Formerly Utilized Sites Remedial Action Program (FUSRAP)

ADMINISTRATIVE RECORD

for Maywood, New Jersey

U.S. Department of Energy

0489-0613.1

Э

063982

DOE/OR/20722-256

Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-81OR20722

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 14 LONG VALLEY ROAD

Lodi, New Jersey

September 1989

Bechtel National, Inc.

0489-0620.8

DOE/OR/20722-256

RADIOLOGICAL CHARACTERIZATION REPORT

ĩ

٢.

5

FOR THE RESIDENTIAL PROPERTY AT

14 LONG VALLEY ROAD

LODI, NEW JERSEY

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

Ву

N. C. Ring, D. J. Whiting, and W. F. Stanley Bechtel National, Inc. Oak Ridge, Tennessee

Bechtel Job No. 14501

LIST OF FIGURES

S ...

÷---

с÷

i, ...

Figure	Title	<u>Page</u>
1-1	Location of Lodi Vicinity Properties	2
1-2	Location of 14 Long Valley Road	4
4-1	Borehole Locations at 14 Long Valley Road	16
4-2	Surface and Subsurface Soil Sampling Locations at 14 Long Valley Road	18
4-3	Gamma Exposure Rate Measurement Locations at 14 Long Valley Road	20
5-1	Areas of Surface Contamination at 14 Long Valley Road	22
5-2	Areas of Subsurface Contamination at 14 Long Valley Road	25

LIST OF TABLES

٩

<u>Table</u>	Title	<u>Page</u>
2-1	Summary of Residual Contamination Guidelines for the Lodi Vicinity Properties	10
5-1	Surface and Subsurface Radionuclide Concentrations in Soil for 14 Long Valley Road	27
5-2	Downhole Gamma Logging Results for 14 Long Valley Road	30
5-3	Gamma Radiation Exposure Rates for 14 Long Valley Road	34

iv

ABBREVIATIONS

cm	centimeter
cm^2	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h i i	hour
in.	inch
km ²	square kilometer
L	liter
L/min	liters per minute
m	meter
m^2	square meter
MeV	million electron volts
µR/h	microroentgens per hour
mi	mile
mi ²	square mile
min	minute
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
pCi/g	picocuries per gram
pCi/L	picocuries per liter
WL	working level
yd	yard
yd ³	cubic yard

<u>د</u>__ ਼ੁ ---ن< --**~**.... y **`** ,----، در ۲۰ ۱۹۹۰ ۱۹۹۰ ۱۹۹۰ ۱۹۹۰ ۱۹۹۰ . ----**~**~ ____ -----· -- · · ----

v

1.0 INTRODUCTION AND SUMMARY

This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 INTRODUCTION

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

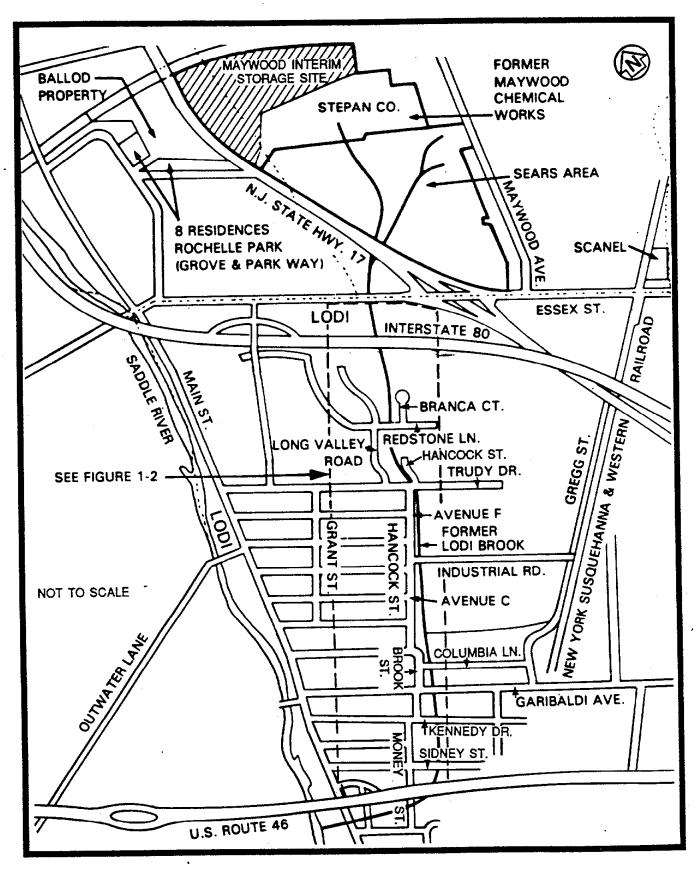
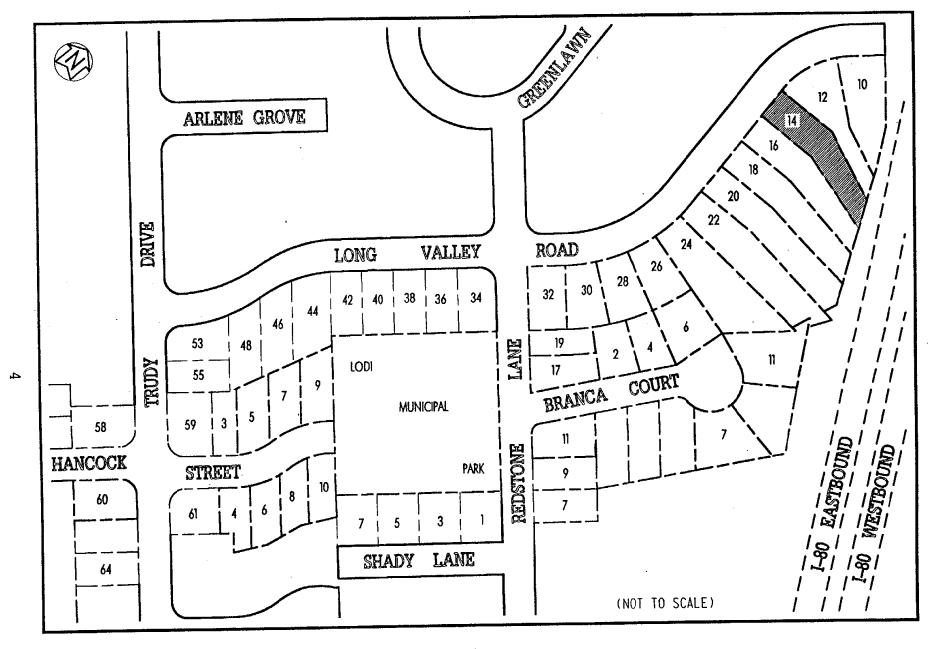



FIGURE 1-1 LOCATION OF LODI VICINITY PROPERTIES

M38WMS72.DGN

FIGURE 1-2 LOCATION OF 14 LONG VALLEY ROAD

A THE PROPERTY OF A REPORT OF A DECKER OF

considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property indicated surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 0.30 m (1.0 ft).

Exterior gamma radiation exposure rates ranged from 5 to 49 μ R/h, including background. No indoor measurement was obtained because access to the residence was denied by the property owner.

No interior measurements for radon and its progeny (radon and thoron daughters) could be obtained.

All data tables for this property appear at the end of this report.

1.4 CONCLUSIONS

Ľ

:...

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 14 Long Valley Road. This contamination is both surface and subsurface contamination. The subsurface contamination ranges from depths of 15.2 cm (6.0 in.) to 0.30 m (1.0 ft). Near-surface gamma measurements indicated an isolated area of surface contamination indicated near the southeast corner of the residence. The total affected area is estimated to be

approximately 10 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

6

......

÷.,

2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

ſ

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are typically found in monazite sands, which also contain

thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

January 1981--The Nuclear Regulatory Commission directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a $10.3 - \text{km}^2$ (4-mi²) aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984 -- In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its

"scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

September 1986--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

2.2 REMEDIAL ACTION GUIDELINES

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

TABLE 2-1 SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL GUIDELINES

Radionuciide	Soli Concentration (pCl/g) Above Background ^{a,b,c}
Radium-226 Radium-228 Thorium-230 Thorium-232	5 pCi/g when averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over any 15-cm-thick soil layer below the surface layer.
Other Radionuclides	Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

STRUCTURE GUIDELINES

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL^d. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 μ R/h.

