063982

DOE/OR/20722-246 M-086

Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-81OR20722

e fan de fan skelen gelegen gelegen fan de gelegen gelegen gelegen gelegen fan de fan de fan de fan de fan de s

and the second second

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 99 GARIBALDI AVENUE

Lodi, New Jersey

September 1989

Bechtel National, Inc.

063982

5÷.,

Bechtel National, Inc.

Systems Engineers — Constructors

Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Mail Address: P.O. Box 350. Oak Ridge, TN 37831-0350 Telex: 3785873

SEP 29 1989

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin Technical Services Division

Subject: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of Radiological Characterization Report for seventeen residential properties, four municipa properties, and seven commercial properties in Lodi and Maywood, New Jersey Code: 7315/WBS: 138

Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerate manner. His efforts have allowed us to publish these reports on schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,

Rounder

R. C. Robertson Project Manager - FUSRAP

RCR:wfs:1756x Enclosure: As stated

cc: J. D. Berger, ORAU (w/e)
 N. J. Beskid, ANL (w/e)

CONCURRENCE

DOE/OR/20722-246

١

RADIOLOGICAL CHARACTERIZATION REPORT

Party and

1

yder and

Ĺ

2 11

÷....

i.

1 1

T. S

FOR THE RESIDENTIAL PROPERTY AT

99 GARIBALDI AVENUE

LODI, NEW JERSEY

٠.

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring, D. J. Whiting, and W. F. Stanley Bechtel National, Inc. Oak Ridge, Tennessee

Bechtel Job No. 14501

TABLE OF CONTENTS

Ľ

-22

.

• • •			Page
		-	iv
	<pre>A set of Figures A set of Figures A set of Tables A set o</pre>	iv	
Abbr	eviat	ions	v
1.0	Intr	oduction and Summary	1
	1.1	Introduction	1
	1.2	Purpose	3
	1.3	Summary	3
	1.4	Conclusions	5
2.0	Site	History	7
	2.1	Previous Radiological Surveys	8
	2.2	Remedial Action Guidelines	9
3.0	Heal	th and Safety Plan	12
	3.1	Subcontractor Training	12
	3.2	Safety Requirements	12
4.0	Char	acterization Procedures	14
	4.1	Field Radiological Characterization	14
		4.1.1 Measurements Taken and Methods Used	14
		4.1.2 Sample Collection and Analysis	17
	4.2	Building Radiological Characterization	19
5.0	Char	acterization Results	21
,	5.1	Field Radiological Characterization	21
	5.2	Building Radiological Characterization	26
Refe	erence	S	37
Appe	endix	A - Geologic Drill Logs for 99 Garibaldi Avenue	a A-1

iii

ABBREVIATIONS

۰.

•

7

at the second second

ſ

A STREET STREET, N

Private and

Bellevin Street

*

Mar Martin

and shares

Cm	centimeter
cm^2	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h	hour
in.	inch
km ²	square kilometer
L	liter
L/min	liters per minute
m	meter
m ²	square meter
MeV	million electron volts
µR/h	microroentgens per hour
mi	mile
mi ²	square mile
min	minute
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
pCi/g	picocuries per gram
pCi/L	picocuries per liter
WL	working level
yd	yard
yd ³	cubic yard

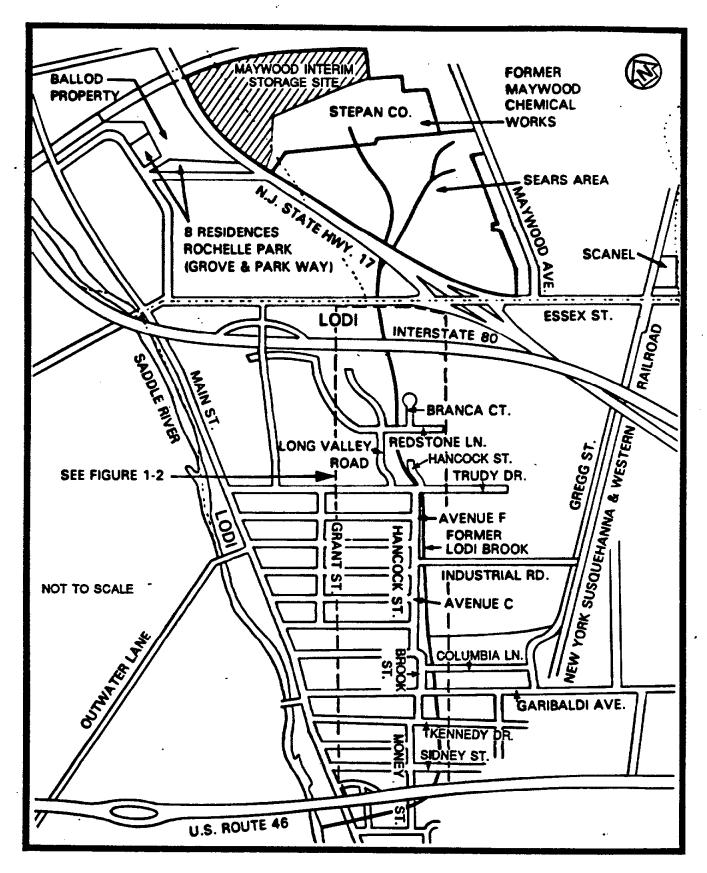
V

1.0 INTRODUCTION AND SUMMARY

This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 INTRODUCTION

Ê


1

\$

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

Ì

「大山

Ť.

Â,

FIGURE 1-1 LOCATION OF LODI VICINITY PROPERTIES

1.2 PURPOSE

ł,

Ì

Bon Straff

J⁻

1

P- YALANG

*

Bauw.

T.

۹.

ŧ

Â.

.

£.

1

The purpose of the 1987 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.

1.3 <u>SUMMARY</u>

This report details the procedures and results of the radiological characterization of the property at 99 Garibaldi Avenue (Figure 1-2) in Lodi, New Jersey, which was conducted in October and November 1987.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 99 Garibaldi Avenue showed maximum concentrations of thorium-232 and radium-226 to be 11.1 and less than 1.2 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 7.1 pCi/g.

Subsurface soil sample concentrations ranged from less than 0.7 to 25.2 pCi/g for thorium-232 and from less than 0.4 to less than 1.7 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. The concentrations of uranium-238 in subsurface soil samples ranged from less than 1.9 to 37.4 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE believes that these guidelines are conservative for

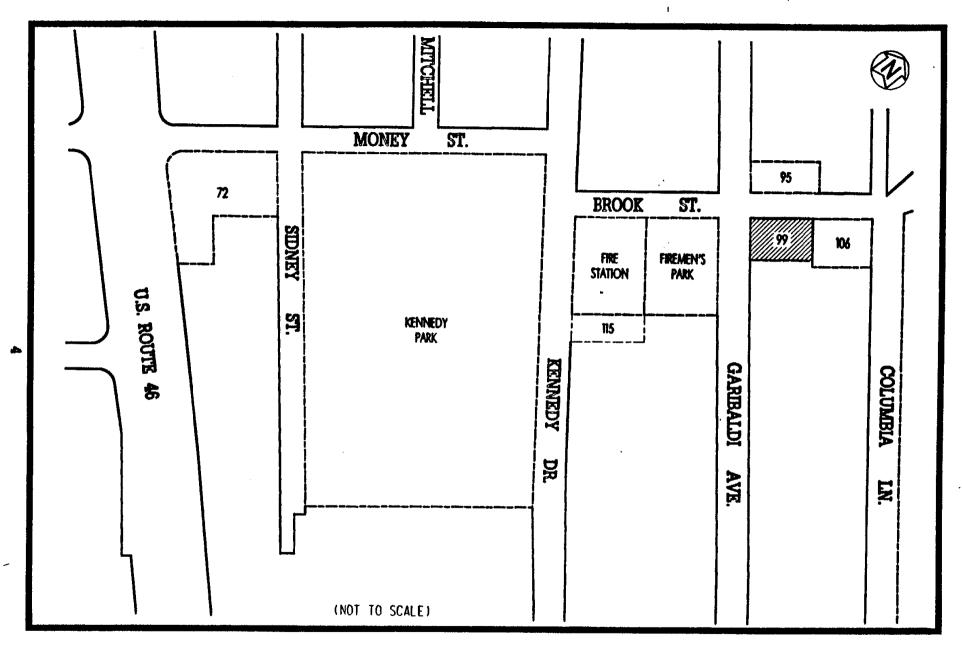


FIGURE 1-2 LOCATION OF 99 GARIBALDI AVENUE

considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property indicated surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 0.60 m (2.0 ft) on the property and to a depth of 1.22 m (4.0 ft) in the street (Brook Street) adjacent to the property.

Exterior gamma radiation exposure rates ranged from 7 to 16 μ R/h, including background. No indoor measurement could be obtained because of scheduling conflicts associated with obtaining access to the residence.

No indoor measurements for radon and its progeny (radon and thoron daughters) could be obtained.

All data tables for this property appear at the end of this report.

