063982-16

DOE/OR/20722-256

M-079

Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-81OR20722

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 14 LONG VALLEY ROAD

ោ

489-0620.8

Lodi, New Jersey

September 1989

Bechtel National, Inc.

D63982

¥.,

Bechtel National, Inc.

Systems Engineers - Constructors

Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Mail Address: P.O. Box 350. Oak Ridge, Th 37831-0350 Telex: 3785873

SEP 2 9 1989

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin Technical Services Division

Subject:

Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of Radiological Characterization Report for seventeen residential properties, four municipal properties, and seven commercial properties in Lodi and Maywood, New Jersey Code: 7315/WBS: 138

Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerate manner. His efforts have allowed us to publish these reports or schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,

R. C. Robertson

Project Manager - FUSRAP

RCR:wfs:1756x Enclosure: As stated

cc: J. D. Berger, ORAU (w/e) N. J. Beskid, ANL (W/e)

CONCURRENCE 14-

DOE/OR/20722-256

11

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 14 LONG VALLEY ROAD LODI, NEW JERSEY

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring, D. J. Whiting, and W. F. Stanley Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501

TABLE OF CONTENTS

l

[____

			Page				
List	t of Figures		iv				
List	t of Tables		iv				
Abbr	reviations		v				
1.0	Introduction and Summary		1.				
	1.1 Introduction		1				
	1.2 Purpose		3				
	1.3 Summary		3				
	1.4 Conclusions		5				
2.0	Site History		7				
	2.1 Previous Radiological Surve	eys	8				
	2.2 Remedial Action Guidelines		9				
3.0	Health and Safety Plan		12				
	3.1 Subcontractor Training		12				
	3.2 Safety Requirements		12				
4.0	Characterization Procedures	•	14				
	4.1 Field Radiological Characte	rization	14				
	4.1.1 Measurements Taken a	Ind Methods Used	14				
	4.1.2 Sample Collection ar	nd Analysis	17				
	4.2 Building Radiological Chara	cterization	17				
5.0	Characterization Results						
	5.1 Field Radiological Characte	rization	21				
	5.2 Building Radiological Chara	cterization	26				
Refe	erences		35				
Appe	endix A - Geologic Drill Logs for	14 Long Valley Road	A-1				

iii

١,

LIST OF FIGURES

- -----

I.

[_____

|

1

. . .

Ĩ

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1-1	Location of Lodi Vicinity Properties	2
1-2	Location of 14 Long Valley Road	4
4-1	Borehole Locations at 14 Long Valley Road	16
4-2	Surface and Subsurface Soil Sampling Locations at 14 Long Valley Road	18
4-3	Gamma Exposure Rate Measurement Locations at 14 Long Valley Road	20
5-1	Areas of Surface Contamination at 14 Long Valley Road	22
5-2	Areas of Subsurface Contamination at 14 Long Valley Road	25

LIST OF TABLES

<u>Table</u>	Title	<u>Page</u>
2-1	Summary of Residual Contamination Guidelines for the Lodi Vicinity Properties	10
5-1	Surface and Subsurface Radionuclide Concentrations in Soil for 14 Long Valley Road	27
5-2	Downhole Gamma Logging Results for 14 Long Valley Road	30
5-3	Gamma Radiation Exposure Rates for 14 Long Valley Road	34

ABBREVIATIONS

I

с. Полого

Cm	centimeter
cm ²	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h	hour
in.	inch
km ²	square kilometer
L	liter
L/min	liters per minute
m	meter
m ²	square meter
MeV	million electron volts
µR/h	microroentgens per hour
mi	mile
mi ²	square mile
min	minute
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
pCi/g	picocuries per gram
pCi/L	picocuries per liter
WL	working level
yd	yard
yd ³	cubic yard

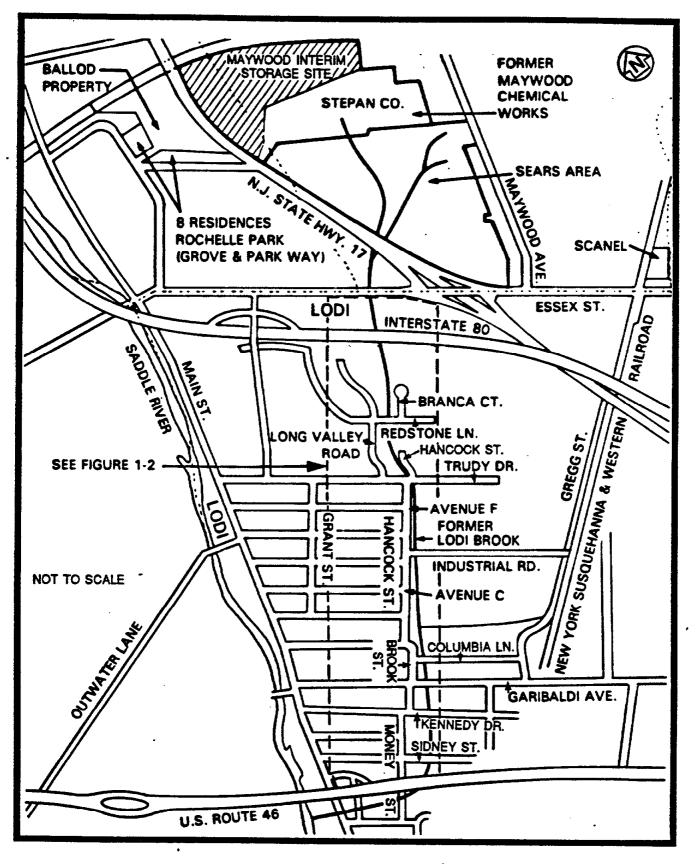
v

1.0 INTRODUCTION AND SUMMARY

This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 INTRODUCTION

T


i . .

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

1

È...

×.

4 3

I

i

2

1.2 <u>PURPOSE</u>

L

L

l

The purpose of the 1987 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.

1.3 <u>SUMMARY</u>

This report details the procedures and results of the radiological characterization of the property at 14 Long Valley Road (Figure 1-2) in Lodi, New Jersey, which was conducted from September through December 1987.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 14 Long Valley Road showed maximum concentrations of thorium-232 and radium-226 to be 14.4 and 2.1 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 10.3 pCi/g.

Subsurface soil sample concentrations ranged from less than 0.8 to 8.7 pCi/g for thorium-232 and from less than 0.5 to 1.7 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. The concentrations of uranium-238 in subsurface soil samples ranged from 1.7 to 32.8 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE believes that these guidelines are conservative for

3

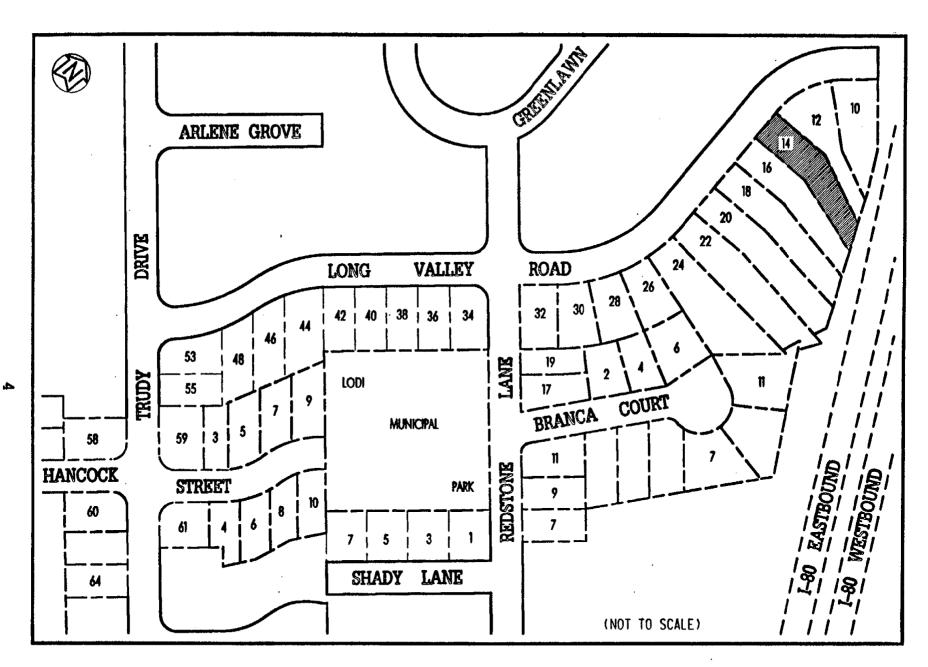


FIGURE 1-2 LOCATION OF 14 LONG VALLEY ROAD

M38WNS72.DGN

-

considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property indicated surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 0.30 m (1.0 ft).

Exterior gamma radiation exposure rates ranged from 5 to 49 μ R/h, including background. No indoor measurement was obtained because access to the residence was denied by the property owner.

No interior measurements for radon and its progeny (radon and thoron daughters) could be obtained.

All data tables for this property appear at the end of this report.

1.4 <u>CONCLUSIONS</u>

ł

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 14 Long Valley Road. This contamination is both surface and subsurface contamination. The subsurface contamination ranges from depths of 15.2 cm (6.0 in.) to 0.30 m (1.0 ft). Near-surface gamma measurements indicated an isolated area of surface contamination indicated near the southeast corner of the residence. The total affected area is estimated to be

5

approximately 10 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

2.0 SITE HISTORY

ĺ

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First. it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are typically found in monazite sands, which also contain

7

thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

<u>January 1981</u>--The Nuclear Regulatory Commission directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a $10.3-\text{km}^2$ (4-mi²) aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984--In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its

8

"scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

<u>September 1986</u>--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

2.2 <u>REMEDIAL ACTION GUIDELINES</u>

l

I

I

I

I

·___,

1.0

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

TABLE 2-1 SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL GUIDELINES

Radionuclide

Radium-226 Radium-228 Thorium-230 Thorium-232

Other Radionuclides

Soft Concentration (pCi/g) Above Background^{a,b,c}

5 pCi/g when averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over any 15-cm-thick soil layer below the surface layer.

Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

STRUCTURE GUIDELINES

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL⁶. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 μ R/h.

Indoor/Outdoor Structure Surface Contamination

•	Allowable Surface Residual Contamination ^e (dpm/100 cm ²)				
Radionuclide ^f	Average ^{g,h}	Maximum ^{h,i}	Removable ^h j		
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	100	300	20		
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-126, I-131, I-133	1,000	3,000	200		
U-Natural, U-235, U-238, and associated decay products	5,000 a	15,000 α	1,000 α		
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 8 - y	15,000 8 - γ	1,000 8 - γ		

• •

TABLE 2-1 (CONTINUED)

These guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soll concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").

^DThese guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.

^CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.

^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.

[•]As used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

⁹Measurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.

^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

"The maximum contamination level applies to an area of not more than 100 cm².

³The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

l

۱,

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 <u>SUBCONTRACTOR TRAINING</u>

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 <u>SAFETY REQUIREMENTS</u>

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

I

ł

1

I

ŀ

I

1

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

١,

4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

4.1 FIELD RADIOLOGICAL CHARACTERIZATION

Ĺ

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this property.

4.1.1 Measurements Taken and Methods Used

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

14

3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

ļ

Į

Ì

÷.

l

l

I

ľ

Í

1

1

1

Į

I

Ì

-

`----

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling 13 boreholes (Figure 4-1), using either a 7.6-cm- (3-in.-) or 15.2-cm-(6-in.-) diameter auger bit, and gamma logging them. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration

15

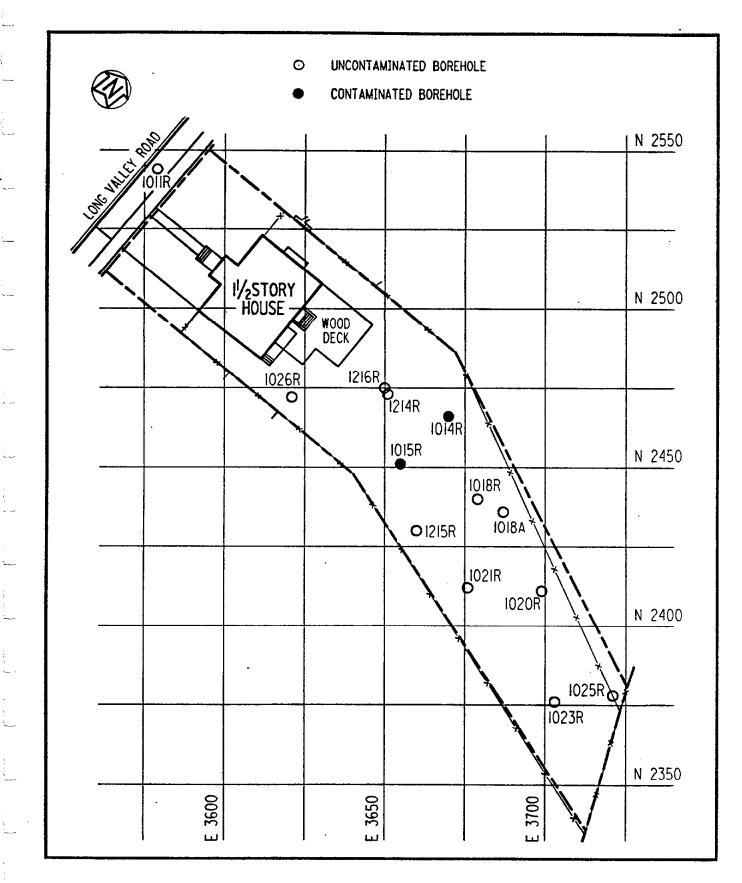


FIGURE 4-1 BOREHOLE LOCATIONS AT 14 LONG VALLEY ROAD

M38W9848.DGN

j

1

of the contamination. The gamma-logging data were reviewed to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 <u>Sample Collection and Analysis</u>

ŀ

l

Ĺ

L

ł.

I i

....

7

۱.,

İ

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and B), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at seven locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from 15 locations (Figure 4-2) using a 7.6-cm (3.0-in.) outside diameter (0.D.) split-spoon sampler mounted on a tripod or attached to a truck mounted auger stem. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the

17

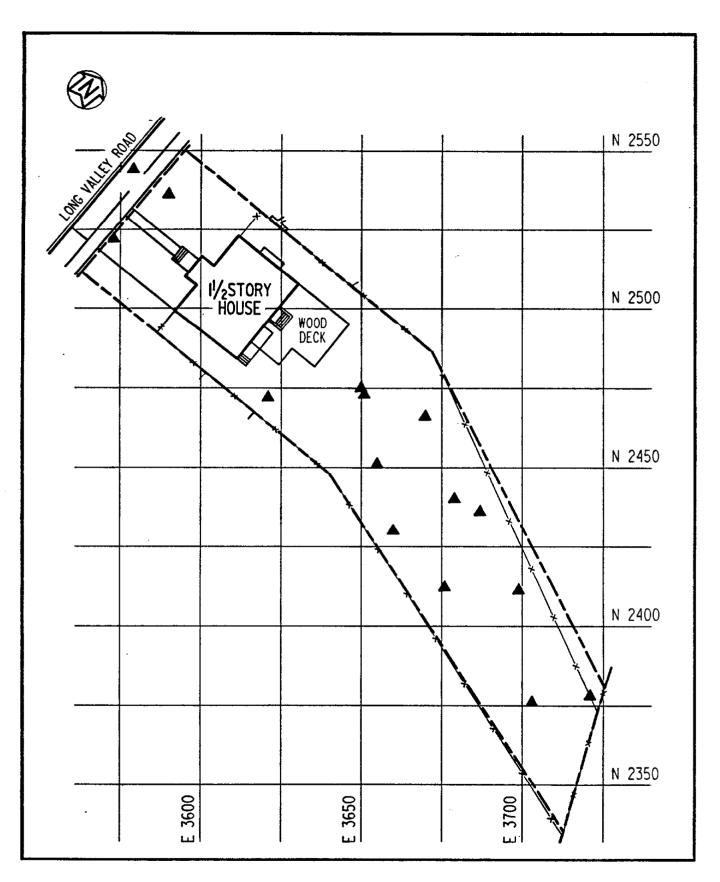


FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS AT 14 LONG VALLEY ROAD

M38W9848.DGN

residence. Because access to the residence was denied by the owner, a radon measurement could not be obtained to verify the presence of contaminated material under the residence and to estimate potential occupational exposures during future remedial actions.

ł

L

Ľ

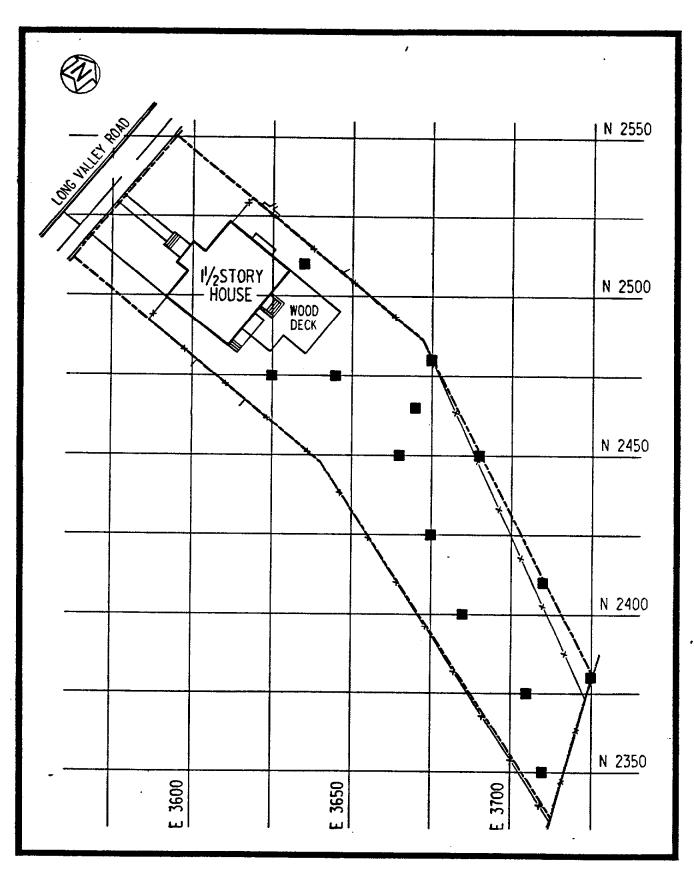
Ł

L

1:

ţ

1


Ĺ

Â.

Indoor measurements for radon progeny (radon and thoron daughters) could not be obtained.

Exterior gamma exposure rate measurements were made at 13 locations throughout the property grid system. To obtain exterior measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. A conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property.

19

L

ſ

:

Ì.