Indoor/Outdoor Structure Surface Contamination

	Allowable Surface Residual Contamination ^e (dpm/100 cm ²)			
Radionuciide ^f	Average ^{g,h}	Maximum ^{h,l}	Removable ^{h.j}	
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	100	300	20	
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-12C, I-131, I-133	1,000	3,000	200	
U-Natural, U-235, U-238, and associated decay products	5,000 a	15,000 α	1,000 α	
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 B - γ	15,000 8 - γ	1,000 β - γ	

TABLE 2-1 (CONTINUED)

- ^aThese guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").
- ^bThese guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.
- ^CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.
- ^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.
- ^eAs used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.
- Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.
- ⁹Measurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.
- ^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

The maximum contamination level applies to an area of not more than 100 cm².

¹The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 SUBCONTRACTOR TRAINING

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 SAFETY REQUIREMENTS

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

4.1 FIELD RADIOLOGICAL CHARACTERIZATION

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this property.

4.1.1 Measurements Taken and Methods Used

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling 13 boreholes (Figure 4-1), using either a 7.6-cm- (3-in.-) or 15.2-cm-(6-in.-) diameter auger bit, and gamma logging them. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration

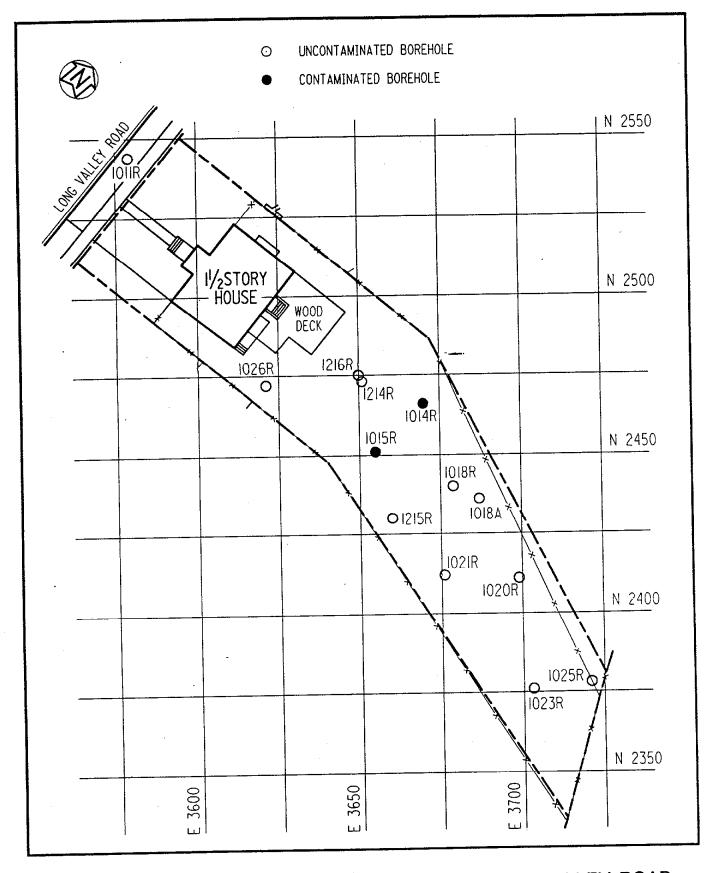


FIGURE 4-1 BOREHOLE LOCATIONS AT 14 LONG VALLEY ROAD

M38W9848.DGN

of the contamination. The gamma-logging data were reviewed to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 Sample Collection and Analysis

.....

1

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and 8), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at seven locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from 15 locations (Figure 4-2) using a 7.6-cm (3.0-in.) outside diameter (0.D.) split-spoon sampler mounted on a tripod or attached to a truck mounted auger stem. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the

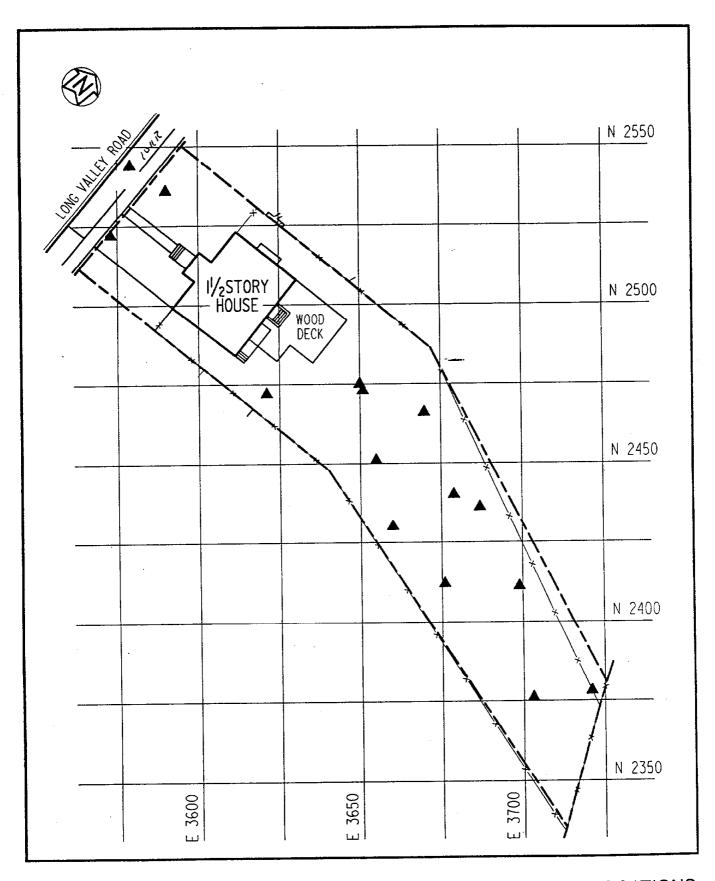


FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS AT 14 LONG VALLEY ROAD

M38W9848.DGN

residence. Because access to the residence was denied by the owner, a radon measurement could not be obtained to verify the presence of contaminated material under the residence and to estimate potential occupational exposures during future remedial actions.

Indoor measurements for radon progeny (radon and thoron daughters) could not be obtained.

Exterior gamma exposure rate measurements were made at 13 locations throughout the property grid system. To obtain exterior measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. A conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) The locations were determined to be above the ground. representative of the entire property.

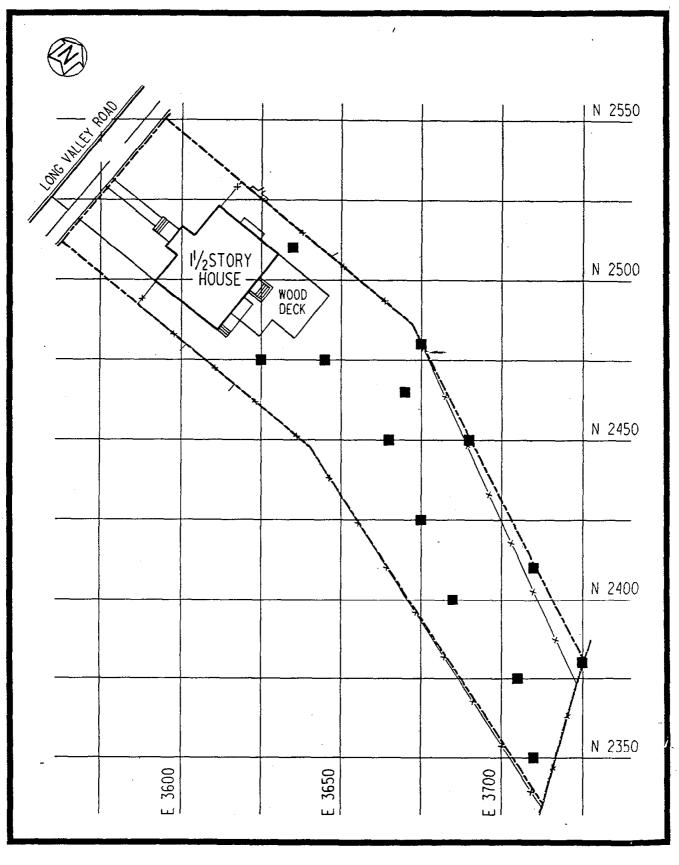


FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 14 LONG VALLEY ROAD

÷., .

