HA	2,399 E 4,25 KE AND MODEL	SIZE	OVERBURDEN	Vert	(FT.)	TOTAL D
			-24-8		BOXE	E.D.	I. ESEL. TO	DP CASI	NG		bile B-57	6.5" EL. GROU	10.0 ND WATER 87	DEPTH,	/EL. TOP	OF ROCK
		.1/				5			<u> </u>			// 11/24/	87		/	
SARP	-		ë WEIGHT s./ 30	-		ING LE	FT IN HO NO		A./L	ENG	TH LOGGED BY:		D. Harn	ish (MR	
DIAH.	ADV.	REC.		PR 1	ATER ESSU	RE	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION	AND C	LASSIFICA	TION	NOTES	
	SAMP.	SAMPLE CORE	BLOUS "N" X CORE RECOVERY	LOSS IN G.P.M	PRESS P. S. 1	TIME IN MIN.			GRAP				A		<u>i</u>	CTER O Ing, E
SS 55	2.0	1.7	40-26				1			N	0.0 - 6.5 Ft. Grav and SAND FIL 0.0-3.9 Ft. Gr (10R3/2) decor	avelly SIL	T, dusky red		0-10 Ft o.d. hol auger.	e advanc . with 6.1 low stem radiologic
SS		1.7	18-18 3-4-4							N	sandstone and very-fine sand New Brunswich	shale mat gravel is sandstor	rix, silt and broken pieces ie.		sampled gamma- TMA-E 2" of as	l and logged b berline, s phalt at
SS	2.0	1.3	12 14-15 12-13					5_		N	1.1-1.4 Ft. Pie 2.0-3.9 Ft. So: some round gri	me dark g		h silt,	surface. Elevate with HF 6.0-6.5	d reading 2-260 fro
SS	2.0	1.6	6-10-10 14					. ₩ .	<u>[</u>]]		3.9-4.1 Ft. SA clean. 4.1-5.9 Ft. SI	LT. dark i	rayish brown	to	hole to	igers in t 8.0 Ft.,
								_ 10			black, pieces of brown and gra 5.9-6.0 Ft. SA	grayish j yish brow	reen, reddish n silt mixed in		ppm at	reads 1 surface.
											damp. 6.0-6.5 Ft. Sil black sand mix grayish green s	ed in, son	ne pea gravel,		8.7 Ft. observe	Ground d.
											6.5 - 7.8 Ft. <u>Silty</u> (5R4/3), fine-	SAND (S to medius	M). Weak re- m-grained.		At TD,	ENMET
											7.8 - 8.7 Ft. SILT brown (10YR4 8.7 - 10 Ft. <u>SANI</u> brown (10YR4	/4), weak	ly laminated.		LEL wi Ft. Drager	pm, >10 th probe tube poly very min
											9.2-9.5 Ft. Br fine-grained.			sted		at top o
									-		Bottom of boreho Borehole backfille	le at 10.0 d with sp	ft. oils, 11/24/87	•		
														·		
											-					tion and
																s by visu
			POON; S ; P = P			/	ITE		1	60	Essex St.	(LOD)]		HOLE N	168F
<u>I</u> mmun											-20					

.