T X

Í

I

÷

5.0 CHARACTERIZATION RESULTS

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

I

1

ł

L

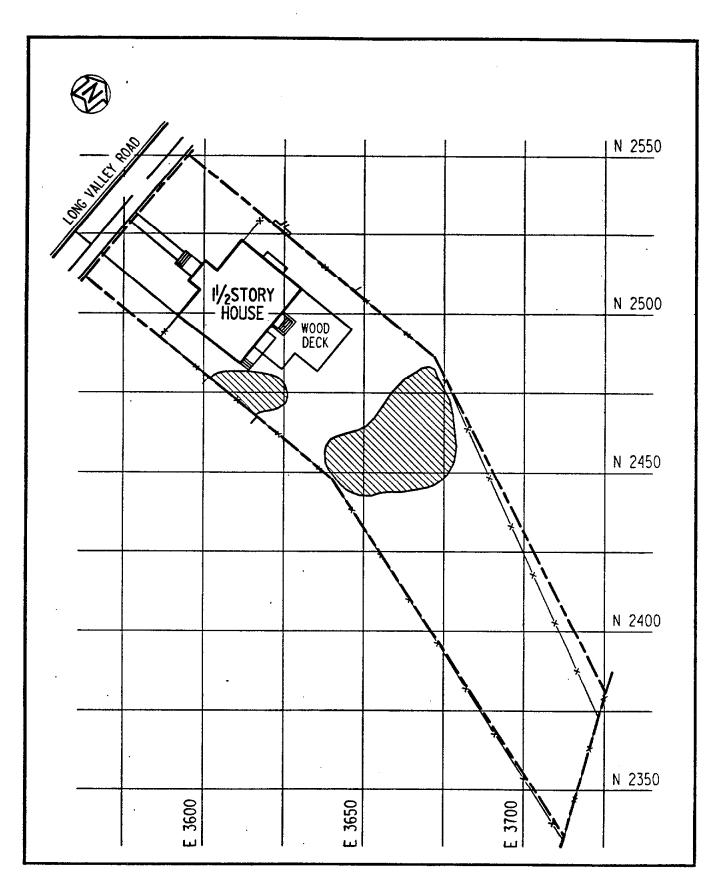
l

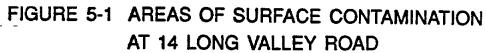
Ł

Į

Ì

ĺ


i


Near-surface gamma radiation measurements on the property ranged from 5,000 cpm to approximately 88,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. Areas of surface contamination are shown in Figure 5-1.

Surface soil samples [depths from 0.0 to 15.2 cm (6.0 in.)] were taken at seven locations on the property (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from less than 4.5 to less than 10.3 pCi/g for uranium-238, from less than 1.5 to 14.4 pCi/g for thorium-232, and from less than 0.9 to 1.7 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 exceeded DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of 14.4 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in concentrations that are quantitative with the instruments and techniques used. The "less than" value represents the lower bound of the

21

١.

M38W9848.DGN

İ.

quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count The actual concentration of the radionuclide is less rate. than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (\pm) , which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.

Ł

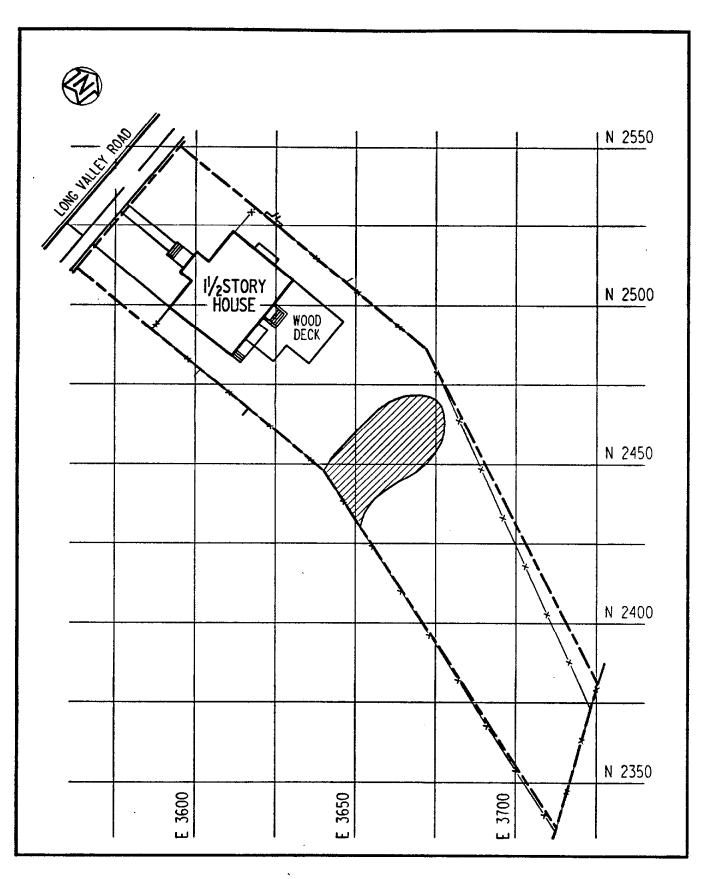
Í

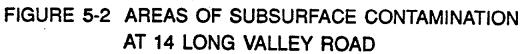
Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE guideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower guideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its guideline level. Parameters selected for the thorium-232 analyses also provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below guidelines. However, because of the relatively low gamma photon abundance of uranium-238, many of the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these concentrations

23

are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Ł


L


Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 7,000 cpm to 45,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples indicated uranium-238 concentrations ranging from 1.7 to 32.8 pCi/g, thorium-232 concentrations ranging from less than 0.8 to 8.7 pCi/g, and radium-226 concentrations ranging from less than 0.5 to less than 2.1 pCi/g.

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist of surface contamination and subsurface contamination at depths ranging from 15.2 cm (6.0 in.) to 0.30 m (1.0 ft). The areas of subsurface contamination are shown in Figure 5-2.

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain. The contamination on this property is similar to contamination found on residential properties in close proximity to this property.

24

M38W9848,DGN

[.

1

It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 14 Long Valley Road. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 <u>BUILDING RADIOLOGICAL CHARACTERIZATION</u>

1

ł

ľ

L

Ŀ

[]

[/ . .

Indoor measurements for radon and its progeny (radon and thoron daughters) could not be obtained because access to the residence was denied by the owner.

Exterior gamma radiation exposure rate measurements ranged from 5 to 49 μ R/h, including background. These results can be found in Table 5-3.

Assuming the indoor exposure rate is equivalent to the average exterior exposure rate of 13 μ R/h, and assuming the resident remains on the property every hour of the year, a yearly dose of 35 mrem could be expected (after subtracting average background of 9 μ R/h; Ref. 10). The DOE guideline is 100 mrem/yr above background.

Based on the above information, the exposure rates and doses at this property are within DOE guidelines. Further, it

26

١,

should be emphasized that natural background exposure rates vary widely across the United States and are often significantly higher than average background for this area.

Ĺ

TABLE 5-1

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 14 LONG VALLEY ROAD

Page 1 of 3

<u>Coordinates</u> ^a		Depth	ch <u>Concentration (pCi/g ± 2 sigma)</u>					
East	North	(ft)	Ura	nium-238	Rad	ium-226		rium-232
3573	2522	0.0 - 1.0	<	5.6	<	1.4	<	2.4
3573	2522	1.0 - 2.0	<	2.4	<	0.8	<	0.9
3573	2522	2.0 - 3.8	<	2.4	<	0.5	<	0.8
3579	2544	0.0 - 1.0	<	5.0	<	0.9	<	2.2
3579	2544	1.0 - 2.0	<	4.2	<	0.7	<	1.4
3579	2544	2.0 - 3.3	<	3.3	<	0.7	<	1.3
3579	2544	3.3 - 3.7	• <	3.4	<	0.7	<	1.2
3579	2544 ·	4.5 - 5.2	<	2.7	<	0.7	<	1.0
3579	2544	5.2 - 6.0	<	2.8	<	0.6	<	1.1
3579	2544	6.0 - 7.4	<	2.8	<	0.6	k	0.9
3579	2544	7.4 - 9.0	<	2.4	<	0.5	<	0.8
3579	2544	9.0 - 9.5	<	3.5	<	0.7	Ś	1.2
3579	2544	9.5 - 10.0	<	2.8	<	0.7	<	0.9
3579	2544	10.0 - 10.5	<	4.7	<	1.3	<	1.9
3579	2544	10.5 - 11.2	<	1.8	<	0.5	<	0.8
3579	2544	11.2 - 11.5	<	6.4	<	1.4	<	1.7
3590	2536	0.0 - 1.0	<	7.4	<	1.6	<	2.8
3590	2536	1.0 - 2.0	<	4.6	<	0.8	<	1.4
3590	2536	2.0 - 3.5	<	3.2	<	0.8	<	1.3
3621	2472	0.0 - 1.0	<	4.1	<	0.9	<	1.4
3621	2472	3.5 - 4.5	<	4.2	<	1.1	<	1.2
3621	2472	7.5 - 8.0	<	2.4	<	0.7	<	1.0

TABLE 5-1

(continued)

Page 2 of 3

	<u>inates^a</u>	Depth	<u> </u>					
East	North	(ft)	Ura	nium-238	Radi	um-226	Thor	ium-232
3650	2475	0.0 - 1.0	<	5.6	<	1.4	<	2.3
3650	2475	3.0 - 4.0	<	4.3	<	1.0	<	1.8
3650	2475	6.0 - 7.0	<	3.5	<	0.8	<	1.2
3650	2475	7.0 - 8.0	<	4.5	<	1.0	<	1.6
3651	2473	0.0 - 0.5	<	5.4	<	1.4	<	2.4
3651	2473	3.0 - 5.0	<	4.0	<	1.0	<	1.3
3651	2473	5.0 - 7.0	<	2.6	<	0.5	<	0.9
3651	2473	7.0 - 8.5	<	3.7	<	0.8	<	1.1
3651	2473	8.5 - 9.5	<	3.2	<	0.7	<	1.0
3655	2451	0.0 - 0.5	<	10.3	<	1.7	14.4	± 2.4
3655	2451	0.0 - 1.0	<	5.1	<	1.1	8.7	± 1.2
3655	2451	2.0 - 3.3	<	5.3	<	1.2	· <	1.6
3655	2451	4.0 - 5.5	<	2.8	<	0.6	<	1.2
3655	2451	5.5 - 6.0	<	5.5	<	1.5	<	2.1
3660	2430	0.0 - 0.5	<	7.0	<	1.5	<	2.2
3660	2430	2.0 - 3.0	<	4.7	<	1.0	<	1.6
3660	2430	3.0 - 4.0	<	3.0	<	0.6	<	1.2
3660	2430	5.0 - 6.0	<	3.5	<	0.7	<	1.1
3670	2466	0.0 - 1.0	32.8	± 14.2	1.7	± 0.6	7.8	± 1.5
3670	2466	1.0 - 2.0	<	2.0	0.9	± 0.3	4.0	± 2.5
3670	2466	2.0 - 2.8	<	2.0	0.7	± 0.4	1.3	± 0.2
3670	2466	5.5 - 7.3	<	2.0	0.7	± 0.1	1.3	± 0.5
3670	2466	7.0 - 8.0	<	2.0	0.5	± 0.2	1.2	± 0.4
3670	2466	8.0 - 12.0	<	2.0	0.8	± 0.3	1.9	± 0.1
3670	2466	12.0 - 13.0	1.7	± 1.7	0.8	± 0.4	1.2	± 0.6