5.0 CHARACTERIZATION RESULTS

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

Near-surface gamma radiation measurements on the property ranged from 5,000 cpm to approximately 88,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. Areas of surface contamination are shown in Figure 5-1.

Surface soil samples [depths from 0.0 to 15.2 cm (6.0 in.)] were taken at seven locations on the property (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from less than 4.5 to less than 10.3 pCi/g for uranium-238, from less than 1.5 to 14.4 pCi/g for thorium-232, and from less than 0.9 to 1.7 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 exceeded DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of 14.4 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in concentrations that are quantitative with the instruments and techniques used. The "less than" value represents the lower bound of the

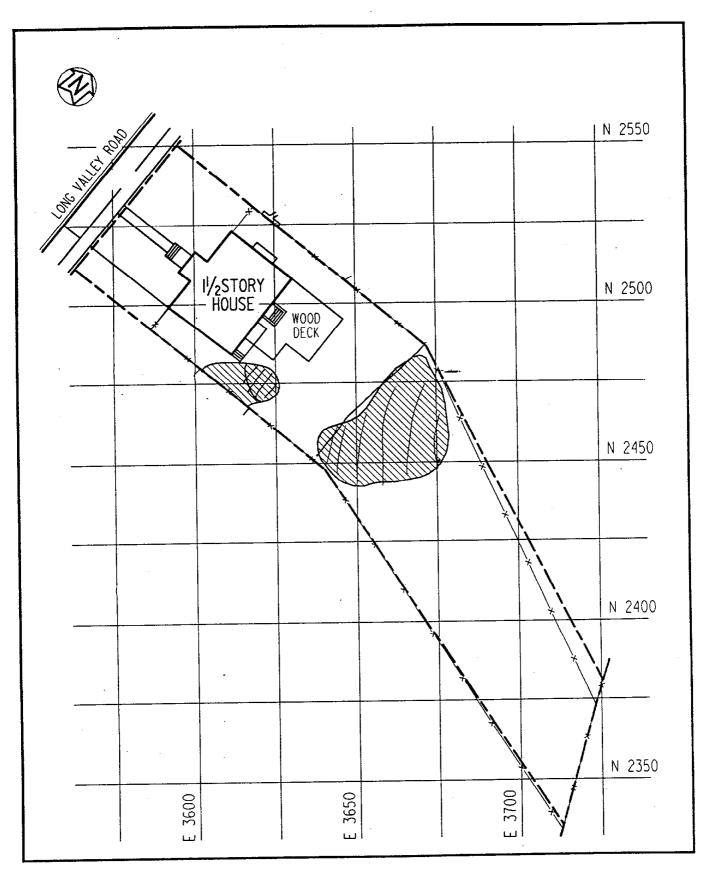
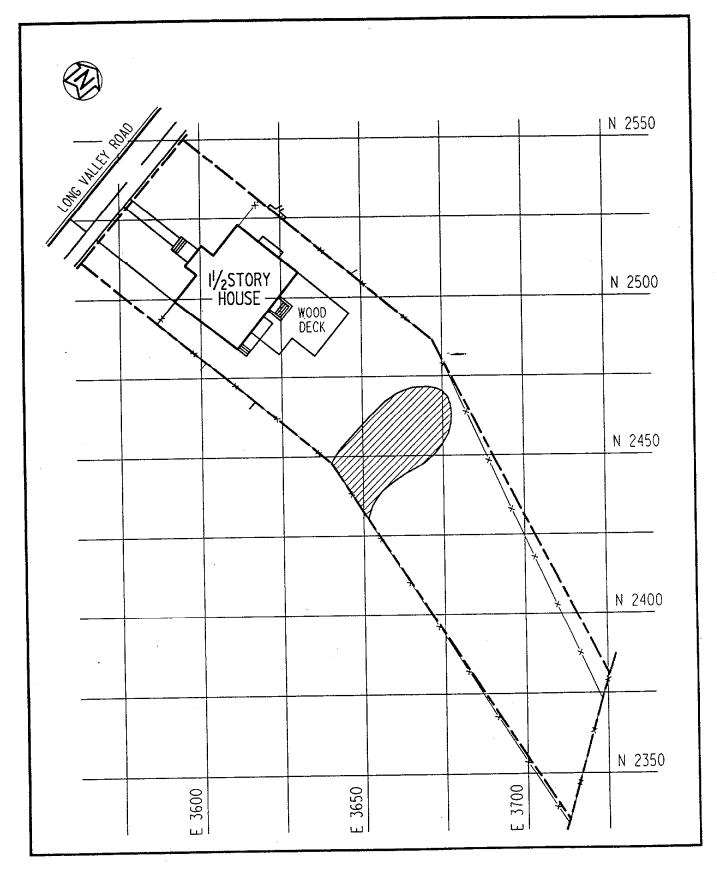


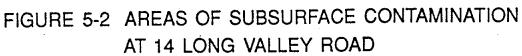
FIGURE 5-1 AREAS OF SURFACE CONTAMINATION AT 14 LONG VALLEY ROAD

M38W9848.DGN

quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (\pm) , which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The Uncertainty term has an associated confidence level of 95 percent.

1.11


Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE guideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower guideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than Therefore, these radionuclides (considered thorium-232. secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its guideline Parameters selected for the thorium-232 analyses also level. provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below guidelines. However, because of the relatively low gamma photon abundance of uranium-238, many of the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these concentrations


are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. (A The results in Table 5-2 showed a range from 7,000 cpm to 45,000 cpm: A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples indicated uranium-238 concentrations ranging from 1.7 to 32.8 pCi/g, thorium-232 concentrations ranging from less than 0.8 to 8.7 pCi/g, and radium-226 concentrations ranging from less than 0.5 to less than 2.1 pCi/g.

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist of surface contamination and subsurface contamination at depths ranging from 15.2 cm (6.0 in.) to 0.30 m (1.0 ft). The areas of subsurface contamination are shown in Figure 5-2.

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain. The contamination on this property is similar to contamination found on residential properties in close proximity to this property.

M38W9848.DGN

---- :

It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 14 Long Valley Road. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

Indoor measurements for radon and its progeny (radon and thoron daughters) could not be obtained because access to the residence was denied by the owner.

Exterior gamma radiation exposure rate measurements ranged from 5 to 49 μ R/h, including background. These results can be found in Table 5-3.

Assuming the indoor exposure rate is equivalent to the average exterior exposure rate of 13 μ R/h, and assuming the resident remains on the property every hour of the year, a yearly dose of 35 mrem could be expected (after subtracting average background of 9 μ R/h; Ref. 10). The DOE guideline is 100 mrem/yr above background.

Based on the above information, the exposure rates and doses at this property are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the United States and are often significantly higher than average background for this area.

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 14 LONG VALLEY ROAD

Pa	αe	1	of	3

Coord	linates ^a	Depth				<u>(pCi/g ±</u>	<u>2 sigma</u>	<u>1)</u>
East	North	(ft)	Urai	nium-238	Radi	lum-226	Thoi	ium-232
3573	2522	0.0 - 1.0	<	5.6	<	1.4	<	2.4
3573	2522	1.0 - 2.0	<	2.4	<	0.8	<	0.9
3573	2522	2.0 - 3.8	<	2.4	<	0.5	<	0.8
₀ [₩] 3579	2544	0.0 - 1.0	<	5.0	<	0.9	<	2.2
3579	2544	1.0 - 2.0	` <	4.2	<	0.7	<	1.4
3579	2544	2.0 - 3.3	<	3.3	<	0.7	<	1.3
3579	2544	3.3 - 3.7	<	3.4	<	0.7	<	1.2
3579	2544	4.5 - 5.2	<	2.7	<	0.7	<	1.0
3579	2544	5.2 - 6.0	<	2.8	<	0.6	<	1.1
3579	2544	6.0 - 7.4	<	2.8	<	0.6	<	0.9
3579	2544	7.4 - 9.0	<	2.4	<	0.5	<	0.8
3579	2544	9.0 - 9.5	<	3.5	<	0.7	<	1.2
3579	2544	9.5 - 10.0	<	2.8	<	0.7	<	0.9
3579	2544	10.0 - 10.5	<	4.7	<	1.3	<	1.9
3579	2544	10.5 - 11.2	<	1.8	<	0.5	<	0.8
3579	2544	11.2 - 11.5	<	6.4	<	1.4	<	1.7
3590	2536	0.0 - 1.0	<	7.4	<	1.6	<	2.8
3590	2536	1.0 - 2.0	<	4.6	<	0.8	<	1.4
3590	2536	2.0 - 3.5	<	3.2	<	0.8	<	1.3
3621	2472	0.0 - 1.0	<	4.1	<	0.9	<	1.4
0 ¹ ∿ 3621 3621	2472	3.5 - 4.5	<	4.2	<	1.1	<	1.2
3621	2472	7.5 - 8.0	<	2.4	<	0.7	<	1.0