1.4 <u>CONCLUSIONS</u>

Ă

1

ľ

Ì

-

ALC: No. of Lot of Lot

業群

Ł

Sec. 11

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 99 Garibaldi Avenue. This contamination is primarily subsurface contamination ranging from a depth of 15.2 cm (6.0 in.) to 0.60 m (2.0 ft). In addition, there is a high probability that the contamination extends beneath the

concrete drive, a portion of the detached garage, and the street (Brook Street) adjacent to the property. The total affected area is estimated to be approximately 30 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

ľ

I

č.

L.

2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

ý.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are typically found in monazite sands, which also contain

thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

Ĩ.

MONTON

Ĭ.

Ţ,

1

I

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

<u>January 1981</u>--The Nuclear Regulatory Commission directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a $10.3-\text{km}^2$ (4-mi²) aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984--In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its

"scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

<u>September 1986</u>--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

2.2 <u>REMEDIAL ACTION GUIDELINES</u>

1

1

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

TABLE 2-1 SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL GUIDELINES

Ra	dlor	nucl	ide -	

Radium-226 Radium-228 Thorium-230 Thorium-232 Soll Concentration (pCl/g) Above Background^{a,b,c}

5 pCi/g when averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over any 15-cm-thick soil layer below the surface layer.

Other Radionuclides

Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

STRUCTURE GUIDELINES

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL^d. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 µR/h.

Indoor/Outdoor Structure Surface Contamination

	Allowable Surface Residual Contamination ^e (dpm/100 cm ²)		
Radionuclide [†]	Average ^{g,h}	Maximum ^{h,I}	Removable ^{h.j}
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	100	300	20
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-126, I-131, I-133	1,000	3,000	200
U-Natural, U-235, U-238, and associated decay products	5,000 a	15,000 a	1,000 α
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 B - y	15,000 8 - γ	1,000 8 - γ

TABLE 2-1 (CONTINUED)

- ^aThese guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").
- ^bThese guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.
- ^CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.
- ^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.
- ^eAs used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.
- ¹Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.
- ⁹Measurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.
- ^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

The maximum contamination level applies to an area of not more than 100 cm².

⁵The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

Ż

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 SUBCONTRACTOR TRAINING

ŧ

Ł

ŝ. .

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 <u>SAFETY REQUIREMENTS</u>

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

12

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

4.1 FIELD RADIOLOGICAL CHARACTERIZATION

į,

ŝ.

ĺ

Ť.

Restoration and

201003 (Ma

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this property.

4.1.1 <u>Measurements Taken and Methods Used</u>

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

東京

Ì

Ĩ.

Į

and and

I

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling six boreholes on the property and four boreholes in the streets (Brook Street and Garibaldi Avenue) adjacent to the property (Figure 4-1), using either a 7.6-cm- (3-in.-) or 15.2-cm- (6-in.-) diameter auger bit, and gamma logging them. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

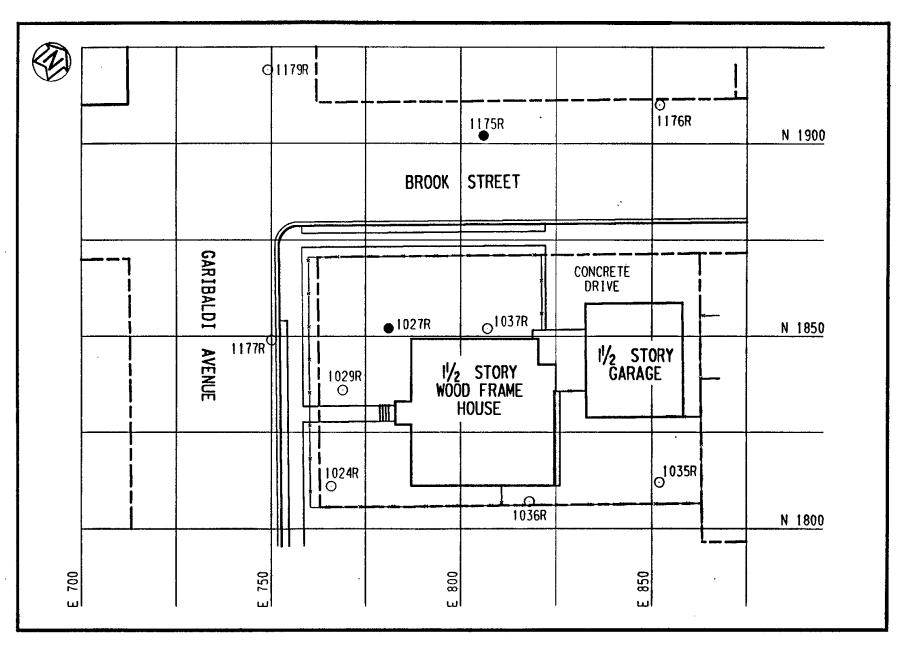


FIGURE 4-1 BOREHOLE LOCATIONS AT 99 GARIBALDI AVENUE

M38W9852.DGN

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration of the contamination. The gamma-logging data were reviewed to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 <u>Sample Collection and Analysis</u>

l

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and 8), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at eight locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from ten locations (Figure 4-2) using a 7.6-cm (3.0-in.) outside diameter (0.D.) split-spoon sampler mounted on a tripod or attached to a truck-mounted auger stem. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

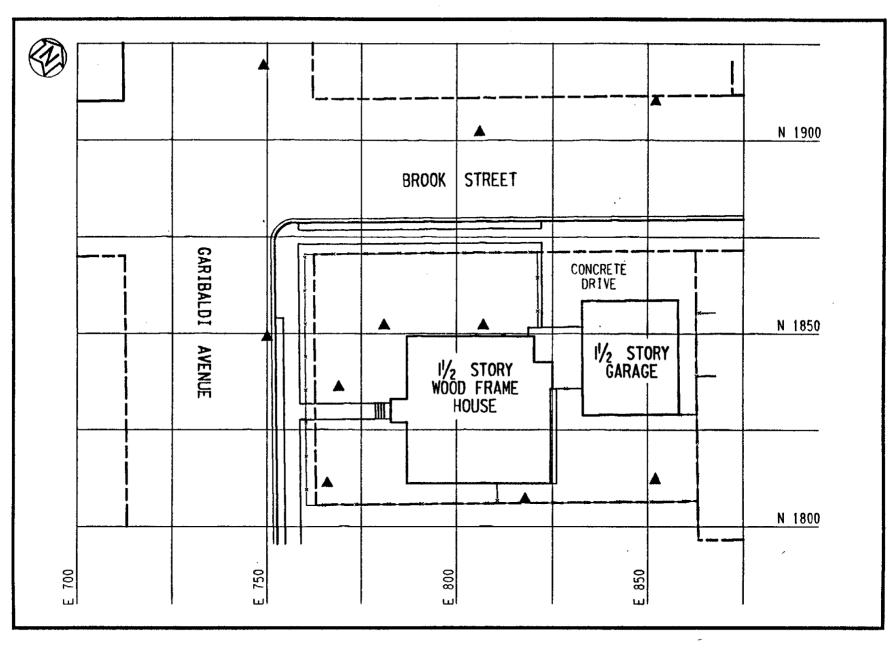


FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS AT 99 GARIBALDI AVENUE

18

M38W9852.DGN

4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

ł

ł

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the residence. Because of scheduling conflicts associated with obtaining access to the residence, a radon measurement could not be obtained to verify the presence of contaminated material under the residence and to estimate potential occupational exposures during future remedial actions.

Indoor measurements for radon and its progeny (radon and thoron daughters) could not be obtained.

Exterior gamma exposure rate measurements were made at six locations throughout the property grid system. To obtain exterior measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. A conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property.