TABLE 5-1

(continued)

Page 3 of 3

<u>Coordinates</u> ^a Depth		<u>Concentration (pCi/g ± 2 sigma)</u>						
East	North	orth (ft)	Ura	nium-238	Rad	ium-226	Tho	rium-232
3676	2412	0.0 - 0.5	<	5.0	<	1.1	<	1.5
3676	2412	2.0 - 3.2	<	4.0	<	0.9	<	1.7
3676	2412	4.7 - 5.0	<	4.5	<	0.8	<	1.4
3679	2440	0.0 - 1.0	<	3.6	<	1.0	<	1.6
3679	2440	2.0 - 2.8	<	3.7	<	1.0	<	1.4
3679	2440	2.8 - 3.4	<	2.1	<	0.6	<	0.9
3679	2440	3.4 - 3.6	<	2.2	<	0.5	<	0.9
3679	2440	3.6 - 3.8	<	4.9	<	1.2	<	1.6
3681	2436	0.0 - 0.5	<	8.1	<	2.1	<	2.9
3681	2436	2.0 - 3.0	<	2.9	<	0.7	<	1.1
3681	2436	3.0 - 3.5	<	4.9	<	1.1	<	1.5
3699	2411	0.0 - 0.5	<	4.5	<	0.9	<	1.5
3699	2411	2.0 - 2.7	<	2.5	<	0.8	<	1.1
3699	2411	2.7 - 3.0	<	4.6	<	1.1	<	1.5
3699	2411	4.5 - 5.8	<	1.9	<	0.6	<	0.8
3703	2376	0.0 - 1.0	<	6.8	<	1.6	<	2.1
3703	2376	2.0 - 3.5	<	4.5	<	0.9	<	1.4
3703	2376	4.3 - 5.2	<	7.4	<	1.6	<	2.2
3721	2378	0.0 - 0.5	<	4.5	<	1.3	<	1.5
3721	2378	2.0 - 2.5	<	4.6	<	1.1	<	1.3
3721	2378	3.5 - 4.5	<	3.3	<	0.7	<	1.0

^aSampling locations are shown in Figure 4-2.

30

ţ

DOWNHOLE GAMMA LOGGING RESULTS

FOR 14 LONG VALLEY ROAD

Page 1 of 4

L

L i

٢

Borehole 1011R ^d 3579 2544 0.5 9000 3579 2544 1.0 10000 3579 2544 1.5 11000 3579 2544 2.0 11000 3579 2544 2.5 10000 3579 2544 3.0 10000 3579 2544 3.5 10000 3579 2544 3.5 10000 3579 2544 4.5 8000 3579 2544 5.5 7000 3579 2544 5.5 7000 3579 2544 6.5 7000 3579 2544 6.5 7000 3579 2544 6.5 7000 3579 2544 6.5 7000 3621 2472 1.0 12000 3621 2472 1.5 12000 3621 2472 3.5 12000 3621 2472 4.0 <th><u>Coordi</u> East</th> <th>nates^a North</th> <th>Depth^b (ft)</th> <th>Count Rate^C (cpm)</th>	<u>Coordi</u> East	nates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
3579 2544 1.0 10000 3579 2544 2.0 11000 3579 2544 2.0 10000 3579 2544 2.5 10000 3579 2544 3.0 10000 3579 2544 3.5 10000 3579 2544 4.0 8000 3579 2544 4.5 8000 3579 2544 5.5 7000 3579 2544 5.5 7000 3579 2544 6.5 7000 3579 2544 6.5 7000 3579 2544 6.5 7000 3621 2472 0.5 11000 3621 2472 1.0 12000 3621 2472 1.0 12000 3621 2472 3.0 12000 3621 2472 3.0 12000 3621 2472 3.0 10000 3621 2472 4.5 12000 3621 2472 5.	Borehole	<u>1011R</u> đ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3579	2544	0.5	9000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2544		10000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				11000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
3579 2544 6.5 7000 Borehole 1026R ^d	3579			
Borehole $1026R^d$ 3621 2472 0.5 11000 3621 2472 1.0 12000 3621 2472 1.5 12000 3621 2472 2.0 12000 3621 2472 2.5 13000 3621 2472 3.0 12000 3621 2472 3.5 12000 3621 2472 3.5 12000 3621 2472 4.5 12000 3621 2472 4.5 12000 3621 2472 5.0 10000 3621 2472 5.0 10000 3621 2472 5.0 10000 3650 2475 1.5 12000 3650 2475 1.5 12000 3650 2475 2.5 12000 3650 2475 3.5 12000 3650 2475 3.5 12000 3650 2475 3.5 12000 3650 2475 3.5 12000 3650 2475 4.0 12000 3650 2475 4.5 12000		2544		
$\begin{array}{c ccccc} 3621 & 2472 & 0.5 & 11000 \\ 3621 & 2472 & 1.0 & 12000 \\ 3621 & 2472 & 1.5 & 12000 \\ 3621 & 2472 & 2.0 & 12000 \\ 3621 & 2472 & 2.5 & 13000 \\ 3621 & 2472 & 3.0 & 12000 \\ 3621 & 2472 & 3.5 & 12000 \\ 3621 & 2472 & 4.0 & 13000 \\ 3621 & 2472 & 4.5 & 12000 \\ 3621 & 2472 & 4.5 & 12000 \\ 3621 & 2472 & 5.0 & 10000 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$	3579	2544	6.5	7000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Borehole	<u>1026R</u> d		
3621 2472 1.5 12000 3621 2472 2.0 12000 3621 2472 2.5 13000 3621 2472 3.0 12000 3621 2472 3.5 12000 3621 2472 4.0 13000 3621 2472 4.5 12000 3621 2472 4.5 12000 3621 2472 4.5 12000 3621 2472 5.0 10000 Borehole 1216R ^d 12000 3650 2475 3650 2475 1.5 12000 3650 2475 2.5 12000 3650 2475 2.5 12000 3650 2475 2.5 12000 3650 2475 3.5 12000 3650 2475 3.5 12000 3650 2475 4.0 12000 3650 2475 4.5 12000	3621	2472	0.5	11000
3621 2472 2.0 12000 3621 2472 2.5 13000 3621 2472 3.0 12000 3621 2472 3.5 12000 3621 2472 4.0 13000 3621 2472 4.5 12000 3621 2472 4.5 12000 3621 2472 5.0 10000 Borehole 1216R ^d 12000 3650 2475 3650 2475 1.5 10000 3650 2475 1.5 12000 3650 2475 2.0 11000 3650 2475 2.5 12000 3650 2475 3.6 5000 3650 2475 3.5 12000 3650 2475 3.5 12000 3650 2475 3.5 12000 3650 2475 4.0 12000 3650 2475 4.5 12000	3621	2472	1.0	12000
3621 2472 2.5 13000 3621 2472 3.0 12000 3621 2472 3.5 12000 3621 2472 4.0 13000 3621 2472 4.5 12000 3621 2472 4.5 12000 3621 2472 5.0 10000 $Borehole 1216R^d$ 10000 $Borehole 1216R^d$ 10000 3650 2475 1.5 3650 2475 1.5 3650 2475 1.5 3650 2475 2.5 3650 2475 2.5 3650 2475 3.0 3650 2475 3.5 3650 2475 3.5 3650 2475 3.5 3650 2475 3.5 3650 2475 4.0 3650 2475 4.0 3650 2475 4.5	3621	2472	1.5	12000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3621	2472	2.0	12000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3621	2472	2.5	13000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3621	2472	3.0	12000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3621	2472	3.5	12000
3621 2472 5.0 10000 Borehole 1216R ^d	3621	2472	4.0	13000
Borehole 1216R ^d 3650 2475 0.5 10000 3650 2475 1.0 13000 3650 2475 1.5 12000 3650 2475 2.0 11000 3650 2475 2.5 12000 3650 2475 3.0 5000 3650 2475 3.5 12000 3650 2475 3.5 12000 3650 2475 4.0 12000 3650 2475 4.5 12000	3621	2472	4.5	12000
365024750.510000365024751.013000365024751.512000365024752.011000365024752.512000365024753.05000365024753.512000365024754.012000365024754.512000	3621	2472	5.0	10000
365024751.013000365024751.512000365024752.011000365024752.512000365024753.05000365024753.512000365024754.012000365024754.512000	<u>Borehole</u>	<u>1216R</u> d		
365024751.512000365024752.011000365024752.512000365024753.05000365024753.512000365024754.012000365024754.512000	3650	2475	0.5	10000
365024752.011000365024752.512000365024753.05000365024753.512000365024754.012000365024754.512000	3650	2475	1.0	13000
365024752.512000365024753.05000365024753.512000365024754.012000365024754.512000	3650	2475	1.5	12000
365024753.05000365024753.512000365024754.012000365024754.512000	3650	2475	2.0	11000
365024753.05000365024753.512000365024754.012000365024754.512000	3650	2475	2.5	
365024754.012000365024754.512000	3650	2475	3.0	
365024754.012000365024754.512000	3650	2475	3.5	12000
3650 2475 4.5 12000	3650	2475	4.0	

ĺ

.