(

ĺ

(continued)

				(continued)		1
				50 pCile	9	.C. 5 \$1/19
	<u>Page 2</u>	<u>of 3</u>	<u></u>	······································		
	Coordi	natesa	Depth	Concentra	ation (pCi/g ± 2	sigma)
	East	North	(ft)	Uranium-238	Radium-226	Thorium-232
	3650	2475	0.0 - 1.0	< 5.6	< 1.4	< 2.3
Ň	3650	2475	3.0 - 4.0	< 4.3	< 1.0	< 1.8
11,-	3650	2475	6.0 - 7.0	< 3.5	< 0.8	< 1.2
	3650	2475	7.0 - 8.0	< 4.5	< 1.0	< 1.6
	3651	2473	0.0 - 0.5	< 5.4	< 1.4	< 2.4
		2473	3.0 - 5.0	< 4.0	< 1.0	< 1.3
12121	3651	2473	5.0 - 7.0	< 2.6	< 0.5	< 0.9
1-	3651	2473	7.0 - 8.5	< 3.7	< 0.8	< 1.1
	3651	2473	8.5 - 9.5	< 3.2	< 0.7	< 1.0
	3655	2451	0.0 - 0.5	< 10.3	< 1.7	14.4 ± 2.4
1015	3655	2451	0.0 - 1.0	< 5.1	< 1.1	8.7 ± 1.2
/º/`	3655	2451	2.0 - 3.3	< 5.3	< 1.2	< 1.6
	3655	2451	4.0 - 5.5	< 2.8	< 0.6	< 1.2
	3655	2451	5.5 - 6.0	< 5.5	< 1.5	< 2.1
1	3660	2430	0.0 - 0.5	< 7.0	< 1.5	< 2.2
Mis	3660	2430	2.0 - 3.0	< 4.7	< 1.0	< 1.6
•	3660	2430	3.0 - 4.0	< 3.0	< 0.6	< 1.2
	3660	2430	5.0 - 6.0	< 3.5	< 0.7	< 1.1
	3670	2466	0.0 - 1.0	32.8 ± 14.2	1.7 ± 0.6	7.8 ± 1.5
、		2466	1.0 - 2.0	< 2.0	0.9 ± 0.3	4.0 ± 2.5
	3670	2466	2.0 - 2.8	< 2.0	0.7 ± 0.4	1.3 ± 0.2
	3670	2466	5.5 - 7.3	< 2.0	0.7 ± 0.1	1.3 ± 0.5
	3670	2466	7.0 - 8.0	< 2.0	0.5 ± 0.2	1.2 ± 0.4
	3670	2466	8.0 - 12.0	< 2.0	0.8 ± 0.3	1.9 ± 0.1 1.2 ± 0.6
	3670	2466	12.0 - 13.0	1.7 ± 1.7	0.8 ± 0.4	1.2 ± 0.6

(continued)

Page 3 of 3

	Coord	linates ^a	Depth		Concent	ration	(pCi/q ±	2 sigma	a)
	East	North	(ft)	Urai	nium-238		um-226		rium-232
2	3676	2412	0.0 - 0.5	<	5.0	<	1.1	<	1.5
1.52 ×	3676	2412	2.0 - 3.2	<	4.0	<	0.9	<	1.7
	3676	2412	4.7 - 5.0	<	4.5	<	0.8	<	1.4
	3679	2440	0.0 - 1.0	<	3.6	<	1.Ó	<	1.6
15	3679	2440	2.0 - 2.8	<	3.7	<	1.0	<	1.4
1013	3679	2440	2.8 - 3.4	<	2.1	<	0.6	<	0.9
•	3679	2440	3.4 - 3.6	<	2.2	<	0.5	<	0.9
	3679	2440	3.6 - 3.8	<	4.9	<	1.2	<	1.6
	3681	2436	0.0 - 0.5	<	8.1	<	2.1	<	2.9
	3681	2436	2.0 - 3.0	<	2.9	<	0.7	<	1.1
	3681	2436	3.0 - 3.5	<	4.9	<	1.1	<	1.5
	3699	2411	0.0 - 0.5	<	4.5	<	0.9	<	1.5
1070	3699	2411	2.0 - 2.7	<	2.5	<	0.8	<	1.1
19	3699	2411	2.7 - 3.0	<	4.6	<	1.1	<	1.5
	3699	2411	4.5 ~ 5.8	<	1.9	<	0.6	<	0.8
^	3703	2376	0.0 - 1.0	<	6.8	<	1.6	<	2.1
10 ² 7	3703	2376	2.0 - 3.5	. <	4.5	<	0.9	<	1.4
10	3703	2376	4.3 - 5.2	<	7.4	<	1.6	<	2.2
í	3721	2378	0.0 - 0.5	<	4.5	<	1.3	<	1.5
. 25	3721	2378	2.0 - 2.5	<.	4.6	<	1.1	<	1.3
JO	3721	2378	3.5 - 4.5	<	3.3	<	0.7	<	1.0
	<u> </u>						·····		

^aSampling locations are shown in Figure 4-2.

DOWNHOLE GAMMA LOGGING RESULTS

FOR 14 LONG VALLEY ROAD

Page 1 of 4

:

ί

٠.

Coord	linates ^a	Depthb	Count Rate ^C
East	North	(ft)	(cpm)
<u>Borehole</u>	<u>= 1011R</u> ^d		
3579	2544	0.5	9000
3579	2544	1.0	10000
3579	2544	1.5	11000
3579	2544	2.0	11000
3579	2544	2.5	10000
3579	2544	3.0	10000
3579	2544	3.5	10000
3579	2544	4.0	8000
3579	2544	4.5	8000
3579	2544	5.0	8000
3579	2544	5.5	7000
3579	2544	6.0	7000
3579	2544	6.5	7000
<u>Borehol</u>	<u>e 1026R</u> d		
3621	2472	0.5	11000
3621	2472	1.0	12000
3621	2472	1.5	12000
3621	2472	2.0	12000
3621	2472	2.5	13000
3621	2472	3.0	12000
3621	2472	3.5	12000
3621	2472	4.0	13000
3621	2472	4.5	12000
3621	2472	5.0	10000
<u>Borehol</u>	<u>e 1216R</u> d		
3650	2475	0.5	10000
3650	2475	1.0	13000
3650	2475	1.5	12000
3650	2475	2.0	11000
3650	2475	2.5	12000
3650	2475	3.0	5000
3650	2475	3.5	12000
3650	2475	4.0	12000
3650	2475	4.5	12000
3650	2475	5.0	13000

(continued)

Coordina	tosa	Depth ^b	Count Rate ^C
East	North	(ft)	(cpm)
Borehole 12	16R (cont	inued) ^d	
3650	2475	5.5	12000
3650	2475	6.0	11000
3650	2475	6.5	12000
3650	2475	7.0	11000
Borehole 12	<u>14R</u> d		
3651	2473	0.5	12000
3651	2473	1.0	13000
3651	2473	1.5	13000
3651	2473	2.0	18000
3651	2473	2.5	11000
3651	2473	3.0	11000
3651	2473	3.5	11000
Borehole 10	15R ^d		
3655	2451	0.5	29000
3655	2451	1.0	20000
3655	2451	1.5	15000
3655	2451	2.0	13000
3655	2451	2.5	12000
3655	2451	3.0	11000
3655	2451	3.5	11000
3655	2451	4.0	11000
3655	2451	4.5	12000
3655	2451	5.0	12000
Borehole 12	2 <u>15R</u> d		
3660	2430	0.5	7000
3660	2430	1.0	8000
3660	2430	1.5	7000
3660	2430	2.0	13000
3660	2430	2.5	16000
3660	2430	3.0	7000
3660	2430	3.5	8000
3660	2430	4.0	9000
3660	2430	4.5	8000