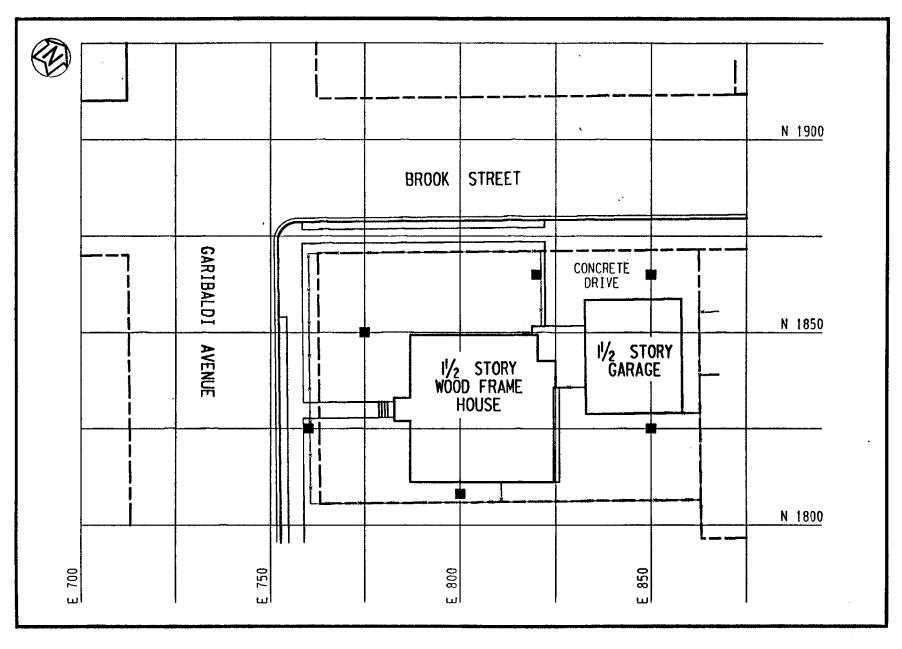


FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 99 GARIBALDI AVENUE

20

M38W9852.DGN

5.0 CHARACTERIZATION RESULTS

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

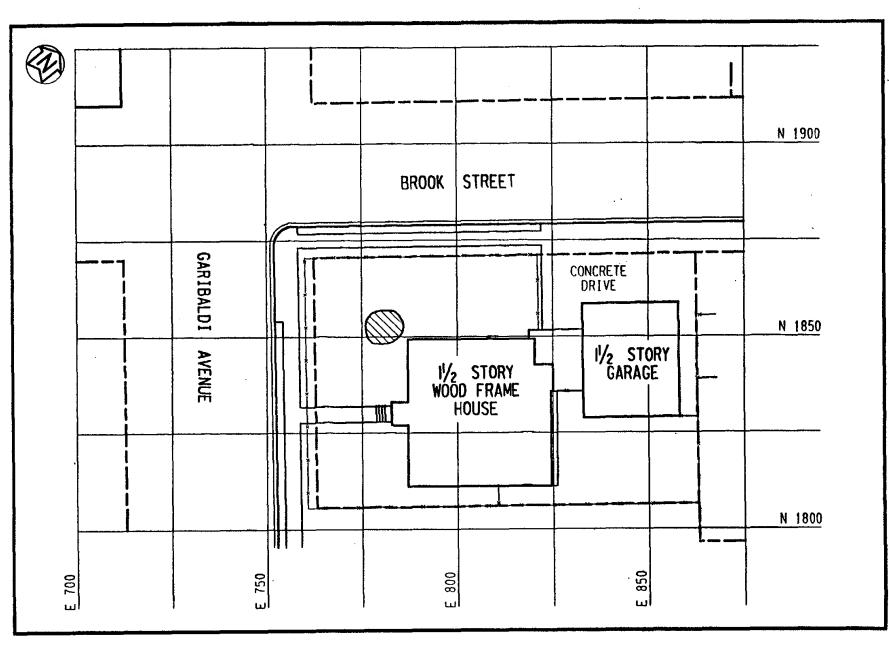
ł

Ł

I

Į.

ļ


I

Į

ł

Near-surface gamma radiation measurements on the property ranged from 4,000 cpm to approximately 12,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. Areas of surface contamination are shown in Figure 5-1.

Surface soil samples [depths from 0.0 to 15.2 cm (6.0 in.)] were taken at four locations on the property and four locations in the street adjacent to the property (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from less than 2.5 to less than 7.1 pCi/g for uranium-238, from less than 0.9 to 11.1 pCi/g for thorium-232, and from less than 0.6 to less than 1.2 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 exceeded DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of 11.1 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in concentrations that are quantitative with

[

1

Υ.

FIGURE 5-1 AREAS OF SURFACE CONTAMINATION AT 99 GARIBALDI AVENUE

~

22

M38W9852.DGN

the instruments and techniques used. The "less than" value represents the lower bound of the quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (+), which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.

Ì

4

Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE quideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower guideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its guideline level. Parameters selected for the thorium-232 analyses also provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below guidelines. However, because of the relatively low gamma photon abundance of uranium-238, many of

the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these concentrations are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 7,000 cpm to 146,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples indicated uranium-238 concentrations ranging from less than 1.9 to 37.4 pCi/g, thorium-232 concentrations ranging from less than 0.7 to 25.2 pCi/g, and radium-226 concentrations ranging from less than 0.4 to less than 1.7 pCi/g.

í,

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist primarily of subsurface contamination at depths ranging from 15.2 cm (6.0 in.) to 0.60 m (2.0 ft). The areas of subsurface contamination are shown in Figure 5-2. The subsurface contamination appears to extend beneath the concrete drive, a portion of detached garage, and the street (Brook Street) adjacent to the property from depths of approximately 1.21 m (4.0 ft) to 1.52 m (5.0 ft).

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the

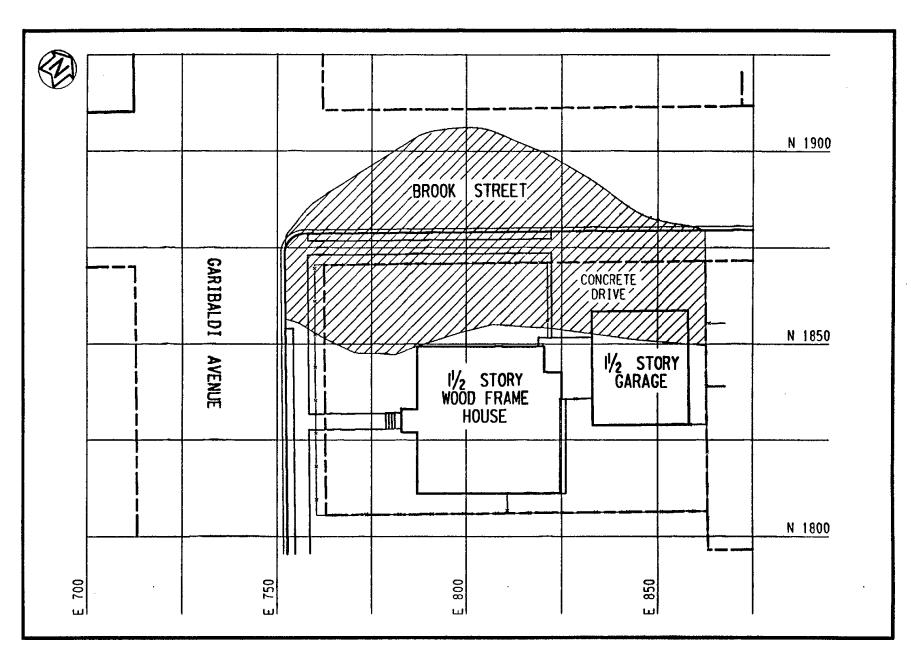


FIGURE 5-2 AREAS OF SUBSURFACE CONTAMINATION AT 99 GARIBALDI AVENUE

M38W9852.DGN

1 7

.....

......

- t) - ---

subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain. The contamination on this property is similar to contamination found on a residential property in close proximity to this property and a nearby municipal property. It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 99 Garibaldi Avenue. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

l

ľ

۲.

È

I,

Ŀ

Ľ

Į,

Í

Indoor measurements for radon and its progeny (radon and thoron daughters) could not be obtained because of scheduling conflicts associated with obtaining access to the residence.

Exterior gamma radiation exposure rate measurements ranged from 7 to 16 μ R/h, including background. These results can be found in Table 5-3. Assuming the average indoor exposure rate is equivalent to the average exterior exposure rate of 11 μ R/h, and assuming the resident remains on the property every hour of the year (8,760 hours or 24 hours per day for 52 weeks per year), the yearly dose would be 15 mrem above

background (after subtracting average background of 9 μ R/h) (Ref. 10). The DOE guideline is 100 mrem/yr above background.

ŀ

h

Particular I

İ.

サナキ・

Based on the above information, the exposure rates and doses at this property are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the United States and are often significantly higher than average background for this area.

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 99 GARIBALDI AVENUE

Page 1 of 3

Coord	linatesa	Depth	Conce	ntration (pCi/g_±	2 sigma)
East	North	(ft)	Uranium-238	Radium-226	Thorium-232
749	1919	0.0 - 0.5	< 4.2	< 0.8	< 1.2
749	1919	0.0 - 2.0	< 6.0	< 1.1	< 1.5
749	1919	6.0 - 7.0	< 2.0	< 0.6	< 0.8
749	1919	9.0 - 10.0	< 7.4	< 1.3	< 1.7
750	1849	0.0 - 0.5	< 6.4	< 1.1	< 2.3
750	1849	0.0 - 2.0	< 3.0	< 0.5	< 0.8
750	1849	6.0 - 7.0	< 6.8	< 1.1	< 1.7
750	1849	8.0 - 9.0	< 5.1	< 0.9	< 1.3
750	1849	9.0 - 10.0	< 6.8	< 0.7	< 1.6
766	1811	0.0 - 1.0	< 4.7	< 1.4	< 1.8
766	1811	4.0 - 5.0	< 4.8	< 1.0	< 1.5
766	1811	9.0 - 10.0	< 3.4	< 0.8	< 1.1
769	1836	0.0 - 1.8	< 2.3	< 0.5	< 1.0
769	1836	2.8 - 3.8	< 3.2	< 0.7	< 1.1
769	1836	4.8 - 6.1	< 1.9	< 0.5	< 0.7
769	1836	10.5 - 11.5	< 2.8	< 0.7	< 1.2
781	1853	0.0 - 0.5	< 6.1	< 1.2	11.1 ± 0.6
781	1853	0.0 - 1.0	< 5.4	< 1.0	8.1 ± 0.3
781	1853	1.0 - 2.0	< 6.6	< 1.3	14.8 ± 0.7
781	1853	2.0 - 3.5	< 7.3	< 0.6	5.4 ± 0.7
781	1853	4.5 - 5.5	< 3.2	< 0.9	< 1.3

(continued)

.