÷.....

1,

ł

ì ~

(continued)

Coord	linates ^a	$\tt Depth^b$	Count Rate ^C
East	North	(ft)	(cpm)
Borehole	1014R ^d		
3670	2466	0.5	36000
3670	2466	1.0	45000
3670	2466	1.5	28000
3670	2466	2.0	17000
3670	2466	2.5	16000
3670	2466	3.0	13000
3670	2466	3.5	12000
3670	2466	4.0	12000
3670	2466	4.5	12000
3670	2466	5.0	13000
3670	2466	5.5	13000
3670	2466	6.0	13000
Borehole	<u>1021R</u> d		
3676	2412	0.5	11000
3676	2412	1.0	11000
3676	2412	1.5	11000
3676	2412	2.0	11000
3676	2412	2.5	12000
3676 ·	2412	3.0	11000
3676	2412	3.5	11000
<u>Borehole</u>	1018R ^d		
3679	2440	0.5	11000
3679	2440	1.0	12000
3679	2440	1.5	12000
3679	2440	2.0	11000
3679	2440	2.5	11000
<u>Borehole</u>	<u>1020R</u> d		
3699	2411	0.5	12000
3699	2411	1.0	12000
3699	2411	1.5	12000
3699	2411	2.0	12000
3699	2411	2.5	11000
3699	2411	3.0	11000
3699	2411	3.5	11000
3699	2411	4.0	11000

33

٩١.

1-		<u>د م</u>			۰.
(C	оп	τı	inu	ea	Ł

Page 4 of 4

[....

f -

ĺ

1 :

i ____

i . 📜

F

<u>Coord</u> East	linates ^a North	Depth ^b (ft)	Count Rate ^C (Cpm)
Borehole	2 1023R ^đ		
3703	2376	0.5	12000
3703	2376	1.0	12000
3703	2376	1.5	13000
3703	2376	2.0	13000
3703	2376	2.5	12000
3703	2376	3.0	11000
3703	2376	3.5	11000
3703	2376	4.0	12000
Borehole	<u>1025R</u> d		
3721	2378	0.5	11000
3721	2378	1.0	11000
3721	2378	1.5	11000
3721	2378	2.0	10000
3721	2378	2.5	11000
3721	2378	3.0	10000

^aBorehole locations are shown in Figure 4-1.

^bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

^CInstrument used was 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

d_{Bottom} of borehole collapsed.

Í.

Í

ĺ.

. . .

.....

GAMMA RADIATION EXPOSURE RATES

FOR 14 LONG VALLEY ROAD

Ratel	<u>inates^a</u>	Coord
(µR/h)	North	East
9	2475	3625
10	2510	3635
5	2475	3645
26	2450	3665
49	2465	3670
6	2425	3675
28	2480	3675
4	2400	3685
5	2450	3690
5	2375	3705
5	2350	3710
7	2410	3710
5	2380	3725

^aMeasurement locations are shown in Figure 4-3.

^bMeasurements include background.

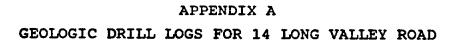
REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- 2. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.

l d

ł

I


- 3. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> <u>Chemical, Maywood, New Jersey</u>, November 1983.
- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area, Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- 7. Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- 8. Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 14 Long Valley Road (LJ070)</u>, Lodi, New Jersey, ORNL/RASA-88/19 (DRAFT), Oak Ridge, Tenn., April 1988.

36

9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.

10. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

١,

 $\mathbf{v}_{\mathbf{v}}$

15

Í.

l ...

	G	EC	DLO	GI	C D	RIL	L L(DG	PROJ	ECT	JOB NO. SHEET NO. HOLE NO FUSRAP 14501-138 1 OF 1 1011
ITE								COORD	INATES		ANGLE FROM HORIZBEARING
14 EGUN	L				Rd.		DI)				N 2,544 E 3,579 Vertical
	-87		-29-		1		Enge	I; BN	ſ		L MAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) TOTAL D inuteman Auger 4" 11.5 11.4
ORE R				/%)	CORE	BOXE	SAMP	LESEL.	TOP CA	SING	GROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF ROCK
		.4/	54 R WEIG	UT /		6.	8				
			N/A	in i 7	FALL		SING E	EFT IN I	NOLE: D	01 A./L	
۲		<u>.</u>				JATE					R. Migues
M AND DIAM.	LEN COR	O CORE REC	SAMPLE BLOUS "N" % CORE	RECOVERY		ESSU EST: SSUS SSUS CL		ELEV •	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION WATER LEVELS WATER RETURN CHARACTER OF DRILLING, ET
S 1.0	2 2 2	0.7 0.7									0.0 - 4.0 Ft. SILT (ML). Dark reddish brown (10YR3/4) with streaks of moderate red (5R4/6). Chunks of brick. (FILL). Borehole advance 0-11.5 Ft. using 3 i.d. split-spoon sampler and 4" o. solid stem augers
S 0.7 S 0.7 S 0.8 S 1.4	3	0.4 0.0 0.5 0.8 1.4							- 5		4.0 - 11.5 Ft. <u>Silty SAND</u> (SM). Moderate reddish brown. Very fine- to medium-grained sand. Borehole was radiologically sam
S 1.6	5	0.0									and gamma-logge 7.0-7.4 Ft. Pale brown (5YR5/2).
S 0.5 S 0.5 S 0.7 S 0.3		1.5 0.5 0.7 0.3							10.	-	10.0-11.5 Ft. Increased sand content. Brownish gray (5YR4/1) clumps.Hole collapsed to Ft. Gamma-scan to 6.5 Ft.Bottom of boring at 11.5 Ft.
											Bottom of boring at 11.5 Ft. Borehole backfilled with grout from 7.0 Ft. to the surface, 9/29/87. Description and classification of soils by visual examination.
= SPL DENN	LIT	SPO DN;	ON; S P = P	T = ITC	SHELE Her; C	BY TUE) = OT	E; SI HER	TE	14	l Lo	ng Valley Rd. (LODI) HOLE NO. 1011R
									· · · ·	A	

} Å 1

		EC	DLO	GI	CD	RIL	L LO	G	PROJE	СТ	_	иов мо. shi FUSRAP 14501-138 1	ET NO. DF 1	HOLE NO. 1026R
BEGI	<u>14 I</u> ж	C	Vali	Ð	DRILL	.ER		COORDIN		DRIL		2,472 E 3,621 Ver	ION HORIZ tical K (FT.)	TOTAL DEP
	E REC					G. BOXE	Engel sisampl 9	; BNI ESEL. TO	P CAS	M		Uteman Auger 4" 8.0 ROUND EL. DEPTH/EL. GROUND WATER DEPTH	VEL. TOP	8.0 OF ROCK
SAMP	PLE N	ANHE]	R WEIG			CAS	-	FT IN HO		IA./I	LEN	GTH LOGGED BY: R. Migues	OR	Ĺ
SAND DIAN.	SAMP. ADV. LEN CORE	AMPLE REC.	SAMPLE BLOUS "N" X CORE	RECOVERY	LOSS A.P.M Jac	ATESUS ESST:	RE	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION AND CLASSIFICATION	WATER CHARAC	LEVELS, RETURN, CTER OF
\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	1.0 1.0 0.5 1.3 1.1 1.0 0.6	0.7 0.5 1.1 1.1 0.9 0.6 1.0				<u>Ec</u> .			5		2XXXXXXX	 0.0 - 4.9 Ft. Sandy Silty CLAY (CL-ML). Dark reddish brown (10R4/6). Fine- to coarse-grained and a few pebbles. 1.0-2.0 Ft. Moderate reddish brown (10R3/4). 2.0-2.5 Ft. Dark reddish brown (10R2/2) sones 0.1 in. wide. 3.8-4.9 Ft. Mottled very dusky red (10R2/2) sones 0.1 in. wide. 3.8-4.9 Ft. Mottled very dusky red (10R4/2). 4.9 - 6.1 Ft. SAND (SP). Grayish red (5R4/2), fine- to very coarse-grained sand. 6.1 - 6.5 Ft. Sandy CLAY (CL). Moderate red (5R4/6), fine- to very coarse-grained sand. 6.5 - 7.2 Ft. Clayer SAND (SC). Grayish red (10R4/6), fine- to very coarse-grained sand. 7.2 - 8.0 Ft. Sandy CLAY (CL). Moderate red (5R4/6), fine- to very coarse-grained sand. 7.2 - 8.0 Ft. Sandy CLAY (CL). Moderate red (5R4/6), fine- to very coarse-grained sand. Two large pebbles (>1.0 in.) imbedded in tip of suger bit. Bottom of borehole at 8.0 Ft. Borehole backfilled with spoils, 10/16/87. 	Borehol 0-8.0 F(i.d. split sampler using 4" stem au Borehol radiolog and gan TMA-E	and 0-5.0 I o.d. solid gers. e was ically samp ima-logged berline, Cor and logged to 5
			200N; S P = F					ITE	14	4 L	.0	ng Valley Rd. (LODI)	HOLE NO	

Ĺ

Ĩ.,

[_____

[_____

ľ.