TABLE	5-2
-------	-----

- 4	۰.	~	~	-	-	•	-	۰.	\sim	~	۰.
- 2					t	1		LĀ	-	L.	
- 1		-	-		-	_		-	_	_	

. _____

Coordi	nates ^a	$\tt Depth^b$	Count Rate ^C
East	North	(ft)	(cpm)
Borehole	<u>1014R</u> d		<u> </u>
3670	2466	0.5	36000
3670	2466	1.0	45000
3670	2466	1.5	28000
3670	2466	2.0	17000
3670	2466	2.5	16000
3670	2466	3.0	13000
3670	2466	3.5	12000
3670	2466	4.0	12000
3670	2466	4.5	12000
3670	2466	5.0	13000
3670	2466	5.5	13000
3670	2466	6.0	13000
Borehole	<u>1021R</u> d		
3676	2412	0.5	11000
3676	2412	1.0	11000
3676	2412	1.5	11000
3676	2412	2.0	11000
3676	2412	2.5	12000
3676	2412	3.0	11000
3676	2412	3.5	11000
<u>Borehole</u>	<u>1018R</u> d	• .	
3679	2440	0.5	11000
3679	2440	1.0	12000
3679	2440	1.5	12000
3679	2440	2.0	11000
3679	2440	2.5	11000
<u>Borehole</u>	<u>1020R</u> d		
3699	2411	0.5	12000
3699	2411	1.0	12000
3699	2411	1.5	12000
3699	2411	2.0	12000
3699	2411	2.5	11000
3699	2411	3.0	11000
3699	2411	3.5	11000
3699	2411	4.0	11000

TABLE 5-2

100	-++	~ ~ ~	A١.
(co	πτι	nue	a)

Coord	<u>inates^a</u>	Depth ^b	Count Rate ^C
East	North	(ft)	(cpm)
Borehole	<u>1023R</u> d		
3703	2376	0.5	12000
3703	2376	1.0	12000
3703	2376	1.5	13000
3703	2376	2.0	13000
3703	2376	2.5	12000
3703	2376	3.0	11000
3703	2376	3.5	11000
3703	2376	4.0	12000
Borehole	1025R ^d		
3721	2378	0.5	11000
3721	2378	1.0	11000
3721	2378	1.5	11000
3721	2378	2.0	10000
3721	2378	2.5	11000
37.21	2378	3.0	10000

^aBorehole locations are shown in Figure 4-1.

^bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

CInstrument used was 5.0- by 5.0-cm
(2- by 2-in.) thallium-activated sodium
iodide gamma scintillation detector.

dBottom of borehole collapsed.

TABLE 5-3

GAMMA RADIATION EXPOSURE RATES

Coord	inatesa	Rateb
East	North	(µR/h)
3625	2475	9
3635	2510	10
3645	2475	5
3665	2450	26
3670	2465	49
3675	2425	6
3675	2480	28
3685	2400	4
3690	2450	
3705	2375	5
3710	2350	5
3710	2410	7
3725	2380	5

FOR 14 LONG VALLEY ROAD

^aMeasurement locations are shown in Figure 4-3.

^bMeasurements include background.

REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
 - 2. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.

1 -

- Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> <u>Chemical, Maywood, New Jersey</u>, November 1983.
- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area, Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- 7. Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- 8. Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 14 Long Valley Road (LJ070)</u>, Lodi, New Jersey, ORNL/RASA-88/19 (DRAFT), Oak Ridge, Tenn., April 1988.

36

- 9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.
- 10. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

I

	G	ΕO	LOG	IC D	RILI	L LO	G	PROJEC	T	1	USRAP			-138 1		HOLE NO. 1011F
SITE			\$7-11.		(T ^)	<u> </u>	COORDINA	TES		N 0 7		70			OM HORIZ	BEARING
			Valle MPLETED			<u>))</u>	1			N 2,54	A E 3,5	19 ISIZE	OVERBURDEN	Vert	(ET.)	TOTAL DEP
			-29-8		_	Engel	; BNI	ſ			an Auger	4"	11.5			11.5
ORE			(FT./%	CORE	BOXE		ESEL. TO	P CASI	NG	GROUND	EL. DEPTH	I/EL. GRC	UND WATER	DEPTH	/EL. TOP	OF ROCK
AMPI		.4/6	54 WEIGHT	/FA11			FT IN HOI	F. DI	A /ł	FNGTH	LOGGED BY:				/	
nrir i	***		N/A	/ nee			NOI			LING111			R. Mi	gues	•	
ų.	<u>.</u>	01.			ATE				6			·			T	
DIAM.	V. ADU.	LE RE E REC	SAMPLE BLOWS "N" X CORE RECOVERY		ESSU ESTS	5	ELEV.	DEPTH	GRAPHICS	E DI SAMPLE	SCRIPTIO	N AND	CLASSIFIC	ATION		ON: LEVELS RETURN
影	SAMP.	COR	S S S S S S S S S S S S S S S S S S S	SUL NI NI NI NI NI NI NI NI NI NI NI NI NI	PRES P. C.	HINE MIN.	•	Ω	GR							NG, ET
	1.0	0.5						-		0.0	4.0 Ft. <u>SII</u> rown (10YR	T (ML). 3/4) with	Dark reddish streaks of mo f brick. (FIL)	derate		e advance t. using 3
SS SS		0.7		-				-					eddish brown	•	i.d. split sampler	and 4" o.e m augers.
S VU		0.4					-	-		-		the CANT	(\$M)		-	48.513.
s	0.7	0.5				4	1	5_		4.0	- 11.5 Ft. <u>51</u> Aoderate red nedium-grain	dish brow	(SM). n. Very fine-	to	Borehol	e was
S	$\frac{0.8}{1.4}$	0.8		-				-			iculum-gran	- <u></u> -			radiolog	ically san nma-logge
	1.0							-			.0-7.4 Ft. P	ale brown	(5YR5/2).		TMA-E	berline, C
s	τ.p	0.0						-								
S	0.5 0.5	0.4						- 10_								
S	0.5 0.5 0.7	0.5 0.7 0.3						-			0.0-11.5 Ft. Brownish gra		i sand conter 1) clumps.			lapsed to nma-scar t.
	0.0	0.0								Bor	tom of boring ehole backfill he surface, 9	ed with g	ft. rout from 7.0	Ft. to		
												•				
]		1							
				1												
				1					1							
															classific	
															soils by examina	
	601		POON; S	T - 645											HOLE NO	
			; P = P					14	4 L	.ong	Valley I	Rd. (L	ODI)			011R

1

1

11). |

ITE 14 I BEGUN 10-16- CORE REC	LODG CO 871(COVERI 6.9/8	(FT./X 36 WEIGHT	y Rd. DRILL 7 () CORE	(LOI ER G. BOXE	DI) Engel S SAMPL 9	G COORDIN ; BNI ESEL. TO FT IN HO	DP CASI	DRIL M ING	L F In GR	¥/	21 SIZE 4" H/EL. GROU	OVERBURDEN 8.0 ND WATER	-138 1 ANGLE FR Ver ROC DEPTH	ROM HORIZ tical K (FT.)	HOLE NO. 1026R BEARING TOTAL DEPTH 8.0 OF ROCK
33 1.0 SS 1.0 SS 0.5 SS 1.3 SS 1.0 SS 1.0 SS 0.6 SS 1.0 SS 0.5 SS 0.5	0.5 0.5 1.1 1.1 0.9 0.6 1.0 0.5					NO ELEU.		GRAPHICS	A A A A A A A A A A A A A A A A A A A	DESCRIPTIC 0.0 - 4.9 Ft. Sa Dark reddish moderate red coarse-graine 1.0-2.0 Ft. N (10R4/6). 2.0-2.5 Ft. I 3.0-3.7 Ft. V 0.1 in. wide. 3.8-4.9 Ft. N (10R2/2)with 4.9 - 6.1 Ft. SA (5R4/2), fine 6.1 - 6.5 Ft. Sa Moderate red coarse-graine (>1.0 in.) im Bottom of boreh Borehole backfil	ndy Silty C brown (10) dish brown cd and a few foderate re Dark reddish fery dusky Mottled ver, n grayish re ND (SP). - to very cd ndy CLAY (SR4/6), f ed sand. ayey SAND , fine- to c y content w ndy CLAY (SR4/6), f ed sand. T bedded in t hole at 8.0]	LAY (CL-M R2/4) mottl (10R4/6). v pebbles. ddish brown h brown (10 red (10R2/2 y dusky red d (10R4/2). Grayish red barse-graine (CL). ine- to very (SC). Gray barse-graine vith depth. (CL). ine- to very wo large pet ip of auger	ATION fL). ed with Fine- to a R3/4). 2) zones ed.	Descri classifi	LEUELS, RETURN, CTER OF ING, ETC. Ing, ETC. Is advanced t. using 3" t-spoon r and 0-5.0 F "o.d. solid agers. Is was gically sample mma-logged to 5.1 Copyed to 5.1 Copyed to 5.1
SS = SP D = DEN		POON; S ; P = P			000, 1	JIIE	1	4	Lo	ng Valley	Rd. (L	ODI)			026R

÷ ·

۳.,

nesses. s.