Page 2 of 3

.

East	<u>inates^a</u> North	Depth	Uranium-238	<u>tration (pCi/g ±</u> Radium-226	Thorium-232
Last	NOPUN	(ft)			Thorium-232
806	1902	0.0 - 0.5	< 7.1	< 1.0	< 2.0
806	1902	0.0 - 2.0	< 3.5	< 0.5	< 0.9
806	1902	2.0 - 4.0	8.4 ± 1.4	< 0.7	< 1.3
806	1902	4.0 - 5.0	37.4 ± 6.7	< 1.6	25.2 ± 1.1
806	1902	6.0 - 7.0	< 9.0	< 1.2	< 2.6
806	1902	8.0 - 9.0	< 4.4	< 0.7	3.0 ± 0.5
806	1902	9.0 - 10.0	< 7.4	< 1.1	< 1.8
807	1852	0.0 - 0.5	< 2.6	< 0.8	< 1.1
807	1852	0.0 - 1.0	< 3.0	< 0.7	< 1.3
807	1852	5.2 - 5.7	< 3.4	< 0.8	< 1.4
807	1852	7.5 - 8.5	< 2.4	< 0.5	< 1.0
807	1852	8.5 - 9.5	< 3.2	< 0.6	< 1.2
807	1852	9.5 - 10.7	< 2.0	< 0.5	< 0.7
818	1807	0.0 - 0.5	< 2.6	< 0.7	< 0.9
818	1807	0.0 - 1.0	< 3.0	< 0.9	< 1.1
818	1807	3.5 - 5.5	< 1.9	< 0.4	< 0.8
818	1807	6.6 - 7.6	< 2.7	< 0.6	< 0.8
818	1807	7.6 - 8.5	< 1.9	< 0.5	< 0.7
818	1807	8.5 - 9.5	< 2.9	< 0.7	< 1.0
818	1807	9.5 - 10.2	< 2.3	< 0.5	< 0.9
852	1812	0.0 - 0.5	< 2.5	< 0.6	< 1.1
852	1812	0.0 - 1.0	< 3.1	< 0.8	< 1.2
852	1812	6.5 - 7.5	< 2.8	< 1.7	< 1.0
852	1812	7.5 - 8.3	< 2.8	< 0.6	< 1.1
852	1812	8.3 - 9.3	< 2.1	< 0.4	< 0.8

29

~

.

(continued)

Page	2	of	2	
rave		UL.		

<u>Coordinates</u> a		Depth	<u>Concentration (pCi/g ± 2 sigma)</u>		
East	North	(Ît)	Uranium-238	Radium-226	Thorium-232
852	1812	9.3 - 9.7	< 2.9	< 0.7	< 0.9
852	1812	9.7 - 10.7	< 2.7	< 0.7	< 1.1
852	1812	10.7 - 11.3	< 2.8	< 0.7	< 1.1
852	1910	0.0 - 0.5	< 5.5	< 0.8	< 1.3
852	1910	0.0 - 2.0	< 2.7	< 0.6	< 0.9
852	1910	6.0 - 8.0	< 3.1	< 0.6	< 0.8
852	1910	8.0 - 9.0	< 5.7	< 0.9	< 1.3
852	1910	9.0 - 10.0	< 4.5	< 0.8	< 1.2

^aSampling locations are shown in Figure 4-2.

DOWNHOLE GAMMA LOGGING RESULTS

FOR 99 GARIBALDI AVENUE

	-		_
USAD		••••	- F
Page		U 1	

k

ĺ

Į

E.

h

|}

ľ

Į.

	<u>Coordinates^a</u> Depth ^b Count Rate ^c			
East	North	(Ít)	(cpm)	
<u>Boreho</u>]	le <u>1179R</u> d			
749	1919	0.5	7000	
749	1919	1.0	10000	
749	· 1919	1.5	10000	
749	1919	2.0	9000	
749	1919	2.5	8000	
749	1919	3.0	7000	
749	1919	3.5	8000	
749	1919	4.0	10000	
749	1919	4.5	11000	
749	1919	5.0	11000	
749	1919	5.5	11000	
749	1919	6.0	10000	
749	1919	6.5	10000	
749	1919	7.0	10000	
749	1919	7.5	10000	
749 ·	1919	8.0	10000	
749	1919	8.5	10000	
749	1919	9.0	10000	
<u>Borehol</u>	<u>e 1177R</u> d			
750	1849	0.5	7000	
750	1849	1.0	9000	
750	1849	1.5	9000	
750	1849	2.0	9000	
750	1849	2.5	8000	
750	1849	3.0	8000	
750	1849	3.5	7000	
750	1849	4.0	7000	
750	1849	4.5	7000	
750	1849	5.0	8000	
750	1849	5.5	8000	
750	1849	6.0	8000	
750	1849	6.5	8000	
750	1849	7.0	8000	
750	1849	7.5	11000	
750	1849	8.0	12000	

EXAMPLE 1

BROSTLER ST. Strand St. Strand

(continued)

Page 2	<u>of 5</u>		
<u>Coord</u> East	linates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
<u>Borehol</u>	<u>e 1024R</u> d		
766	1811	0.5	9000
766	1811	1.0	9000
766	1811	1.5	9000
766	1811	2.0	10000
766	1811	2.5	10000
766	1811	3.0	10000
766	1811	3.5	9000
766	1811	4.0	9000
766	1811	4.5	8000
766	1811	5.0	8000
766	1811	5.5	9000
766	1811	6.0	10000
766	1811	6.5	11000
<u>Borehol</u>	<u>e 1029R</u> d		
769	1836	. 0.5	9000
769	1836	1.0	8000
769	1836	1.5	8000
769	1836	2.0	8000
769	1836	2.5	8000
769	1836	3.0	8000
769	1836	3.5	8000
769	1836	4.0	8000
769	1836	4.5	8000
769	1836	5.0	7000
769	-1836	5.5	7000
769	1836	6.0	8000
<u>Borehol</u>	<u>e 1027R</u> d		
781	1853	0.5	33000
781	1853	1.0	47000
781	1853	1.5	60000
781	1853	2.0	46000
781	1853	2.5	23000
781	1853	3.0	13000
781	1853	3.5	10000
781	1853	4.0	11000

2

l L

Ken shows

kj -

And the second s

1 5-----

-

ł

(continued)

Coord	linates ^a	Depthb	Count Rate ^C
East	North	(Ît)	(cpm)
<u>Boreho]</u>	<u>e 1175R</u> d		
806	1902	0.5	11000
806	1902	1.0	13000
806	1902	1.5	14000
806	1902	2.0	15000
806	· 19 02	2.5	24000
806	1902	3.0	54000
806	1902	3.5	146000
806	1902	4.0	97000
806	1902	4.5	21000
806	1902	5.0	13000
806	1902	5.5	12000
806	1902	6.0	12000
806	1902	6.5	11000
806	1902	7.0	12000
806	1902	7.5	10000
806	1902	8.0	11000
806	1902	8.5	11000
<u>Borehol</u>	<u>e 1037R</u> đ		
807	1852	0.5	13000
807	1852	1.0	13000
807	1852	1.5	12000
807	1852	2.0	11000
807	1852	2.5	11000
807	1852	3.0	10000
807	1852	3.5	9000
807	1852	4.0	9000
807	1852	4.5	8000
807	1852	5.0	9000
807	1852	5.5	10000
807	1852	6.0	10000
807	1852	6.5	11000
807	1852	7.0	12000
807	1852	7.5	12000

Ĩ

-

1.

.

Ţ

ĥ

(continued)

TABLE	5-2
-------	-----

(continued)

Page 5 of 5

Ŋ

1

₹ ¥}

Baraker est

5

ài.

and the second

<u>Coord</u> East	inates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)
Borehol	<u>e 1176R</u> d		
852	1910	0.5	9000
852	1910	1.0	9000
852	1910	1.5	10000
852	1910	2.0	10000
852	1910	2.5	9000
852	1910	3.0	9000
852	1910	3.5	8000
852	1910	4.0	8000
852	1910	4.5	8000
852	1910	5.0	8000
852	19 10	5.5	8000
852	1910	6.0	9000
852	1910	6.5	10000
852	1910	7.0	11000
852	1910	7.5	11000
852	1910	8.0	11000
852	1910	8.5	11000

^aBorehole locations are shown in Figure 4-1.

^bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

^CInstrument used was 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

dBottom of borehole collapsed.

GAMMA RADIATION EXPOSURE RATES

Coord	linates ^a	Rateb
East	North	(µR/h)
760	1825	10
775	1850	15
800	1815	7
820	1865	16
850	1825	9
850	1865	7

FOR 99 GARIBALDI AVENUE

ł

h

I

Path

l

L

Ì

^aMeasurement locations are shown in Figure 4-3.

^bMeasurements include background.

REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.

Í.

Ì

- Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> <u>Chemical, Maywood, New Jersey</u>, November 1983.
- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area. Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- 7. Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- 8. Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 99 Garibaldi Avenue (LJ064)</u>, Lodi, New Jersey, ORNL/RASA-88/57, Oak Ridge, Tenn., July 1989.