								PROJE	CT			LJOB NO.	SHEET N	O. HOLE NO.
		SEC	JLOG	IC D	RIL	LLC)G				FUSRAP	1	1	
SITE							COORDIN	ATES				the second second second second second second second second second second second second second second second s	the second second second second second second second second second second second second second second second s	
		Long	Valle	y Rd.	(LO)	DI)							Vertical	
BEGL						F =*- ¹	DATE					OVERBURDEN	ROCK (FT	
					BOXE	SISAMPL	ESEL. TO	P CAS	ING				DEDTN/EI	8.0
						8			••••	Γ		DIND MATER	DEPIN/EL.	I UF UF ROCK
SAMP				• • • •	CAS	SING LE			A./L	ENG	TH LOGGED BY:			У
	14	<u>40 11</u>	<u>bs./18</u>	in.			NO	NE				R. Migu	es A	d
e.	NW			PR	JATE! ESSU	İ RE		[-
ĻΪ	<u>S</u>				TEST		ELEV.	Ŧ	1¥		DESCRIPTION AND C	ASSTETCA		
÷	e z	ᆋᄣ	23 CO	ຫຼະ ຫຼັງ	100 H	¥zż			T				WAT	FER RETURN,
ŝ₹		뒷망	. 5 . 5	1.9		부서분		-	B					
\$ \$	1.0	0.8								K-	0.0 - 1.2 Ft. Silty CLAY (CL-ML).		ehole advanced
8 \$	1.0	0.9					-				Dusky yellowish brown (in upper 0.2 Ft.	(10YR2/2). Hi		t-spoon sampler
SS	1.0	0.9								H '	1.2 - 3.1 Ft. Clayer SAND	(SC).	iaug	er.
SS	1.0	1.0				ŀ	-		44	N-	 coarse-grained with Bru 	i (10R4/6), fine inswick Sandste	one 🗍 sam	ing radiologically
SS	1.0	COORDINATES ANGLE FROM NORIZBEARING N 2,475 E 3,650 Vertical Vertical ORPLIER DRILLER DRILL MAKE AND MODEL SIZE OVERBURDEN ROCK (FI.) TOTAL E OP-87 G. Engel; BNI. Tripod\Little Beaver 4" 8.0 SIZE OVERBURDEN ROCK (FI.) TOTAL E OPEN IZ-9-87 G. Engel; BNI. Tripod\Little Beaver 4" 8.0 BECOVERV (FI./2) COMED WATER ACC MARKE WEIGHT/FALL CASING GROUND EL. DEPTH/EL. GROUND WATER NONE NOTES ON: MATER PRESSURE DESCRIPTION AND CLASSIFICATION NOTES ON: MATER PRESSURE ELEV. T Colspan="2">OF CLAY (CL-ML). DESCRIPTION AND CLASSIFICATION NOTES ON:MATER												

	PROJECT JOB NO. SHI	ET NO. HOLE NO.
GEOLOGIC DRILL LOG	FUSRAP 14501-138 1	
SITE COORDIN 14 Long Valley Rd. (LODI)	ATES ANGLE FI	CON HORIZBEARING
BEGUN COMPLETED DRILLER		tical
12-9-87 12-9-87 G. Engel; BNI.	Trinod/Little Beaver 4" 95	K (FT.) TOTAL DEPTH 9.5
CORE RECOVERY (FT./%) CORE BOXES SAMPLESEL. TO	P CASING GROUND EL. DEPTH/EL. GROUND WATER DEPTH	I/EL. TOP OF ROCK
6.4/67 7 SAMPLE HAMMER WEIGHT/FALL CASING LEFT IN HO	LE: DIA./LENGTH LOGGED BY:	
140 lbs./18 in. NO		
WATER PRESSURE TESTS 	H DESCRIPTION AND CLASSIFICATION	NOTES ON:
	I OU F HA DESCRIPTION AND CLASSIFICATION H G F O C F	WATER LEVELS,
AND AND AND AND AND CORE CORE CORE CORE CORE CORE CORE CORE		WATER RETURN, CHARACTER OF
		DRILLING, ETC.
SS 1.0 0.6	0.0 - 1.1 Ft. <u>Silty sandy CLAY</u> (CL-ML). Dusky brown (5YR2/2). Fine- to medium-grained humus.	Borehole advanced 0-9.5 Ft. with 3" o.d.
SS 1.0 0.7		split-spoon sampler and 4" o.d. solid-stem
55 2.0 1.0	1.1 - 3.3 Ft. Clayer SAND (SC). Light brownish gray (5YR6/1), layered with moderate reddish brown (10R4/6) that dips	auger. Boring radiologically
	about 30 deg.	sampled and gamma-logged by TMA-Eberline, Corp.
SS 2.0 1.1	5. 3.2-3.3 Ft. Light gray (N7) irregular	IMA-EDernne, Corp.
	 5	
<u>55 1.5 1.3</u>	3.3 - 9.5 Ft. <u>Pebbly clayey SAND</u> (SG-SC). Moderate reddish brown (10R4/6). Fine- to very coarse-grained	5.5 Ft. Auger refusal.
	Brunswick SS pebbles to 2 in. or larger. Rounded to subrounded near bottom of	
SS 1.0 1.0	hole.	
	7.5-7.7 Ft. Pebbly sone.	rl
	9.3-9.5 Ft. Clayey zone.	9.5 Ft. Spoon refusal.
	Better of barbals at 0.5 Ft	
	Bottom of borehole at 9.5 Ft. Borehole backfilled with spoils, 12/9/87.	
		ļ
		1
		Description and classification of
		samples by visual examination.
SS = SPLIT SPOON; ST = SHELBY TUBE; SITE		HOLE NO.
D = DENNISON; P = PITCHER; O = OTHER	14 Long Valley Rd. (LODI)	1214R
	A-4	
	•	

[.

r

	G	EC	LOG	IC D	RIL	L LO	G	PROJE	CT		FUSRAP	<u></u>	JOB NO. 14501-	1		HOLE NO. 1015R
ITE			Valle		<u>a o</u>		COORDIN	ATES						NGLE FR	ON NORIZ	
EGUN			Valle NPLETED			11)	<u> </u>		DRIL		2,451 E 3,65 NAKE AND HODEL	5 SIZE	OVERBURDEN	Veri		TOTAL DEPT
			0-2-8		G .	Engel	; BNI		М	liz	uteman Auger	4"	6.0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	6.0
ORE R		VER1		() CORE	BOXE	SISAMPL 6	ESEL. TO	P CAS	ING	G	ROUND EL. DEPTH/	EL. GROU	ND WATER	DEPTH	/EL. TOP	OF ROCK
AMPLE			WEIGHT	/FALL	CAS		FT IN HO	LE: DI	A./	LEI	IGTH LOGGED BY:		·			
			N/A				NO	NE					R. Mig	ues (TT	
SAMP. ADV.	EN CORE	INPLE REC.	SAMPLE BLOWS "N" X CORE RECOVERY	PR W.d.D	ATEU ESST:	RE	ELEV.	DEPTH	BRAPHICS	SAMPLE	DESCRIPTION	AND C	LASSIFICA	TION	WATER	ON: LEVELS, RETURN, TER OF
ñ⊈ ñ SS 1.0	0	0.5		- 6	ăc					H	00 - 33 Ft Band		TAY (CLAN	<u></u>		NG, ETC
SS 1.0 SS 1.0 SS 0.0	0 3	0.5					-	•			0.0 - 3.3 Ft. <u>Band</u> Dusky brown (moderate reddi			<i></i>	0-6.0 Ft i.d. split	advanced . using 3" -spoon and 4" o.d. m augers.
<u>S 0.</u> S 0.	·]	0.5	*				_	ع_		R	3.3 - 4.7 Ft. <u>Silty</u> Pale brown (5 Y medium-fine gr	Clayey S (R5/2), v mined.	SAND (SM). ery fine- to	ŗ		
5 0.1	5	0.5					-	•		N	4.7 - 6.0 Ft. <u>Silty</u> reddish brown	CLAY (((10R3/4)	CL-ML). Dar	·k/	and gam	ically sampl una-logged berline, Cor
											Bottom of borehol Borehole backfilled	e at 6.0 F 1 with gro	^r t. out, 10/2/87.			
								-								
			-													
														•		
														•		
															•.	
															Descripti classifica soils by 1	tion of
															examinat	
= Si	PLIT	SP:	DON; ST	= SHEL	By Tu	BE: SI	TE								HOLE NO.	
= DEI	NNIS	ion;	P = PI	TCHER;	0 = 0	THER		14	L	0	ng Valley Ro	<u>d. (LC</u>	DDI)	11		15R

1

1

·~~

·....

·____

`....