、-,,-

.

	G	EC	LOG	IC D	RIL	L LO	G	PROJE	CT		FUSRAP		JOB NO		EET NO.	HOLE NO.
SITE					····		COORDIN	ATES			<u></u>				ROM HORIZ	1216R BEARING
EGU			Valle			DI)		<u> </u>	DP TI		2,475 E 3,650	0 SIZE	OVERBURDEN		tical	
12-	-9-8	7 1	2-9-8	7	G.	Engel	; BNI.		Tri	DO	d\Little Beaver	-	8.0		K (FT.)	TOTAL DEPT
ORE		OVER' 5.9/8		X) CORE	BOXE	S SAMPL	ESEL. TO	P CAS	ING	GR	OUND EL. DEPTH/	EL. GROU	ND WATER	DEPT	H/EL. TOP	OF ROCK
AMP	_		R WEIGH	T/FALL	CAS		FT IN HO	LE: D	IA./	LEN	GTH LOGGED BY:				<u>~</u> /	
		<u>10 II</u>	<u>os./18</u>	in.			NO						R. Mi	gues	That .	
DIAM.	. ADV. CORE	E REC.	SAMPLE BLOWS "N" 2 CORE PECOUEDY	PR	JATER ESSU FESTS	RE S	ELEV.	оертн	GRAPHICS	SAMPLE	DESCRIPTION	AND C	LASSIFIC	ATION	NOTES	ON: LEVELS,
AND	LEN 1.0	SAMPL CORE	BLOW 84	LOSS LOSS A.P.A	PRESS.	HIN MIN. MIN.		B	GRAF	SA					DRILLI	RETURN, CTER OF ING, ETC.
~	1.0	0.8					-	ļ		N	0.0 - 1.2 Ft. Silty Dusky yellowish	CLAY (C brown (CL-ML). 10YR2/2).	Humus	0-8 Ft.	e advanced with 3" o.d.
	1.0	0.9	<u> </u>						¥//		in upper 0.2 Ft. 1.2 - 3.1 Ft. Clave		(SC)		and 4" c auger.	oon sampler o.d. solid-ste
s	1.0	1.0		-			-	{	-44		1.2 - 3.1 Ft. Clay Moderate reddin coarse-grained	sh brown with Bru	(IOR4/6), finswick Sand	ine- to stone	Boring r	adiologically
s	1.0	0.4							1	N	fragments.	. .	. (į	gamma- TMA-E	logged by berline, Cor
_	1.0	1.0		- ·			-	5.		K	1.2-1.3 Ft. Mo 3.1 - 5.2 Ft. <u>Silty</u>				Ч	
	1.0	0.9					-	1.		Ň	(5R6/2), very fi	ine- to fir	ne-grained.		7.5 Ft. refusal.	Auger
s	1.0	1.0	i 				-				5.2 - 6.1 Ft. Sand reddish brown (brown (5YR5/6 brown (10R4/6)	<u>y CLAY</u> 10R5/4)) and mo).	(CL-ML). I mottled wit derate reddi	Pale h light sh		-logged to 7
											6.1 - 8.0 Ft. <u>Pebb</u> (SC-GC). Mode moderate reddia to 1" in diam.	ly clayey erate red sh brown	silty SAND (5R4/6) to (10R4/6). P	ebbles	8.0 Ft. refusal.	Spoon
											Bottom of borehole Borehole backfilled	e at 8.0 F l with spo	t. ils, 11/25/8	7.		
													•		Descript classifica samples examina	tion of by visual
			OON; ST P = PI				TE	14	4 L	.01	ng Valley Ro	J. (LC	DDI)		HOLE NO.	216R

-----. .

· •·

. .

····

`____`

---- ---

·-----

. بوت

•------

.

98 10 70 - 11 - 15 Signed advanced by third of the second second by the second seco	SITE 14 Lor BEGUN 12-9-87 CORE RECOVE 6.4 SAMPLE HAMM 140	ng Valley COMPLETED 12-9-87 ERY (FT./%) /67 MER WEIGHT, Ibs./18 i	Rd. (1 DRILLEF CORE E /FALL	R G. Engel; BOXES SAMPLI 7 CASING LE	G COORDINA BNI. ESEL. TOP	P CASI	P DRILL Tripo ING G	FUSRAP V 2,473 E 3,651 MAKE AND MODEL SIZE Od/Little Beaver 4" ROUND EL. DEPTH/EL. GROUN V/	14501-138 1 ANGLE FR Veri OVERBURDEN 9.5	ET NO. HOLE NO. OF 1 1214R COM HORIZBEARING tical K (FT.) TOTAL DEPTH 9.5 I/EL. TOP OF ROCK /
D = DENNISON; P = PITCHER; O = OTHER 14 Long Valley Kd. (LODI) 1214R	SS 1.0 0 SS 1.0 0 SS 2.0 1 SS 2.0 1 SS 1.5 1 SS 1.0 1 SS S 1.0 SS S S SS S S	 	steel = SHEL	SSURE		5.		 0.0 - 1.1 Ft. Silty sandy CL Dusky brown (5YR2/2). medium-grained humus. 1.1 - 3.3 Ft. Clayer SAND brownish gray (5YR6/1), moderate reddish brown (about 30 deg. 3.2-3.3 Ft. Light gray (N zone. 3.3 - 9.5 Ft. Pebbly clayer (SG-SC). Moderate redd (10R4/6). Fine- to very Brunswick SS pebbles to Rounded to subrounded 1 hole. 7.5-7.7 Ft. Pebbly zone. 9.3-9.5 Ft. Clayer zone. Bottom of borehole at 9.5 Ft 	AY (CL-ML). Fine- to (SC). Light layered with (10R4/6) that dips N7) irregular SAND lish brown coarse-grained 2 in. or larger. near bottom of t. ils, 12/9/87.	WATER LEUELS, WATER RETURN, CHARACTER OF DRILLING, ETC. Borehole advanced 0-9.5 Ft. with 3" o.d. split-spoon sampler and 4" o.d. solid-ster auger. Boring radiologically sampled and gamma-logged by TMA-Eberline, Corp 5.5 Ft. Auger refusal. 9.5 Ft. Spoon refusal. 9.5 Ft. Spoon refusal.