9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.

ů,

-

ĺ

7

Frankist

Mar Low

10. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

APPENDIX A GEOLOGIC DRILL LOGS FOR 99 GARIBALDI AVENUE

١

and the second

Name of Street

l

the second states of the

1944 B

*** **

an and a second second

	G	FC	LOG	ור ח	Rii			PROJE	CT				JOB NO		EET NO.	HOLE NO.
SITE							COORDIN	ATES			FUSRAP		14501		OF 1 RON HORIZ	1179R
BEGU			DOK St.						DP 11		1,919 E 74	9 SIZE	-	Ver	tical	
12-	-1-8	17 1	2-1-8	7		E.D.		1		Ma	bile B-57	6.5"	OVERBURDEN	_	K (FT.)	TOTAL DEPTI
	4	1.6/	46			5	ESEL. TO				₩ 2	H/EL. GROU	JND WATER	DEPT	H/EL. TOP	OF ROCK
		0 11	R WEIGHT s./ 30	1	ł	SING LE	FT IN HO		IA./I	LENG	TH LOGGED BY:	·····	D Ha		/	<u></u>
Щ.	ว่าม	ы.	5, >		JATER	2 IDF			6				D. Ha	raisa	1	
AND DIAN	SAMP. AD	BAMPLE REC	S.7 30 SAMPLE BLOUS "N" SAMPLE SAMPLE N" SAMPLE SAM	LOSS LOSS G. P. M	EST: SSUA	5	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTIC				WATER CHARAC	ON: LEVELS, RETURN, CTER OF ING, ETC.
S	2.0	0.2	21-7-7 3								0.0 - 2.0 Ft. Sa FILL (GW, C	n dy GRAV)L).	EL and SIL	r	0-10 Ft.	e advanced . using 6.5 in
s	2.0	0.2	5-3-2-7				-				0.0-1.0 Ft. S gravel. 1.0-2.0 Ft. S	andy GRA ILT, black	VEL, broker	n basalt	auger. Sampled	low-stem l and logged by berline, Inc.
S	2.0	1.0	4-10-7 11				-	5_			2.0 - 4.4 Ft. Silt Brown (10YF gravel of Bru natural brook	v SAND (F 15/3), mine nswick sand	TILL?) (SM) or subrounde dstone. Fill	d small or	0.0-4.0	Ft. Sample ger flights.
s	2.0	1.5	7-10 11-18				-				4.4 - 6.0 Ft. <u>SIL</u> light gray mo slightly stiff,	T (ML). V	Veak red and	i stain,	r	
S	2.0	1.7	5-6-10 16								6.0 - 10.0 Ft. S	LT and S/	ND (ML, 5/3) and gra increases fra	y, sand		
							-	10.			is very fine-g downward; sa beds 3-7 mm			ided,/	4	
											Bottom of boreh Borehole backfil	ole at 10.0 led with sp	ft. oils, 12/1/87			
			:													
				-												
					-											
			İ													
															Identific classifica soils by examina	visual
			00N; ST P = P1				ITE			Br	ook St. (I	(וחט		·····	HOLE NO	179R

	G	GEC	DLOG	IC D	RIL	LLO	G	PROJE	СТ	<u> </u>	FUSRAP	,	JOB NO 14501	. sн -138 1	ET NO. OF 1	HOLE NO. 1177R
SITE				(1 ^-			COORDIN	ATES		<u>.</u> .				ANGLE FI	RON HORIZ	
BEGL	JN .		<u>dok St.</u> Mpleted								1,849 E	750 ISIZE	OVERBURDEN		tical K (FT.)	TOTAL DEPT
	·····	871	1-30-8	7		E.D.				Мо	bile B-57	6.5"	10.0			10.0
CORE	REC	XOVER j	Y (FT./%	() CORE	BOXE	s sampl 5	ESEL. TO	P CAS	ING	GROL	ND EL. DE	PTH/EL. GROU	ND WATER	DEPTI	I/EL. TOP	OF ROCK
SAMP	LE N	ANNE	R WEIGHT	7FALL	CAS		FT IN HO		IÄ./L	ENGT	H LOGGED BY	;	<u> </u>		<u> </u>	<u>۸</u>
611		1.1			ATE	3	NO	NE		ÍT.		<u></u>	David H	arnish	· · · · · · · · · · · · · · · · · · ·	10-
AND DIAT.	SAMP. ADU. LEN CORE	AMPLE REC.	SAMPLE BLOUS "N" X CORE RECOVERY	PR H.d.D	ESSU	RE	ELEV.	DEPTH	GRAPHICS		DESCRIPT	ion and c	LASSIFIC	ATION	WATER CHARA	ON: LEVELS, RETURN, CTER OF ING. ETC.
8 \$	2.0	1.4	20-17 12-7		<u></u>			4		N	0.0 - 4.1 ft. 5	L (GW, SM).	L and Silty		Borehol	e advanced with 6.5"
S S S S		0.9	3-6-5 17				-	5_			0.0-1.4 ft. broken bas 1.4-4.0 ft. (10YR3/3) gravel, loos	Sandy GRAV alt gravel. Silty SAND, fine- to med ie, slightly dat	dark brown lium-grained mp.		o.d. holi suger. Boring 1 sampled gamma- TMA-E	ow stem radiologically and logged by berline, Corp
SS	2.0		7-9-8-7								2.7-4.0 ft.	Fine-grained Medium-grai			surface. 6-8 Ft.	phalt at the Wet below pple interval
SS	2.0		3-12 15-23								4.1 - 8.8 ft. <u>B</u> medium-gr Coarsening 4.1-6.0 ft. 6.0-7.0 ft. brown. 7.0-8.0 ft. (10YR4/6) 8.8 - 10.0 ft. (10YR4/6)	downwards. Dark grayish Silty SAND, Silty SAND, Dark yellowii , gravelly. SILT (ML). becoming da , slightly stiff whole at 10.0	brown (10¥ dark grayis) light olive b sh brown Dark brown rk gray (10¥ , damp.	R4/2). rown. /R4/1)		
															Identific classific soils by examina	visual
			POON; \$1 ; P = P1				ITE			Br	ook St.	(LODI)			HOLE NO	i77R

BC-VIBILITY

. • ب

L'AND

and the second

-Alternational Alternational
₩. à

ł	G	EC	LOG	IC D	RIL	L LO	G	PROJE	61		FUSRAP		JOB NO	. ряне -138 1	ET NO.	HOLE
SITE							COORDIN	ATES	···		FUSKAF	·			ON HORIZ	
	· · · · · · · · · · · · · · · · · · ·		ibaldi) <u> </u>					1,811 E 766			Veri		
BEGU			MPLETED			Tanal	; BNI				KE AND MODEL	SIZE	OVERBURDEN	ROCI	(FT.)	TOT
					E BOXE	SISAMPL	ESEL. TO	P CAS	ING	GRC	teman Auger UND EL. DEPTH		10.2	DEPTH	/EL. TOP	OF F
		1.8/				7			•		¥/				/	
SAMP	LE H		R WEIGHT N/A	T/FALL	CA	SING LE	FT IN HO NO		A./L	ENG.	TH LOGGED BY:				GAL	
۳.	শ		and the second se		HATE	R	NU		1	Π			R. Mij	jues	$\frac{1}{1}$	
the tak	HP. ADU	HPLE REC	SAMPLE BLOUS "N" % CORE RECOVERY	LOSS LOSS A.P.M	SESSU TEST	5	ELEV.	DEPTH	GRAPHICS		DESCRIPTION	i and :	CLASSIFIC	ATION	NOTES WATER WATER CHARAC	LEU RET
\$₹ 00	<u>8</u> 1-1	ξ Π Π	12' C	<u> </u>	<u>a</u> a	<u></u> Η Σ			C						DRILLI	
SS SS	1.0	0.4		1			-	1.	F		0.0 - 0.3 Ft. Silty Grayish brown	(5YR2/	SAND (SC). 2), fine- to	. a. [Borehol	e adv
55		0.9						.			Grayish brown coarse-grained 0.5 in.). Humu	WITH SCI 18.	sttered people	* (10	0-10.2 F i.d. split sampler	- 500
						ŀ		.		N	0.3 - 4.1 Ft. SAN yellowish brow medium-graine	D (SP).	Moderate		solid ste	m su
SS SS	0.5	0.5		1			-			K,				r	4	
AU				1	1		-	5			1.0-2.9 Ft. Li		• • •		Borehold	
								·			2.9-3.4 Dark 3 moderate yello	ellowish wish bro	brown (10YF) wn (10YR5/4	(4/2) to).	radiolog and gan TMA-E	ically ma-l
								·			3.4-3.6 Ft. Sil	ty. Dus	ky yellowish b	rown	TMA-E Augered	berlin and
SS	1.1	1.0		ł			-	-			(10YR2/2).				Augered gamma- Ft.	logge
ŜS	0.9	0.9					-	10_			3.6-4.1 Ft. Inc coarse-grained pebbles (to 0.5	, poorly in.) of q	y more sorted with sr juartz.	nall		
											4.1 - 5.0 Ft. <u>Silty</u> Dusky yellowis coarse-grained	Sandy h brown	CLAY (CL-M (10YR2/2), f	L). ine- to		
											5.0 - 8.2 Ft. SAN		Clean	{		
					ł		1			11	8.2 - 10.2 Ft. Sill	V CLAY		ale		
	•										brown (5YR5/	2).]		
											Bottom of borshol Borshole backfille	le at 10.: d with s	2 Ft. poils, 10/15/8	7.		
									{ .							
				1												
														· .		
										(]				•		
				{]								
										{[• .	
					1											
															Descript classifics soils by examina	tion visu
			POON; \$1 ; P = P1				ITE			Ц. С.	ribaldi Ave	() (HOLE NO	j24