<u>.</u>

~

• -----

	Gl	EO	LO	GI	CD	RIL	L LC)G	-KUJE	61								
SITE									ATES			FUSRAP		1450				
14	4 La						DI)				N 2.4	30 E 3.66	50		1			
BEGUN											L NAKE	AND HODEL	SIZE	OVERBURDE			· · ·	OTAL DE
12-9	-87		<u>2-9-</u>	-87		G.	Engel	; BNI.	2 010	Tri	pod\L							
				•/ •		BUAL		.53EL, 10	P CAS	ING	GROUND	EL. DEPTH	/EL. GRO	UND WATER	PE	PTH/EL.	TOP 0	FROCK
SAMPLE				GHT	FALL	CA		FT IN HO	LE: DI	A./I	I Ength	LOGGED BY:					_/_	
Id Long Valley Rd. (LODI) N 2,430 E 3,660 Vertical IEGUN COMPLETED DRILLER DRILL MAKE AND MODEL SIZE OVERBURDEN ROCK (FT.) TOTAL DEPTH 12-9-87 ISE OVERBURDEN ROCK (FT.) TOTAL DEPTH 12-9-87 G. Engel; BNI. Tripod\Little Beaver 4" 6.0 OVERBURDEN ROCK (FT.) TOTAL DEPTH 12-9-87 G. Engel; BNI. Tripod\Little Beaver 4" 6.0 OVERBURDEN COVERBURDEN ROCK (FT.) TOTAL DEPTH 12-9-87 G. Engel; BNI. Tripod\Little Beaver 4" 6.0 STORE RECOVERY (FT./%) CONE BOXES/SAMPLES/EL. TOP CASING GROUND EL. DEPTH//EL. GROUND WATER DEPTH//EL. TOP OF ROCK 5.1/85 MATER NONE NOTES ON: MATER PRESSURE <td <="" colspan="2" td=""></td>																		
₩. : ⊃		i	-	≻	L PD	JATE	R		Ι						Barrier,			
	LEN COR	CORE RE(SAMPLE	RECOVER	LOSS IN P.M	EST	5	ELEV.	DEPTH	BRAPHIC		ESCRIPTIO	N AND I	Classifi	CATIC	N WA1 WA1 CH4	FER L FER R NRACT	EVELS ETURI ER OF
85 1.	.0	0.7		+		60					0.0	- 1.4 Ft. San	dy silty (LAY (CL-)	<u>et).</u>			
<u>ss 1.</u>	.0 1	0.7		\neg				_	·			Dusky brown nedium-grain	5YR2/2 ed, humu	, fine- to	,-	0-6	Ft. wi 1-spoo	th 3" o
<u>55 1.</u>	.0	0.9	· · ·						·							_/ and	4" o.d	. solid
SS 1.	.0	1.0		-			ŀ		· •		N	nedium-grain to 0.5" in diam	ed with s	cattered peb	bles up	sam	ing rac	nd
<u>85 1.</u>	.0	5.8		\neg				-	·		đη :	1.9-3.9 Ft. Di		vish orange		T TM	ima-lo A-Ebe	gged b rline. (
SS 1.	.0	1.0		\neg				-	5_	ΗIJ		(10YR6/6).				J		
	+	+		-		.		-		1000	3.9	- 5.1 Ft. <u>SIL</u> (5YR5/6).	[(ML).	Light brown				uger
										1			<u>р</u> (SP).	Moderate				-
										1						_1		
											6.7	SC-GC). Mo	derate re	<u>y SAND</u> ddish brown				
											111	iubangular cla	- to medi sts to 3.0	um-grained " diam.; glac	with	6.0	Ft. Sp	oon
1												5117				_ refu	sal.	
											Bot	tom of boreho	le at 6.0]	Ft.				
											Bor	enole DECEMIIS	a with sp	011 5 , 11/25/3	87.			
				1														
	ł																	
									i									
											·						_	-
																clas	sificatio	on of
				1							1				<u></u>			
					= SHEL Cher; !			TE	1/		ng '	Valley R	a () (נוחר		HOLE	[:] №. 121	٢D
			1			•	• •••••		¶	است ۳	- IS	- GIIC¥ 1/	4. IL\	JU11		f	- 7 2 7	. 7 IV

14 Begun				y Rd.		DI)	<u> </u>		DRIL	<u>N 2,4</u> L MAKE				OVERBURDEN	Vert		OTA
)-1-8				; BNI	P CAS		inuter			4" /EL. GROU	13.0		/EL. TOP OI	1 F R
	4.	9/3	7			10						₩ /				/	
		N	I/A	T/FALL	ICA	SING LE	FT IN HO NO		A./L	ENGTH.	LOGGED	BY:		R. Mi	gues		
		ان		P	WATE	IRE											
SAMP . TYPE AND DIAM.	LEN COF	CORE RE	BLOWS "N" BLOWS "N" X CORE		TEST 99 99 90 10 10 10 10 10 10 10 10 10 10 10 10 10		ELEV.	DEPTH	GRAPHICS	ם משקרב	escri	PTION	i and Ci	LASSIFIC	ATION	NOTES O WATER L WATER R CHARACT DRILLIN	EV ET
SS 1 SS 0	.0 .8 .0 .7 .6 .8 .9	0.3 0.7 0.5 0.6 0.7 0.0 0.8 0.0 1.0 1.0						5		3.8 7.0	Durky 1 medium with up (5R2/2, 3.0 Ft. pebbles - 7.0 F Dark re - 12.4 reddish medium 7.7 Ft. 4 - 13.0 (CL-M. fine- to tom of	red (5R -graine to 10) pebble Decrea t. Clay ddish b Ft. Sill brown o-graine Some p Ft. Si L). Dat medium boreho	3/4). Fin. ed sand co in. mottle es. sing sand rown (10F rown (10F (10R3/4), ebbles. htv Sandy rk reddish m-grained te at 13.0		Pebbly ed d no /	Borehole a 0-13.0 Ft. i.d. split-s sampler ar solid stem Borehole a radiologica and gamm TMA-Ebe Sampler un advance fr Ft. Used i from the a flights. Auger refu Ft. Gamm this depth	n an
				T = SHI ITCHER		,	ITE	1/	41	ong	Vali	ev R	d. (LC)))		HOLE NO.	on.

e175	G	EO	LOG	IC D	RIL	LLO	G	PROJE			FUSRAP			-138 1		
SITE 1	4 L	ong	Valle	y Rd.	(LO)	DI)	COORDIN	ATES		N	2,412 E 3,67	6			ROM HORIZ tical	BEAR
BEGUN	ł	CO	MPLETED	DRIL	ER		TONT		DRIL	E M	AKE AND HODEL	SIZE	OVERBURDEN	ROC	K (FT.)	TOT
)-12-8 ((FT./2				; BNI ESEL. TO	P CAS			und el. DEPTH.		4.6	DEPTI	I/EL. TOP	OF I
ANPL		.9/8	B2 R WEIGHT	/FALL	ICA:	8 SING LE	FT IN HO	LE: D	IA./I	EN	TH LOGGED BY:				<u> </u>	t
_		1	N/A				NO			ç ya			R. Mi	gues	100	
	S E	REC.	SAMPLE BLOUS "N" X CORE RECOVERY	PR	NATER ESSU TEST	RE		Ŧ	5	Щ	•		e .		NOTES	ON
AND DIAN.				s Σ	-		ELEV.	HLLL	GRAPHICS	SAMPLE	DESCRIPTION	N AND C	Lassific	ATION	WATER	LEV RE
	SAMP. ADV. LEN CORE	COR		LOSS LOSS B.P.M	PRES.	TINE MIN			ğ	5					DRILL	
ss I		Q .r				i		1		N	0.0 - 4.7 ft. <u>Silty</u> Dusky brown moderate red medium-grain	Sandy C	AY (CL-M mottled with	LL). h	Borehol 0-4.7 F	le ad
SS :		0.9 0.9	<u>.</u>						-	Ŋ	moderate red i medium-grain depth.	ed with in	creasing san	d with	i.d. spli	t-spo
53 	0.2	0.2									1.0-2.0 ft. Ma	derate br	own (5YR4/	4) .	solid st	em a
SS (SS (0.7	0.1					.	.		<u> </u>	2.0-3.0 ft. Pa		•	5/4).	H	
SS	ō.i	0.0			ł						3.0-3.4 Ft. M 3.4-4.7 Ft. G				Boreho radiolo and gau	ricali nma
											S.4-4.7 Ft. Gi streaks of blac Brunswick SS silt.	kish red (in a matri	5R2/2). Pie x of sandy c	ces of layey	TMA-I	Cberl
											Bottom of boreho Borehole backfille	ble at 4.7 1 ad with sp	°t. oils, 10/12/1	87.	Auger 1 Ft. Re	efus
															bit at 3	1.9 Fi
										$\left \right $						
																•
	1					1										
						· ·			Î							
			1	ł		1										
			1											• •		
						1								٠		
		•							1							
						1									Descrip classifi soils by	catio
															examin	
								1								
		<u> </u>				<u> </u>										
			POON; S ; P = P			,	ITE	1	41	Lo	ng Valley F	Rd. (L	ODI)	١.	HOLE N	02
						<u>-</u>				-8				·		

GEOLOGIC	DRILL LOG	PROJECT	FUSRAP	JOB NO. 14501-	SHEET NO. 138 1 OF 1	HOLE NO. 1018R
14 Long Valley R		ORDINATES	N 2,440 E 3,67	A	NGLE FROM HORIZ	
EGUN COMPLETED DR	ILLER			SIZE OVERBURDEN	ROCK (FT.)	TOTAL DEP
0-6-87 10-6-87	G. Engel; 1	BNI M	inuteman Auger	4" 4.5 /EL. GROUND WATER	DEPTH/EL. TOP	4.5
2.5/65	6		目 ほう	EL. GROUND WATER	DEPIN/EL. IUP	OF RUCK
AMPLE HAMMER WEIGHT/FAL N/A	LL CASING LEFT	IN HOLE: DIA./	ENGTH LOGGED BY:	R. Migu		
	WATER			K. Migt	105	
AND DIAH. SAMP. ADV. LEN CORE SAMPLE REC. SAMPLE REC. SAMPLE BLOUS "N" X CORE X CORE LOSS LOSS	PRESSURE TESTS E OF W . C OF W	DEPTH DRAPHICS	DESCRIPTION	i and classifica	WATER	ON: LEVELS RETURN CTER OF ING, ET
55 1.0 0.5			0.0 - 3.8 Ft. Silty	CLAY (CL-ML).		e advanced
SS 1.0 0.5 SS 0.8 0.5				sky brown (5YR2/2).	0-3.8 F i.d. spli	t. using 3" t-spoon
S 0.8 0.5 S 0.6 0.6		· -		derate red (5R4/6). derate brown (5YR3/4)	sampler using 4	and to 4.5 o.d. solid
S 0.2 0.2 S 0.2 0.2			2.8-3.8 Ft. Inc	reasing sand and pebble		92191
		-	with depth.	sky red (5R3/4).	Borehol	
			3.4-3.8 Ft. Mo	derate reddish brown	and gar	rically san nma-logge berline, C
			(10R4/6).]	
			Bottom of borehol Borehole backfilled	e at 4.5 Ft. d with spoils, 10/6/87.		
					Augered	to 4.5 F
					Ft.	logged to
					Descript	ion and
					classific: soils by	ation of visual
					examina	
= SPLIT SPOON; ST = S = DENNISON; P = PITCHE			ong Valley Ro	d. (LODI)	HOLE NO	
			-9			

.