	G	EO	LOG	IC DI	RILL	. LO	G	PROJEC			FUSRAP		-138 1 ANGLE FRO	OF 1	HOLE NO. 1015R BEARING
TE	4 T		Veller	y Rd. () T)	COORDIN	ATES		N	2,451 E 3,655		Verti		++-
GUN			PLETED			<u> </u>	I				AKE AND MODEL SIZE	OVERBURDEN		(FT.)	TOTAL DEP
0-	2-8	7 10	-2-87	7	G . 1	Engel;	BNI				teman Auger 4				6.0
)RE	RECO	VERY	(FT./%	CORE	BOXES	SAMPL	ESEL. TO	OP CAS	ING	GR	DUND EL. DEPTH/EL. (GROUND WATER	DEPTH/	EL. TOP	OF ROCK
		.4/5			1040	6	FT IN HO		. /	EN	TH LOGGED BY:			/	•
MP	LE HJ		WEIGHT	TALL	CAS	ING LE	NO		/I	-6.191		R. Mi	gues	杠	`
, 1	a1		and the second se	1 1	ATER	2			T.	TT		· · · ·		<u></u>	
DIAM.	P. ADU	LE REC.	SAMPLE BLOWS "N" X CORE RECOVERY		ESSU	RE	ELEV.	DEPTH	BRAPHICS	SAMPLE	DESCRIPTION AN	D CLASSIFIC	DATION	WATER	ON: LEVELS, RETURN, CTER OF
記記	LEI	F S	o D N N N N N N N N N N N N N N N N N N	LOSS IN B. P. M	<u>ш</u> о 1	보거보		-	E	ľ					ING, ETC
SS	סי 1.0	0.5			щш					N	0.0 - 3.3 Ft. Sandy Sil Dusky brown (5YR: moderate reddish or	ty CLAY (CL-N	ML).	Boreho	le advanced
s	1.0	0.5	<u></u>	-		1				N	moderate reddish or	range (10R6/6).	•••	0-6.0 F	t. using 3" it-spoon
SS	1.3			4		ļ				N				sample	r and 4" o.d em augers.
				1		Ì		4	-	Ņ	0.0 4 7 D4 611- 61	CANTD (014	1		
	0.9	0.8	.>	4		ļ	1		-	H	3.3 - 4.7 Ft. Silty Clay Pale brown (5YR5/	2), very line- to	יי 		
SS SS	0.5	0.5		-	1			- s.	-101	Ň	medium-fine graine			Boreho	le was gically sam
<u>is</u>	0.5	0.5						-			4.7 - 6.0 Ft. <u>Silty CL</u> reddish brown (10R	$\frac{AY}{3/4}$.		and ga	mma-logged Eberline, Co
											Bottom of borehole at Borehole backfilled wit	6.0 Ft. th grout, 10/2/8	37.		
			:						ļ						
									ĺ						·
	Į														
		1													
					1										
					1										
		1													
			ĺ												
	1														
										Ì					
					1										
	ł	Ì		ļ	1										
			1	ļ						ļ					
								ł							
					ļ										
			1												
					1				1						
											1				
														classi	ription and fication of
														exam	by visual ination.
			Ì												
	1														
				1					1						
			SPOON	ST = SI	HEIRY	TURF	SITE		1.		<u></u>			HOLE	
23	- 31 - DE1	NNISO	N: P =	PITCHE	R: 0 =	OTHER			14	L	ong Valley Rd.	. (LODI)			1015R

• •

*م*ر ب

	G	ΕO	LOG	IC D	RILI	L LO		PROJ				FUSE	RAP				138	IEET NO. 1 OF 1	HOLE NO. 1215R
ITE				<u> </u>			COORD	INATES					D A C	·•		A		FROM HORI	ZBEARING
		¥	Valle MPLETED			<u>)</u>			ino			430 E AND M	E 3,66	SIZE	OVERBUI	PDEN		rtical CK (FT.)	TOTAL DEPT
EGU 17-		-	2-9-8			Engel	; BNI						Beaver			i.0			6.0
			(FT./)				ESEL.							/EL. GRO			DEPI	TH/EL. TO	P OF ROCK
		5.1/8				6							<u> </u>						/
AMP			R WEIGHT		CAS	ING LE	FT IN		DIA.	./LE	NGTH	LOGGE	D BY:		D	Mig	100	<i>C</i>	P-
	14		os./18	<u>in.</u>	I JATEF	2	<u>יאו</u>	<u>ONE</u>							<u> </u>	INITE	105	A	
AND DIAM.	SAMP. ADU. LEN CORE	AMPLE REC.	SAMPLE BLOUS "N" X CORE DFCOUFBY	PR W.4.0	ESSU ESTS	RE	ELEV	0EPTH		GRAPHICS		DESĈR	IPTIO	N AND (LASSI	FICA	TION	WATER	5 ON: R LEVELS, R RETURN, ACTER OF LING, ETC
SS	1.0	0.7		<u> </u>	uu						0	0 - 1.4 Dusky	Ft. Sar brown	dy silty C (5YR2/2)	LAY (C) fine- to	L-ML).	0-6 F	ole advanced t. with 3" o.d
SS	1.0	0.7		-				-			h		-	(5YR2/2) ed, humu					poon sample o.d. solid-st
SS	1.0	0.9		1					1		Ī	.4 - 3.9 mediu	Ft. SA	ND (SP). ed with s	Fine- to	pebbl	es up	auger. Boring	r radiological
SS	1.0	1.0		1		ſ			ŀ			to 0.5	" in diar	n.			-	sampl	ed and a-logged by Eberline, Co
SS	1.0	0.8]					5	Ш		2.9-3 . (10YF	9 Ft. D 16/6).	ark yellov	ish oran	ge			Eberline, Co
SS	1.0	-1.0			l			4		1799	¥ 3	.9 - 5.1 (5YR	Ft. <u>SII</u> 5/6).	T (ML).	Light bro	оwп			Auger
			ļ											ND (SP). /4) fine- 1			ed.	-/ refusa	
											1 11		-	bly claye				-/	
												11084	1/61 tim	oderate re e- to med asts to 3.0	um-grai	neo w	ith d	6.0 Ft refusa	. Spoon l.
												Bottom (Borehole	of boreh backfil	ole at 6.0 led with s	Ft. poils, 11/	25/87	· ·	-	
																		1	
	ļ																		
		1																	
				ļ														1	
																		_	
					ļ													class samp	ription and ification of oles by visual
																		exan	nination.
			1																
		ľ																	
			SPOON;			1000.	SITE				<u>.</u>			ו) גם	נוסט			HOLE	^{NO.} 1215R
			N; P =						14	4 L	on	g va	mey	Rd. (l	(ועט.				12131

ſ

. --ľ

		G	EC	LOG	IC D	RIL	L LO	G	PROJEC	T		FUSRAP	JOB NO. SH		OLE NO. 1014R
51	ITE							COORDIN	ATES			FUSRAI		ROM HORIZE	
	ן נכט			Valle:			DI)					2,466 E 3,670 TAKE AND MODEL SIZE OVE		rtical	OTAL DEP
				0-1-87			Engel	BNI	ľ			uteman Auger 4"	13.0	CK (FT.)	13.0
		RECO	OVER	Y (FT./%			SSAMPL	ESEL. TO	P CASI			OUND EL. DEPTH/EL. GROUND W		H/EL. TOP C	
SA	MP		.9/:	37 R WEIGHT	/FALL	CAS	10		LE: DI	A./		GTH LOGGED BY:		/	
			1	N/A				NO					R. Migues		
Ц	ι. .Σ	<u>с</u> ш		SAMPLE BLOWS "N" % CORE RECOVERY	L PR	JATEP ESSU	RE			ŋ	Π				
- F	DIAM.	<u>ک</u>	E E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ESTS	<u> </u>	ELEV.	DEPTH	H	SAMPLE	DESCRIPTION AND CLAS	SIFICATION		EVELS
μD	AND	ΩIJ	트	S S S S S S S S S S S S S S S S S S S	LOSS IN G.P.M	PRESS. P. S. I.	TIME MIN.		DE	GRAPHICS	SER			WATER P	
	₹ S	⊑ا∯ 1.0		<u> </u>	ъ Г	<u>a</u> a	ΕΣ	- 			╢	0.0 - 3.8 Ft. Sandy Silty CLAY		DRILLIN	IG, ET
1	- 1	1.0	0.1						-			Dusky red (5R3/4). Fine- to medium-grained sand compo- with up to 1.0 in. mottled bla (5R2/2) pebbles.	o onent. Pebbly	Borehole 0-13.0 Ft	advanced using 3
		0.8	0.5						-			with up to 1.0 in. mottled bl: (5R2/2) pebbles.	ackish red	i.d. split-: sampler a	spoon nd 4" o.c
		1.0	0.5						-			3.0 Ft. Decreasing sand cont		solid sterr	augers.
		1.0	0.6					-	. 			pebbles. 3.8 - 7.0 Ft. Clayey SILT (ML	CL).	7	
5	5	0.7 0.2	0.7									3.8 - 7.0 Ft. <u>Clayey SLT</u> (ML Dark reddish brown (10R3/4	i).	Borehole radiologic	ally sam
A	U	1.6	0.0					-					<u> </u>	and gamn TMA-Ebo Sampler u	na-logge erline, C
		0.8 3.9	0.8						-			7.0 - 12.4 Ft. Silty SAND (SM) reddish brown (10R3/4), fine medium-grained.). Dark e- to	advance f Ft. Used	rom 4.8-
		3.9	0.0						ļ -			7.7 Ft. Some pebbles.		from the stights.	auger
									10_					Auger ref	usal at 1
									-					Ft. Gami this depth	na-scan I.
S	S	1.0	1.0					-			愲	12.4 - 13.0 Ft. Silty Sandy CL	AY		
											Π	(CL-ML). Dark reddish bro fine- to medium-grained san	wn (10R3/4), ad.	Л	
	1											Bottom of borehole at 13.0 Ft.			
												Borehole backfilled with spoils,	10/1/87.		
			1												
										ŀ					
														Descriptio	n and
									ļ					classificat soils by v	ion of isual
														examinat	on.
]											
				POON; ST			,	ITE	1	A 1	~			HOLE NO.	14R
P	=	DENNI	SON	; P = PI	ICHER;	0 = 0	JTHER			4 L	.0	ng Valley Rd. (LOD	<u>'''</u>	10	741