	G	EO	LOG		RIL	L LO	G	PROJE	СТ	Lios i FUSRAP 1450		
SIT.							COORDIN	TES		FUSKAP 1450	ANGLE FROM HOP	1 1029R RIZBEARING
			ibaldi .			I)	<u> </u>			N 1,836 E 769	Vertical	
EGI 0-			NPLETED			Engel	BNI			MAKE AND MODEL SIZE OVERBURD nuteman Auger 4" 11.) TOTAL DEP
	REC	OVER	(FT./X			SSAMPL	ESEL. TO	P CAS	ING	ROUND EL. DEPTH/EL. GROUND WATER	DEPTH/EL. 1	
AN		1.7/1	75 R WEIGHT	/FALL	ICAS	9	FT IN HO	E: DI	A. /1	NGTH LOGGED BY:		
			N/A				NO			R. M	igues AF	
	<u>ວ</u> ້ມ	<u></u>	≵	PR	ATER	RE			ņ			
Heid.	SAMP. ADU.	R R R R	SAMPLE BLOUS "N" X CORE RECOVERY		ESTS		ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFI		ES ON: ER LEVELS,
	D N N	MPH DR	₩ S S S S S S S S S S S S S	LO33 IN G. P. M	PRESS.	TIME MIN.		Ð	L C L		WATE	ER RETURN, RACTER OF
5₹ 20	6	준 Ŭ 0.7	E . E	<u>ה ר</u>	ña	7 4			C		DRIL	LING, ETC
	1.0	0.7								0.0 - 6.1 Ft. Silty SAND (SM). Dusk brown (5YR2/2) with patches of m reddish brown (10R4/6), fine- to	oderate Bore 0-11	hole advanced .5 Ft. using 3"
SS	1.0	0.5						•		medium-grained.	1.G. S	plit-spoon bler and 4" o.d.
	1.0	0.7					-			1.6-4.5 Ft. Light brown (5YR5/6)	. solid	stem augers.
_	1.0	0.6							1			
S	1.3	1.2						•-		4.8-5.2 Ft. Light brown (5YR5/6) dusky brown patches.		hole was ologically samp
	1.1	1.1								5.2-5.8 Ft. Pale brown (5YR5/2).	[] Ŧĭda	ramma-logged -Eberline, Co
S	2.3	1.9					I			5.8-6.1 Ft. Grayish brown (5YR3)	2). Auge	ered and na-logged to 6
								.		6.1 - 9.8 Ft. SAND (S). Pale yellow: brown (10YR6/2) with silt patches	ah of	
	1.0	1.0					-	10.		6.1 - 9.8 Ft. SAND (S). Pale yellow. brown (10YR6/2) with silt patches brownish gray (5YR4/1) and some yellow brown (10YR6/2).	pale /	
5S	1.0	1.0					-			9.8 - 11.5 ft. CLAY (CL). Pale brow		
							i			(5YR6/2).	/	
										Bottom of borehole at 11.5 Ft. Borehole backfilled with spoils, 10/21,	/87.	
										1		
										· · · · ·	ŀ	
								ļ				
							1					• .
												ription and ification of
											soils	by visual nination.
s :	I = SPL	IT SP	POON; ST	= SHEI	LBY TL	JBE; S	ITE	!			HOLE	
				TCHER;				C	00 6	Saribaldi Ave. (LODI)		1029R

Date BEOWERY (T. 1/3) DORE BORES JAMPLEGEL. TOP CASING BLAND EL. EPTI//EL. GROUND UNTER DPTI//EL. GROUND UNTER DPTI//EL. TOP OF ROCK 3.4/CE G ANDIE R. Migues JPL NONE NONE R. Migues JPL De Statue MATES NONE R. Migues JPL De Statue MATES NONE R. Migues JPL De Statue TESTS ELEV. X B DESCRIPTION AND CLASSIFICATION AND AND CLASSIFICATION AND CLASSIFICATION AND C			EC	log	IC D	RIL	L LO	G	PROJE	СТ		FUSRAP	JOB NO. 14501-		ET NO. OF 1	HOLE NO. 1027R
SECH COPLETED DALLER DOUGLESTID-16-87T G. Engreti BNT DOUGLESTID-16-87T G. Engreti BNT MINUTERDA AUGUST 4 3.4/62 SAMPLE NAMES MEIONT/FALL NORE	SITE		Car	ihaldi	A.v.o. ().	COORDIN	ATES				A			BEARING
09-16-87/10-16-87 G. Engel: BNI Minuteman Auger 4 5.4 10.2 34/62 6 6 6 6 6 7 APLE MMER LEIGHT/ALL Deskin Leff: In MOLE DATA/LENGTH LOOGED DY: N/A NONE R. Migues 9 Bill Carlow NONE R. Migues 9 10.2 Bill Carlow Deskin Leff: In MOLE DATA/LENGTH LOOGED DY: N/A NOTES NOTES NOTES Bill Carlow Deskin Leff: In MOLE DATA/LENGTH LOOGED DY: N/A NOTES NOTES NOTES Bill Carlow Deskin Leff: In MOLE DATA/LENGTH LOOGED DY: NA NOTES NOTES NOTES Bill Carlow Bill Carlow Bill Carlow Bill Carlow NOTES NOTES Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow Bill Carlow	BEGU						<u>(1)</u>	l		DRIL						
3.4/52 61 H ROLE DARING LEFT IN HOLE DIA/LENTH LOGGED BY: R. Migues 92 N/A NONE R. Migues 92 N/A NONE R. Migues 92 R. Dig is in the contraction of the contraction						<u>G.</u>	Engel	; BNI		M		uteman Auger 4"	5.4			10.2
SAULE MAREY MEIGHT/ALL DATED IN MORE DATED LOGOD BY: NONE	CORE				() ICORE	BOXE		ESEL. TO	P CAS	ING	GR		UND WATER	DEPTH	EL. TOP	OF ROCK
B Sign dig in the second sec	SAMP				/FALL	CAS	· · · · · · · · · · · · · · · · · · ·	FT IN HO	LE: DI	A./	LEN	GTH LOGGED BY:	···· · · · · · · · · · · · · · · · · ·	_ _	/	 ວ
So 200 0.0 So 10 0.0								NO	NE				R. Migu	ies	799	
So 200 0.0 So 10 0.0	, , ,	S 2	<u></u>	^m ₂ ^m ≿	PR	ESSU	IRE			8						
So 200 0.0 So 10 0.0		ΨO	- 2 - 2	1- 80 2- 80 2- 80 80 80	mΣ			ELEV.	Ē	Ŧ		DESCRIPTION AND C	LASSIFICA	TION		
So 200 0.0 So 10 0.0	뷣	E N I	MPL ORE	Sol xu	82d	100	WINI		B	1 A A						
88 1.0 0.6 89 1.5 0.6 89 1.5 0.6 85 1.6 0.6 85 0.6 0.6 95 0.7 0.7 85 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 96 0.6 0.6 97 0.7 0.7 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6 98 0.6 0.6	n SS	ອັ 1.0	0.3		- 0	<u>ā</u> č			¥		Ш	0.0 - 4 2 Ft Silty Clayer	RAND (SM-SC	· · · · ·	DRILLI	ING, ETC
SS 1.5 0.6 SS 0.7 0.7 SS 0.6 0.8].		R	Grayish brown (5YR3/2	i), fine- to	·J•	Borehol	e advanced
SS 0.7 0.7 SS 0.6 0.6	SS	1.5	0.6					-	.		N	1.0-3.5 Ft. Dark yellow	rish brown (10)	(R4/2)	i.d. split	-spoon
85 66 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 95 0.6 0.6 96 0.6 0.6 97 0.7 0.6 98 0.7 0.6 98 0.7 0.6 98 0.7 0.6 98 0.7 0.6 99 0.6 0.6 90 0.6 0.6		07	0.7				ľ.		.		N	with streaks of dusky ve	llowish brown	,	using 4"	o.d. solid
2 10 <	SS	0.6	0.6				Í	-			R	A 9 . E A TA BUL CAND (
A 3-5.4 Pt. Decrease in silt content; some ight brown sand (SYRS/4) Bottom of borhole at 5.4 Ft. Borehole backfilled with grout, 10/16/87.	<u>ss</u>	0.6	0.6					-	₽		1	reddish brown (10R4/6)	, fine- to very	e T		
Bottom of Borehole at 5.4 Ft. Borehole backfilled with grout, 10/16/87.												4.8-5.4 Ft. Decrease in	silt content; so 5/4)	ome	and gam	ma-logged berline, Cor
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.				:								Bottom of borehole at 5.4 I Borehole backfilled with gr	Ft. out, 10/16/87.		Ft.	logged to 4.
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.	2															
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.									j							
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.															:	
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.								1							1	
S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.							•									
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.		:														
S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.																
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.				-												
S = SPLIT SPOON; ST = SHELBY TUBE; SITE HOLE NO.										1						
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.															Descript	ion and
S = SPLIT SPOON; ST = SHELBY TUBE: SITE HOLE NO.															classifics	ation of
										ļ						
= DENNISON; P = PITCHER; O = OTHER 99 Garibaldi Ave. (LODI) 1027R								TE	9	9	Ga	nribaldi Ave. (LO	DI))27R

•

.