	G	ΕO	LOG		RIL	LLO	G	PROJE	CT		FUSRAP		JOB NO.	-138 1	T NO.	HOLE NO. 1120R
ITE							COORDIN	ATES			FUSRAF			ANGLE FRO		
			issex f								273 E 4,2			Vert		
EGUI			NPLETED 1-6-8			E.D.	Ŧ				LE B-57	\$12E 6.5"	OVERBURDEN 14.0	ROCK	(FT.)	TOTAL DEPT
							ESEL. TO	P CAS			DEL. DEPTH	1/EL. GROU 0.9/ 11/6/	ND WATER	DEPTH.	EL. TOP	OF ROCK
		.1/3				6						0.9/ 11/6/	87 		/	
AMPL			WEIGH	• • • • • • •	CAS	ING LE			IA./L	ENGTH	LOGGED BY:		D. Har	nich	$\mathcal{O}_{\mathcal{O}}$	1
au (<u>bs/30</u>		HATER	2	NO	NE I	1	<u> </u>			<u> </u>		1	0
۲.	SE		SAMPLE BLOWS "N" 2 CORE	PF	ESSU	RE		I I	8	L.					NOTES	ON:
DIAH	- 5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	σΣ	T		ELEV.	DEPTH	E	<u> </u>	DESCRIPTIO	n and c	Lassific	ATION		LEVELS, RETURN,
記		ĐB	SJ×K	LOSS LOSS G.P.M	PRESS P. S. I	HIN NIN NIN NIN		Ē	GRAPHICS						CHARAC	TER OF
n⊄ SS I	8	0.3	25-21		ă a						0 - 4.3 Pt. Silt	- GRAVEI	and SAND		Borehol	e advanced
	a .U	0.0	22-15	ļ						N T	0 - 4.3 Pt. Silt FILL (GM, S with black sil	P). Broker t. Base has	basalt grav	el	o.d. hol	, with 6.5" low stem
SS	2.0	0.4	2-12-2-	a l					-	R	fine-grained saturated.	brown (7.5)	(R4/4) sand	•	auger. Boring	radiologicall
			15]	ł			 .	4	N					sampled	l and logged by berline, Cor
s	2.0	1.7	15-19	4		·			-	<u> </u>		<u> </u>			TMA-E	berline, Cor
	-		17-18	1]]]	5.	-110	N ⁴	3 - 6.5 Ft. <u>Silt</u> ML). Dark r	eddish gray	<u>d SILT</u> (SM (5YR4/2), 1	ine-		
SS	2.0	1.7	11-9-1	3	1	ļ			-1		and medium-	-		,	4	
	ĺ		17		ł		ļ		-	NI	5.3-6.0 Ft. Sl 6.0-6.5 Ft. Si		Greenich -		1	
ss	2.0		4-9-14	f			ł		-	N \	and yellowish	i brown, fin	e-grained.	•7	10.9 Ft observe	. Groundwa
	1		18	1	[1	Nō	5 - 10.9 Ft. Cl contact trans	LAY (CL).	Bottom			
ss	2.0		10-9-1	8				10. ₩	-	N	6.5-8.1 Ft. V 8.1-10.9 Ft.	Weak red (! Vellowish :	R 5/2 and $SVR4/6$	gray.	Hole ca	ving in from -6 Ft.
ł			22					*	1	N	reddish gray	(5YR5/2).]		· ·, - · ·
				1					1	1	0.9 - 14.0 Ft. 9 brown (10YR	AND (SP)	Dark grayi	sh		
				1]	1						1	
		ļ				Į		7	Γ		ottom of boreh	ole at 14.0	Ft.		sand to	d through the 14.0 Ft.
							1			E	orehole backfil	led with sp	oils, 11/6/85	7.	Auger	refusal on k.
			ļ		{	1	ł									
					1	1									1	
			ļ	Į												
1												-				
							1									
1				1		1			1							
	ļ		1				{		1							
•				1		1										
			1													
			1	1		1		1								
		1	ł					1	l		-				Descrit	ption and
	1				{										classifi	cation of s by visual
	1			1	{	}		1							exami	nation.
	1						1	1								
			SPOON;				SITE								HOLE N	10.
5C -				51 2 54							Essex St	/. . .				120R