	GE	OL	OG	C D	RILI	L LO	G	PROJE	CT	FUSRAP	JOB NO. 14501-	SHEET 138 1 0		HOLE NO. 1020R
SITE							COORDIN	ATES				NGLE FROM	HORIZE	
BEGUN				/ Rd. DRILL		<u>))</u>				N 2,411 E 3,699 MAKE AND MODEL SIZE	OVERBURDEN	ROCK (TOTAL DEP
	-87						BNI	247 90		nuteman Auger 4" GROUND EL. DEPTH/EL. GR	7.5	DEPTH/EI	700	7.5
	5.0	/94				9				¥ /		DEP IN/EI	/	UP KULK
SAMPL	E HAMP	er u N/		/FALL	CAS	ING LE	FT IN HO NO		A./L	NGTH LOGGED BY:	R. Migu			
A Samp. TYPE A Samp. TYPE A Samp. TYPE	.0 1. .7 0. .3 0. .5 0. .5 0. .5 0. .8 0.	NANSO O CORE REC.		PR. M.4.6		RE	ELEV.		GRAPHICS	DESCRIPTION AND 0.0 - 3.0 Ft. Silty Sandy (CL-ML). 0.0-1.0 Ft. Dusky bro humus appearance. Fi medium-grained sand. 1.0-3.0 Ft. Moderate. motiled with light bro dusky yellowish brown medium-grained sand. 2.0-3.0 Ft. Decreasing 3.0 - 3.5 Ft. Clayer SIL7 Grayish red (10R4/2). 3.5 - 7.5 Ft. Silty SAND reddish brown (10R4/4) fine-grained. 4.3-4.9 Ft. Moderate: 4.5-5.3 Ft. Increasing 4.9-5.3 Ft. Grayish re 5.3 Ft. Small rounded Bottom of borehole at 7.5 Borehole backfilled with s	CLASSIFICA CLAY wn (5YR2/1); ri ne- to brown (5YR5/6) an (10YR2/2). Fin ; sand. (ML-CL). (SM). Moderal 5), very fine- to red (5R5/4). silt content. d (5R4/2). pebbles. Ft.	TION WCD ch dne- to EFaT te	ATER HARAC RILLI Sorehole -7.5 Ft. d. split- ampler : olid ster Sorehole adiologi nd gam 'MA-Et	LEUELS, RETURN, TER OF NG, ETC advanced using 3" -spoon and 4" o.d. m augers. was cally samp ma-logged berline, Col red to 4.6 1 /87; logged to 4
				* SHEL		/	TE	14		ong Valley Rd. (L	ODI)	н	DLE NO. 10	20R

PROJECT JOB NO. SHEET NO. HOLE NO.												
GEOLOGIC E	DRILL LOG	3 PROJEC	C1	иов но. ishe FUSRAP 14501-138 1								
SITE	ic	CORDINATES	··		OF 1 1023R							
14 Long Valley Rd.				2,376 E 3,703 Ver								
BEGUN COMPLETED DRIL					((FT.) TOTAL DEPTH							
10-13-8710-14-87 CORE RECOVERY (FT./%) COR	G. Engel;	BNI DR CASI		Uteman Auger 4" 10.2 ROUND EL. DEPTH/EL. GROUND WATER DEPTH	5.2							
4.1/78	6			ROUND EL. DEPTH/EL. GROUND WATER DEPTH	/EL. TOP OF ROCK							
SAMPLE HANNER WEIGHT/FALL		IN NOLE: DI	A./LEN	IGTH LOGGED BY:								
N/A		NONE		R. Migues	AC							
AND DIAN AND DIAN SAND DIAN SAND OR SAND CORE BANDLE REC. SANDLE BANDLE REC. SANDLE BLOWS "N" Z CORE RECOVERY LOSS LOSS LOSS LOSS LOSS LOSS LOSS LOS	WATER		6	•								
	TESTS		lä H		NOTES ON:							
	· · · · · · · · · · · · · · · · · · ·		RAPHIC	DESCRIPTION AND CLASSIFICATION	WATER LEVELS, WATER RETURN,							
AND DIAND AND DIAND AND DIAND AND DIAND LEN CORE CORE REC. CORE REC. SAMPLE BLOWS "N" ZORE RECOVERY LOSS A DU A DU A DU A DU A DU A DU A DU A DU	P. S. I.S. P. S. I.S. TIME MIN.	•	GRAPHICS SAMPLE		CHARACTER OF							
SS 1.0 0.7				0.0 - 2.0 Ft Sandy Silvy CLAV (CLAVI)	DRILLING, ETC.							
SS 1.0 0.9				0.0 - 2.0 Ft. Sandy Silty CLAY (CL-ML). Dusky brown (5Y2/2). Fine- to medium-grained sand. Pieces of paper.	Borehole advanced 0-5.2 Ft. using 3"							
SS 1.5 1.5					i.d. split-spoon							
				1.0-2.0 Ft. Moderate reddish brown (10R4/6) mottled with very dusky red	sampler and 4" o.d. solid stem augers.							
<u>\$\$ 0.5 0.5 .</u>		4.	K	(10R2/2).	ļ							
SS 0.9 0.2		5_		2.0 - 3.9 Ft. Silty CLAY (CL-ML). Moderate reddish brown (10R4/6) with								
		1 -		grayish brown (5YR3/2).	Borehole was radiologically sampled							
				3.9 - 5.2 Ft. <u>Claver SILT</u> (ML-CL). Pale reddish brown (10R5/4), grayish red	and gamma-logged by TMA-Eberline, Corp.							
				(10R4/2).	Amin-Boerinne, oorp.							
				Bottom of borehole at 5.2 Ft.	4.6-5.0 Ft. augered							
				Borehole backfilled with spoils, 10/14/87.	with pronounced 'chattering'.							
					Augered to 5.0 Ft.							
		1			and gamma-logged to 4.0 Ft.							
					-							
					· ·							
					1							
					Ī							
					1							
					Description and							
					classification of soils by visual							
					examination.							
SS = SPLIT SPOON; ST = SHE	LBY TUBE: SITI			· · · · · · · · · · · · · · · · · · ·	HOLE NO.							
D = DENNISON; P = PITCHER;			Lo	ng Valley Rd. (LODi)	1023R							
			A-13									

| ; ...

	G	EC	DLOG		RI		DG	PROJE	CT				JOB NO			HOLE NO.
SITE							COORDIN	ATES		-	FUSRAP			-138 1	OF 1	1025R
		002	Valle	v Rd.	(LO)	DI)				N	2,378 E 3,72	1		Veri	1	BEAKING
GU	IN .	α	MPLETED	DRILI					DRIL		NAKE AND NODEL	SIZE	OVERBURDE			TOTAL DEPTH
			0-15-8		<u>G.</u>	Engel	; BNI]			uteman Auger	4"	4.2			4.2
JRE		over 1.4/		() CORE	BOXE		ESEL. TO	P CAS	ING	GF	CUND EL. DEPTH	/EL. GR	OUND WATER	DEPTH	/EL. TOP	OF ROCK
UHP	LE H	AMME	R WEIGHT	7FALL	ICA:		FT IN HO	E: D		E N	GTH LOGGED BY:		·	<u> </u>		
		1	N/A				NO						R. Mi	ques	APT	, ~
DIAM.	5 11	ů.	E. >		JATE	R			_	TT			e .			
	P. CORI	PLE RE	BLOWS "N" % CORE % CORE	LOSS IN G. P. M	TEST	5	ELEV.	DEPTH	GRAPHICS		DESCRIPTION	n and	CLASSIFIC	ATION	NOTES WATER WATER	ON: LEVELS, RETURN,
200		SAM COL	50,20	7.9	PRESS.	HIN MIN. MIN.			B	M	•				CHARAC	TER OF NG, ETC.
•		0.0								N	0.0 - 1.0 Ft. San (TOPSOIL/CI (5YR2/2). Fin	dy Silty	CLAY Dusky brown		<u> </u>	advanced
1.0		0.7	·	1]		N	(5YR2/2). Fin Humus.	ne- to m	edium-graine	a. [0-4.2 Ft i.d. split	. using 3" -spoon
f	0.5 0.5 0.7	0.5 0.5 0.7				Į					1.0 - 4.2 Ft. San Moderate redd	dy Silty	CLAY (CL-M	IL).	Sampler.	and 4" o.d. m augers.
	0.7			ł						R	coarse-grained	with fr	n, Fine- to agments of Br	unswick		.
I							-] _		Π	SS up to 1.0 in			Ī	1	
						ļ					2.0-2.5 Ft. In				Borehole	was ically sampled
							1				3.9-4.2 Ft. Gr with very dusk	ry red (1	0R2/2).	IXed	TMA-E	ically sampled ima-logged by berline, Corp.
								ł			Bottom of boreho	le at d 7	Rt.	······	gamma-	and logged to 2.5 usal on
											Bottom of boreho Borehole backfille	d with s	poils, 10/15/8	7.	boulder.	TRAI OU
								ĺ								
								1								
										\prod						
								1								
															1	
								ł								
															l	
									1							
														• •		
															ľ	
															1	
]	
															Descript	
															soils by	visual
									1							··· // ··
															1	
z	SPL	T SP	DON; ST	= SHEI	BY TU		ITE			~		1 4.	001		HOLE NO.	
: ء 	PENN	SON;	P = PI	TCHER;	0 = 0	THER		نصاد وروا		_	ng Valley R	<u>a. (L</u>	(ועט	11	10)25R
	CHK:	SUR	r = ٢1	IUNEK;	U # 0	TER .		نصاد وروا	4 L 7-3	_		<u>u. (L</u>		1)	1(123K

•