		EC	DLOG	IC D	RIL	L LO	G	PROJE	CT		FUSRA			JOB NO 14501). si -138	EET NO. 1 OF 1	HOLE NO. 1175R
SIT	E	R.	ook St.	an	מא		COORDI	NATES		N1 4	003 E			•••••••	ŧ	ROM HORIZ	BEARING
BEĞ	JN .	_	MPLETED		-		1		DRIL		902 E		12E	OVERBURDE		rtical CK (FT.)	TOTAL DEPT
			1-25-8			E.D.					le B-57	7	6.5*	10.0			10.0
COR		OVER 5.2/	Y (FT./1 62	() CORI	E BOXE	SISAMPL 5	ESEL. T	OP CAS	SING	GROUNI	EL.	DEPTH/E	L. GROU	ND WATER	DEPT	H/EL. TOP	OF ROCK
SAN			RWEIGHT	T/FALL	CAS		FT IN H	OLE: D	IA./L	ENGTH	LOGGED	<u>¥ /</u> BY:			.	/	
			s./ 30				NC	DNE			<u> </u>	•		David H	<u>arnish</u>	962	-
SAUT DIATE	SAMP. ADV. LEN CORE	SAMPLE REC.	BLOWS "N" X CORE	P. M. LOSS P. M. B. P. M.	WATER TESTS OH ON UN C	RE	ELEV.	DEPTH	GRAPHICS		escrip	TION	and Ci	LASSIFIC	ATION	WATER	ON: LEVELS, Return, Ster of Ing, etc.
ŝŝ	2.0	1.6	5-9-16 17							N 0.0) - 4.9 ft.	Silty GI	RAVEL	Sandy SIL	r,	Borehol	e advanced with 6.5"
55	2.0	0.6	10-16-1 8								0.0-2.5 ft and New gray, bla	:. Silty Brunsw ck, very	GRAVE ick sand dusky r	L, broken h stone; silt i ed.	asalt s dark	o.d. holl auger. Boring I sampled	low stem radiologically
SS	2.0	0.2	5-6	1				- 5.			2.5-4.0 ft gray (10) sand.	:. Sandy $YR6/2)$,	fine- to	light brown very fine-g	ish rained	Black si	berline, Corj lt 4.3-4.4 fically above und, detecte
SS	2.0	2.0	3-6-6-8							Ň	4.0-4.9 ft black in j medium-,	:. SILT, places, v grained	, very da roody st sand.	rk grayish ems, some	brown,	by hand pancak Auger s	with e" probe. ample 4-6 ft 0 ppm in op
SS	2.0	1.8		{						NI	4.3-4.4 ft				_	4 ft. hol	e. sample has
		ļ	10	ļ				10		NL				-grained su		distinct odor.	chemical
]L_	segiment	s .). Greenis) dium-grain gravel, broo			
										5.5	- 10.0 ft. Weak red dark gray laminated	51LT = 1 (5YR5 2 beds; = 1 2-10 n	nd SAN /3) with and is v am thick	D (ML, SP some gray ery fine-gra). and iined,		
											5.5-6.7 ft iron-couid	ie mottli	ng.	•		.	
										`		-		lark grayis) t.	l brown		
											ttom of b rehole ba			t. ils, 11/25/8	57.		
						•										Identific classific soils by examina	visual
			>00N; ST ; P = PI				ITE		A-6		ok St.	. (LC	DI)			HOLE NO	İ75R

		iEC	LOG		KIL					F	USRAP		14501	-138 1		10371
ITE		Gar	ibaldi .	Ave. (LOD	n	COORDIN	TES		N 1 9	52 E 8(17			ROM HORIZ	BEARING
EGU	_		MPLETED			_/			DRILL		ND NODEL	SIZE	OVERBURDE		K (FT.)	TOTAL DE
)-29-8				; BNI		Mi		an Auger		10.7			10.7
ORE		OVER) 3.1/1		S) ICORE	BOXE	SISAMPL	ESEL. TO	P CAS	ING	ground (L. DEP1	'H/EL. GRO 2.0/	UND WATER	DEPTH	VEL. TOP	OF ROCK
ANP			NEIGHT	/FALL	CAS		FT IN HO	LE: DI	A./L	ENGTH IL	OGGED BY:	/			/	•
			N/A				NO						R. Mi	gues	YY I	1
	ວ ພ	<u>;</u> ;	SAMPLE BLOWS "N" X CORE RECOVERY	PR	ATER				0		•		÷ •		1	
DIAH.	SAMP. ADU.	REC			ESTS	5	ELEV.	Ħ	GRAPHICS		CPTPTT			ATTON	NOTES	
ы Б	€ Z	PLE		COSO NI N. M	ലെപ	NIL I		DEPTH	E						WATER	RETURN
記述	ξ L	E S S S S S S S S S S S S S S S S S S S		549	PRES P. S. 1	E E		-	5	~					DRILLI	TER OF Ing, Et
	1.0	0.5				-				0.0 -	1.2 Ft. 8	ty Sandy (CLAY (CL-N	L).		
SS	1.0	0.6					-	,		₩ ₩	edium-grai	a (sr.2/o), ned.	LAY (CL-M	1	- 0-10.7 F	t advance "t. using 3
SS	1.5	0.6						F •		V 0.	5-1.2 Ft. J	Dark reddi	h brown (10	R3/4).	i.d. split sampler	and 4" o.e
ss	1.3	0.8								1.2 -	5.8 Ft. 8	Ddy CLAY	(CL). Dark	·	song ste	m augers.
											ddish brow edium-grai	ned sand.	/, ame- 50			
	0.5	04						₽_			0-3.5 Ft. 1 0R4/6).	Moderate r	eddish brown		Borehol	
SS SS	0.8	0.7						•			•••	Moderate v	ellowish brov	-	i and gam	ically sam ma-logge berline, C
-	1.0	0.8					-			i) -	0YR5/4).				- Augered	l and logged to
	1.0	1.0							2 1		3-5.8 Ft. S pth.	and fracti	on coarsening	with	Ft.	1088en 20
	1.0	1.0						10_		3	7.4 Ft. <u>Bi</u>	TY SAND	(SM).			
							-						vish brown (1	0YR4/2	4	
										•	nd light bro	wn (5YR4	/6), fine-grai	ned.	1	
													dium-graine	d.		
										7.4 -	8.3 ft. <u>CL</u> ddish brow	$\frac{\mathbf{AY}}{\mathbf{n}} \begin{array}{c} (\mathbf{CL}).\\ \mathbf{n} \\ (10\mathbf{R4})6 \end{array}$	Moderate).		1	
	·												5M). Pale 6/2), fine- to	{		
					İ						llowish bro edium-grai	wn (10YR ned.	6/2), fine- to	I		
										8.8 -	10.7 Ft. C	LAY (CL)	. Brownish	тау		
											YR4/1). A t tip.	l quarts pè	bble (1.5") fà	und in		
														J		
						•				Botte	om of boret hole backfil	ole at 10.7 led with sp	'Ft. xils, 10/29/8	7.		
															1	
					1											
															•	
										1				•••		
							1	! 								
								1		ļ						
	i									1					1	
															Descript	ion and
															classification soils by	tion of
										l					examina	
															1	
 \$ =	SPL	LT SP	DON; ST	= SHEL	.BY TU	BE; SI	ITE			<u> </u>					HOLE NO	
			P = PI					0	0 1	•		'e. (LO	(D))37R

ŀ

The second second

Ĩ.

h, marth (2

.