I

L

	G	iEC)LO	GIC	: D	RIL	L LC)G	PROJE		FUSRAP		JOB NO		EET NO.	HOLE
SITE								COORDIN	ATES		FUSKAF				1 OF 1 ROM HORIZ	E 110
			Essex								<u>N 2,455 E 4,27</u>	5			rtical	
BEGL 11_			MPLET		RILL	ER	E.D.	T		DRIL			OVERBURDEN	RO	CK (FT.)	TOTAL
					CORE	BOXE	S SAMPL	ESEL. TO	P CAS	ING	Mobile B-57 ROUND EL. DEPTH/	6.5"	6.5	DEPT	1.5 H/EL. TOP	8
		5.7/	71				4				¥ /			UEFI	6.5	
SANP			R WEIG s./ 3	-		CAS	SING LE			IA./I	NGTH LOGGED BY:				DAP	
Ψ.						ATE	2	NO		1			D. Hai	nish	780	
DIAH.			BLOUS "N" 81.0US "N" 2. COBF	<u>}</u>		ESSU ESTS			Ŧ	BRAPHICS					NOTES	011
ã.		<u>п</u> п	149 S	20 g	_=	ы. Н	w .	ELEV.	DEPTH	Ĩ	DESCRIPTION	AND CL	ASSIFIC	ATION	WATER	LEVE
略	<u> </u>	튙망	50×	۲ ۲ ۲	NI NI U U	PRESS.	HIN. HIN.		ā	GRA					CHARAC	TER
SS	2.0	m 1.2	17-19	-7	-						0.0 - 4.3 Ft. Grave	lly SILT	and Silty		Borehol	
			8								GRAVEL FILL	(GM-MI	.). ——		0-8 Ft. hollow s	with 6.
SS	2.0	1.5	4-2-4	-7					·		0.0-0.7 Ft. Silt (7.5R3/2), grav	el is broke	CL, dusky re en angular l	nd Dasalt	Boring r	adiolog
									· ·		and pieces of we				sampled samma- TMA-E	and logged
SS	2.0	1.9	7-1					_			0.7-4.1 Ft. Gra (5YR3/1), 2-5 (Brunswick sand	:m. diame	ter gravel o	f New	ПТМА-Е	berline
				_					°-		subrounded; pie	ces of twi	gs, bits of g	lass.	Hole cav	ed in t
SS	2.0	1.1	20-3 44-2					-		Ľ	4.1-4.3 Ft. GR. angular.	AVEL, lig	ht green ro	ck,		
				_							4.3 - 6.5 Ft. <u>Silty</u> (reddish gray (5)	AND (SM	d). Dark	J		
											reddish gray (5) subangular pea	(R4/2), fi gravel.	ne-grained,	minor	Dry hole	t .
								:			6.0-6.5 Ft. Du	ky red.				
											6.5 - 8.0 Ft. WEA Dusky red, hard	THERED	BEDROC	<u>K</u> .	At 8.0, 1	m, wit
											Brunswick sand	stone.	ard, tractu	red riew	at 0.5 F	6.
											Bottom of borehole	at 8.0 ft.				
											Borehole backfilled	with spoi	ils, 11/24/8	7.		
						ł										
	i															
									-							
		1														
											•					
				-												
				•												
								Ĩ			-				Descript	
															samples	by vist
															1	
				<u> </u>				TE			·····					
) = [SPLI DENNI	I SP SON;	00N; 1 P = 1	ST = 9 PITCH	SHELE ER; (97 TU 0 = 01	BE; SI THER	TE		16) Essex St. (LODI)		HOLE NO.	69F

BEGUN 10-7-	C	Essex OMPLETE	D DR	ILLE	R	PIRE	SOILS		DRILL	N 2,394 E 4,296 Vertical MAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) TOTAL CME 45B 12" 10.0 1
CORE RI	5.6/		(%) C	ORE	OXES	SAMPL	ESEL. TO	P CAS	ING	GROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF RO
SAMPLE	HANNE	RWEIG	•	L	CAS	· ·			IA.7L	ENGTH LOGGED BY:
<u> </u>		<u>) s./ 24</u>	in.	WA	TER		NO	NE T		J. Lord 70
SAMP. TYPE AND DIAH. SAMP. ADV.	SAMPLE REC	SAMPLE BLOUS "N" X CORE	LOSS LOSS	Ξ	STS		ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION WATER LEVE WATER RETU CHARACTER DRILLING,
SS 1.0 SS 2.0	0.8	13-12					•			0.0 - 1.0 Ft. ASPHALT & GRAVEL. Nat'l Comm. Bank driveway. Borehole adva. 1.0 - 4.3 Ft. Gravelly SAND (FILL). 0-10 Ft. using id. hollow ster augers. Dark gravish red (5YR3/2). Poorly sorted sediments with gravel, cobles, glass, brick, and a 3" thick plug of wood. Moist to slightly moist, soft. Borehole adva.
SS 2.0		5-4-4-						5_		3.0-4.0 Ft. No recovery 4.3 - 5.3 Ft. Silty Gravelly SAND (SG). Dusky brown (5YR2/2). Moist, soft, dense, cohesive. FILL? 5.0 - 5.2 Ft. Silty Gravelly SAND (SG). Dusky brown (5YR2/2). Moist, soft, dense, cohesive. FILL?
							-	10		5.3 - 7.7 Ft. Silty SAND (SP). Dusky yellowish brown (10YR2/2), poorly sorted silty sand. 10% coarse fraction. Petroleum odor. Loose, moist to saturated. 6.0-7.7 Ft. Grading to moderate brown (5YR4/6). Coarsening downwards.
										7.7 - 10.0 Ft. <u>Silty SAND</u> (SM). Dark yellowish orange (10YR6/6). Well sorted fine-grained sand and silt. Adhesive, saturated, soft. Rapid dilatancy. Undisturbed.
										Bottom of borehole at 10.0 Ft. Borehole backfilled from bottom to 5' with grout, from 5' to 6" with spoils, and patched with asphalt in top 6", 10/7/88.
										-
										Description an classification o soils by visual examination of
SS = SP		POON; S ; P = P				-/	ITE		49	4 Essex St. (LODI) 4 Essex St. (LODI)

	G	PROJEC	-1	FUSRAP		138 1	OF 1	HOLE NO. 1087R
174 Essex Ave. (LODI)	COORDINA	ATES .		RON HORIZBEARING				
BEGUN COMPLETED DRILLER		F	RIL	N 2,104 E 4,30	SIZE OVERBURDEN	and the second se		TOTAL DEPT
11-6-87 11-6-87 G. Engel CORE RECOVERY (FT./X) CORE BOXES SAMPL	; BNI ESEL. TO	P CASI	M	Buteman Auger	4" 4.5 /EL. GROUND WATER	DERTH	EL 700	4.5 OF ROCK
2.7/60 6				. ₹ 7	TEL. UROOND WATER	DEPTH/	/	UF KUCK
N/A	FT IN HOI		A./L	ENGTH LOGGED BY:	R. Mig	ues	9PJ	.
AND' DIATES SAND' DIATE LEN CORE LEN CORE REC. CORE REC. CORE REC. C. CORE REC. C. CORE REC. C. C. C. C. C. C. C. C. C. C. C. C. C	ELEV.	DEPTH	GRAPHICS		N AND CLASSIFICA	TION	uater Charac	ON: LEVELS, Return, Ter of Ng, etc.
SS 1.0 0.6 SS 1.0 0.4 SS 0.8 0.6 SS 0.6 0.4					dy Silty CLAY (CL-ML rn (5YR3/4) mottled wi SYR2/2). Fine- to . Humus. r CLAY (CL-ML). (5R4/6) with fragments (?).		0-4.5 Ft i.d. split sampler	advanced . using 3" -spoon and 4" o.d. m augers.
	-	_		red (10R2/2). 3.4-4.5 Ft. Ma (10R4/6). Bottom of boreho	own (10R4/6) and very oderate reddish brown le at 4.5 Ft.	- 11	Borehole radiologi and gam TMA-El	was cally sample ma-logged b berline, Corp
				Borehole backfille	d with spoils, 11/6/87.		Poor rec auger bit buried d	overy due to t banging on ebris.
						1	around 1 attempt	several hole 1087R in an to get the low 4.5 Ft. netrated 5.0
	-							
							Descript: classifica soils by a examinat	visual
S * SPLIT SPOON; ST * SHELBY TUBE; SI * DENNISON; P * PITCHER; O = OTHER	TE		174	Essex Ave.	(LODI)		HOLE NO.)87R

:

	in 25-1	60 8711	Essex S NPLETED -25-8 (FT./X	DRILLI 7	ER	E.D.			DRILL	N 2,476 E 4,329 Vertical L MAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) TOTAL D Mobile B-57 6.5" 5.4 2.6 8.0 GROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF ROCK
	LE N	ANNER	SS WEIGHT,	/FALL		4	FT IN HO	LE: DI		ENGTH LOGGED BY:
SAMP DIAN.	SAMP. ADU.	CORE REC.	S-MPLE S-CORE	III. PRI PRI T SSOJ	ATER SSU ESTS 	RE	NO	DEPTH	GRAPHICS	D. Harnish DESCRIPTION AND CLASSIFICATION DESCRIPTION AND CLASSIFICATION WATER LEVEL WATER RETUR CHARACTER O DRILLING, E
33	2.0 2.0	0.8	5-17 13-9 2-5-3					-		0.0 - 3.8 Ft. Gravelly SAND and SILT FILL (SG, ML). 0.0-2.5 Ft. Gravelly SAND, dark reddish brown (5YRS/4), gravel of New Brunswick Boring radiologi
<u>ss</u>	2.0	1.6	10 7-14 17-25			•	-	- - 5_		sandstone, basait; silty. 2.5-3.8 Ft. SILT, black with some dark brownish gray and greenish gray pieces mixed in, some wood stems.
SS	2.0	0.5	12-37 55-38				-	-		3.0-3.3 Ft. Bedding planes suggested. 3.8 - 5.4 Ft. Silty SAND (SM). Dark gray (10YR4/1) becoming dusky red downward, fine-grained.
										5.4 - 8.0 Ft. WEATHERED BEDROCK. Dusky red, hard, fractured New Brunswick sandstone, becomes harder and less fractured downward. Bottom of borehole at 8.0 ft. Borehole backfilled with spoils, 11/25/87.
										Description and classification of samples by visu. examination.
			POON; ST ; P = PI				 TE	L	16	60 Essex St. (LODI) HOLE NO. 1171R

.