		EC	DLO	GI	CD	RIL		-				FUSRAP 14501-138		1036R
ITE		Gar	ibald	i 4	Ave. ()	ւօր	I)	COORDIN	ATES		R		ROM HORIZ tical	BEARING
EGU					PRILL		<u>-/</u>	4		DRI			K (FT.)	TOTAL DEP
			<u>)-28-</u>					; BNI		M		iteman Auger 4" 10.2		10.2
UKE		JVER 7.8/9		14	, COKE	SUICE	10	ESEL. TO	P CAS	ING	GR	DUND EL. DEPTH/EL. GROUND WATER DEPT	H/EL. TOP	OF ROCK
ANP	_		RWEIG	iKT,	FALL	CA		FT IN HO	LE: DI	IA.7	LEN	TH LOGGED BY:	020	
]	N/A	_				NO	NE			R. Migues	CART	
Ŀ	NW		SAMPLE BLOUS "N" X COBF	,≿	PR	WATER RESSURE				9		• •		
DI G	₹ Ö		1.0		TESTS			ELEV.	DEPTH	GRAPHICS		DESCRIPTION AND CLASSIFICATION	WATER	ON: LEVELS,
	5 II	^슟 К	S D X		COSG IN M.P.M	PRESS.	TIME MIN.		8				WATER	RETURN,
,₹	å'-	<u>S</u> O	1	2	J e	Ĩ.	7 H			C				ING, ETC
55	1.0	0.0					1	-			N	0.0 - 1.1 Ft. Sandy Silty CLAY (CL-ML). Dusky brown (5YR2/2), fine- to medium-grained sand. Humus.	Borehol	e advanced
	1.0	0.6		┛	1]		N		_ i.d. split	"t. using 3" -spoon
20	1.5	0.6									N	1.1 - 2.0 Ft. <u>Silty SAND</u> (SM). Moderate brown (5YR4/4), fine- to medium-grained.	sampler	and 4" o.d. m augers.
SS	2.0	1.5						-	1		N	2.0 - 3.5 Ft. Sandy Silty CLAY (CL-ML). Dusky brown mottled with brownish black	Ч	-
									5.		N	5YR2/1) and moderate brown.		
55	0.2	0.2		=				-	1.		R	3.5 - 5.3 Ft. Silty SAND (SM). Moderate	Borehol radiolog	ically samp
	1.0	1.0		-1					.	4	IN	yellowish brown (10YR5/4), fine- to medium-grained.	TMA-E	ima-logged berline, Co
SS	0.9	0.8		۲						4	N	4.9-5.3 Ft. Dusky yellowish brown (10YR2/2).	Augered gamma-	logged to 7
SS	1.0	1.0						-	1.	-	N	5.3 - 8.5 Ft. <u>Silty SAND</u> (SM). Moderate	ff •	
SS	0.7	0.7						-	10.			brown, fine- to medium-grained.		
												5.5-5.6 Ft. Clayey sone.		
												5.8-6.0 Ft. Dusky yellowish brown specks.		
					1							6.0-6.6 Ft. Dark yellowish brown.		
	:											7.9-8.4 Ft. Dark yellowish brown.		
									ł			8.4-8.5 Ft. Moderate reddish brown (10R4/6).		
												8.5 - 8.7 ft. <u>SAND</u> (SP). Pale brown (5YR5/2), line- to coarse-grained.		
												8.7 - 10.2 Ft. <u>CLAY</u> (CL). Moderate reddish brown.		
												Bottom of borehole at 10.2 Ft. Borehole backfilled with spoils, 10/28/87.		
												• •		
				.					1					
						:								
						:		-					Descript	
						i							soils by examina	
					= SHEL			ITE		<u> </u>			HOLE NO	
*	UENN	I SOR;	P =	P11	CHER;	v = C	ITHER		5	19	Uí	ribaldi Ave. (LODI)	1 1)36R

	G	EC	LC)G		DRIL	L LC)G	PROJE	CT	FUSRAP		JOB NO 14501	-	SHEET NO. 1 OF 1	HOLE NO
SIT	99				Ave.		DI)	COORDIN			N 1,812 E 85			ANGLE V	FROM HORIZ	BEARING
BEG	# 28-1				DRIL 7		Free	l; BNI			L MAKE AND MODEL	SIZE	OVERBURDEN		ROCK (FT.)	TOTAL I
						E BOX	ESISAMP	LESEL. TO	P CAS	ING	inuteman Auger GROUND EL. DEPTH		11.3		PTH/EL. TOP	OF ROCI
	5	.4/!	93				12	2				-			/	
SAM	LE N		R ME N/A		/FALL		SING LI	eft in ho NO		IA./I	ENGTH LOGGED BY:		R. Mi	gues	290	-
8.	2 m					WATE		1	<u> </u>		· .					
SAND DIAN.	SAMP. AD	SAMPLE REC	SAMPLE BLOWS "N	X CORE	LOSS LN A. P. M	TEST SEL SEL SEL SEL SEL SEL SEL SEL SEL SEL	S BUIL VII VII VII VII VII	ELEV.	DEPTH	GRAPHICS	DESCRIPTIO	N AND C	LASSIFIC	ATIC	NOTES WATER WATER CHARAC DRILL	
8 5	1.0										0.0 - 2.7 Ft. <u>Silt</u> Very dusky re moderate redd medium-grain	r Sandy C d (10R2/2 ish brown ed sand.	LAY (CL-M) with mottl (10R4/6) fi	IL). ling of ne- to	11.C. 1011	t. using
	1.4							•			0.0-1.0 Ft. H 1.0-2.0 Ft. B		ack (5YR2/:	1) in	sampler solid ste	and 4" (m auger
L	0.9			<u>`</u>					δ.		iarge clumps. 1.0-2.7 Ft. In Brunswick Fo		• •	•	- Borehol	t WAS
:	1.0				٤						2.7 - 4.2 Ft. Cla Moderate brow medium-grain	vn (SYR4)			TMA-E	ima-log berline,
SS SS	1.0 0.4 1.0												AND in brown	<u> </u>	Augered gamma- Ft.	logged 1
	0.6							.	10.		(10YR4/2), 11 5.3-5.4 Ft. M (10YR5/4).					
											5.4 - 5.6 Ft. <u>SIL</u> (N5).	T (ML). 1	Medium gray	1		
											5.6 - 5.9 Ft. Silt brown (5YR5) sand.	y <u>SAND</u> (2), fine- t	SM). Pale o medium-	rained	1	
											5.9 - 7.7 Ft. SAL brown (10) Re					
₽ - - - - -				ļ							7.7 - 8.1 Ft. CL. brown (5YR4) dark gray (N3) silt.		-	of	
											8.1 - 8.6 Ft. SA 7.7 Ft. 8.6 - 11.3 Ft. C					
											Bottom of hole as					
											Borshole backfille		oi ls, 10/2 8/8	87.		
														-	·	
															Descript classific soils by examina	ation of visual
					= Shi Tcher;		UBE; S OTHER	SITE	ç	99	Garibaldi Av	e. (LO	DI)		HOLE NO	

	G	EC	LOG	IC D	RIL	L LO	G	PROJE	CT		FUSRAP	•••••	JOB NO		HEET NO. 1 OF 1	HOLE NO.
IT			ak St	(1.01			COORDIN	ATES						ANGLE	FROM HORIZ	1176R BEARING
EG	JN		DOK St. MPLETED			·	<u> </u>			_	.910 E 85	2 SIZE	OVERBURDEN		rtical CK (FT.)	TOTAL DEP
			1-30-8			E.D.					ile B-57	6.5"	10.0		~~ (11.)	10.0
ORI				CORE	BOXE		ESEL. TO	P CAS	ING	GROUI	DEL. DEPTH	I/EL. GROU	ND WATER	DEPI	TH/EL. TOP	
AM		AMME	DO R WEIGHT	/FALL	CAS	5 ING LE	FT IN HO	LE: DI	A./L	ENGTI	LOGGED BY:				/	
			s./ 30				NO					· •	D. Ha	nish		
SAND. DIAM.	AMP. ADU. LEN CORE	MPLE REC.	BLOWS "N" * CORE	LOSS IN G.P.M Jar	ATEFU ESSU ESTE SSUS H.S.S.	RE	ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTIO	n and C	LASSIFIC	ATION	WATER CHARA	LEVELS, RETURN, CTER OF
ñ ^a SS	2.0	1.5	0-1-10	- 0	<u>ā</u> r			{		Ō	0 - 4.5 Ft. San	dy SILT. S	ILT /ML. C	DL).		ING, ETC e advanced
SS	2.0	0.4	14 5-11-7 4			•	•				0.0-1.0 Ft. Si brown (10YR4 1.0-3.0 Ft. S)	andy SILT, 1/4), some	dark yellow gravel. wd and gray	rish	0-10 Ft o.d. holi auger. 2" asphi Sampleo	using 6.5 low-stem alt at surface and
SS	2.0	1.5	1-2-8 16			·	-	5_		-	brown (10YR) basalt gravel. 3.0-4.5 Ft. SI			en	2.0-4.0	logged by berline, Inc Ft. Sample ger flights.
SS	2.0	1.3	12-12 9-10				-				5 - 5.3 Ft. <u>Grav</u> gray (5Y4/1), bedded. Broo	velly SANT	(SW). Da	rk ound,	1	
SS	2.0	1.9	4-8-12 20							5	3 - 10.0 Ft. SI Sand is very fi and silt are in	T and SA	ND (SP, M	L).	<i>,</i>	
					•		-				thick. 5.3-6.2 Ft. St				r	
											6.2-8.7 Ft. S yellowish brow	LT, brown	•			
											8.7-10 Ft. SI gray (5YR4/2	LT and SA) and gray	ND, dark re (10YR5/1).	ddish]]	
										B	ottom of boreho orehole backfill	ole at 10.0 f ad with spo	it. il s, 11/3 0/8	37.		
:																
													,			
					-											
															Identific classific	ation and
															soils by examina	visual
			POON; ST				ITE			D .		00%			HOLE NO	
	DENN	I SON ;	P = PI	TCHER;	0 = 0	THER				Bro 10	ook St. (L	(ועט.				176R

I

L