	G	EO	LOG		RILL	LO	G	PROJE	CT			FUSRAP	JOB NO. 14501-13		T NO. OF 1	HOLE NO. 1021R
ITE							COORDINA	TES					ANG	LE FRO	M HORIZ	
				y Rd.		DI)	<u> </u>		net			,412 E 3,676 Œ AND MODEL SIZE OVI	ERBURDEN	Verti	CAI (FT.)	TOTAL DEPT
0-1	12-8	1710	-12-8	7	G. 1	Engel;	BNI		N	/ii	111	eman Auger 4"	4.6			4.7
ORE	•			CORE	BOXE	S SAMPL	ESEL. TO	P CAS	ING	19	RO	ND EL. DEPTH/EL. GROUND	WATER	DEPTH/	EL. TOP	OF ROCK
SAMP		.9/8	WEIGH	/ T/FALL	CAS		FT IN HOI	LE: DI	IA.,	/LE	NG	H LOGGED BY:	I	($\overline{\mathbf{x}}$	
		1	<u>N/A</u>				NO	NE			7		R. Migue	<u>s_</u>	100	
SAMP. TYPE AND DIAM.	SAMP. ADU. LEN CORE	SAMPLE REC.	SAMPLE BLOUS "N" CORE	P W'4'9	ATER ESST: .I.S.d	RË	ELEV.	DEPTH]	DESCRIPTION AND CLA		ION	WATER CHARA	ON: LEVELS, RETURN, CTER OF ING, ETC
SS	1.0	0.7									Y	0.0 - 4.7 ft. Silty Sandy CLA Dusky brown (5YR2/2) mot moderate red (5YR5/4). Fi medium-grained with increa	Y (CL-ML).			e advanced
SS		0.9							-			moderate red (5YR5/4). Fi medium-grained with increa depth.	ine- to asing sand w	ith	i.d. spli	t. using 3" t-spoon ' and 4" o.d.
SS		0.9							-			1.0-2.0 ft. Moderate brown	n (5YR4/4).			em augers.
99 33 55		0.2 0.4 0.1				Į	}	<u> </u> -	-		¥.	2.0-3.0 ft. Pale reddish bro	· · ·)	}	
SS SS	0.7	0.7					-] .	-		Π	3.0-3.4 Ft. Moderate red (i		ſ	Boreho	rically samp
												3.4-4.7 Ft. Grayish red (51 streaks of blackish red (5R2 Brunswick SS in a matrix o silt.	R4/2) and 2/2). Pieces of sandy claye	of sy	and gai TMA-H	nma-logged Eberline, Co
												Bottom of borehole at 4.7 Ft. Borehole backfilled with spoils	s, 10/12/87.		Auger 1 Ft. Re bit at 3	refusal at 4. fusal with c i.9 Ft.
					ł						-					
						Ì										
	ł	ł													Ì	
									j						}	
÷	1															
														1		
								Ì								
			1	l										· ·		
														•		
ł	1			1	{											
					l			ļ								
															classif soils b	ption and ication of y visual nation.
ss D =	= SP = DEN	LIT	SPOON; N; P =	ST = SH PITCHER	ELBY; 0 =	TUBE; OTHER	SITE	 :	14	. [⊥⊔ .0	ng Valley Rd. (LO	DI)		HOLE	^{NO.} 1021R

÷

. ••• .

ه این رومه ۲۰۰۰ ۲۰۰۰

----;

~---

. -----:

•••••

	G	EC	LO	GI	C D	RILI	LLO	G	PR	OJEC	T		FUSRAP		JOB NO 14501	D. SHE		HOLE NO. 1018R
SITE								COORD	INATI	ES					· · · · · · · · · · · · · · · · · · ·		OM HORIZ	BEARING
] BEGU			Val: MPLET		Rd. DRILL		<u>))</u>	l					<u>,440 E 3,6</u> (E AND MODEL	79 SIZE	OVERBURDE		((FT.)	TOTAL DEPTH
			0-6-				Engel	; BN	I	ſ			eman Auger	4"	4.5			4.5
	REC	OVER	((FT.		CORE			ESEL.		CASI				H/EL. GRC	UND WATER	DEPTH	/EL. TOP	OF ROCK
		.5/				1040	6		1015				¥ /				/	
SAMP	'LE H		R WEIG	in 17	FALL	LAS	ING LE	EFT IN	ION]		A./L	ENG	H LOGGED BY:		R. Mi	anec		
ш	•1		V/A			<u> </u>	2			C.					<u> </u>	gues	1	
SAMP. TYPI AND DIAM.	SAMP. ADV	SAMPLE REC	SAMPLE BLOUS "N" V CODE	RECOVERY	PR	ESSU	RE	ELEV	/ •	OEPTH	GRAPHICS	SAMPLE	DESCRIPTIC			CATION	WATER CHARAC	ON: LEVELS, RETURN, CTER OF ING, ETC.
SS SS SS SS	1.0 1.0 0.8	0.5 0.5 0.5 0.5				,							0.0 - 3.8 Ft. <u>Sil</u> 0.0-1.0 Ft. I 1.0-2.0 Ft. N)usky brov Aoderate r	vn (5YR2/2) ed (5R4/6).		0-3.8 Ft i.d. split sampler using 4"	and to 4.5 ft. o.d. solid
	0.2	0.2			•					-			2.0-2.9 Ft. N 2.8-3.8 Ft. I with depth. 2.9-3.4 Ft. I	ncreasing	sand and pel		stem au Borehol radiolog	-
									ł				3.4-3.8 Ft. M (10R4/6).	Noderate r	eddish brown	n	and gan TMA-E	nma-logged by berline, Corp.
													Borehole backfil	led with s	poils, 10/6/8	7.	Augered gamma- Ft.	to 4.5 Ft; logged to 3.5/
			I			<u> </u>								<u> </u>	<u></u>		HOLE NO	<u></u>
					= SHE CHER;			SITE		4	A 1	~~	g Valley I	P4 (I	(וםט			018R

.

· :

·...-

-----I

r -

Scores L S S S S S S S S S S S

· . ·

~~-

<u>...</u>.

	G	ΕO	LOC	GIC		RILI	L LO	G	PROJE	СТ		FUSRAP	JOB NO	. SHE -138 1	ET NO. OF 1	HOLE NO. 1020R
SITE			····					COORDIN	ATES					ANGLE FR	OM HORIZ	
BEGU			Vall		Rd.		DI)	<u> </u>		DD 1		2,411 E 3,699 AKE AND MODEL SIZE		Veri	((FT.)	TOTAL DEPTH
)-14-				Engel	BNI		F		1	4" 7.5			7.5
	RECO	DVERY	(FT.				SAMPL	ESEL. TO	OP CAS	ING	GR	DUND EL. DEPTH/EL.	GROUND WATER	DEPTH	/EL. TOP	OF ROCK
SAMP		0/9	4 WEIG	HTZ		ICAS	9	FT IN HO		TA./		TH LOGGED BY:			/	
		1	N/A					NO		,			R. Mig	gues		
m.	- La la			٦	ر PR	JATER	RE	,	1	ر ا						
SAMP . TY	SAMP. AD	SAMPLE RE CORE REC	SAMPLE BLOWS "N" % CORE	RECOVER		TESTS		ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION AN		ATION	WATER	ON: LEVELS, RETURN, CTER OF ING, ETC.
33 55 55 55 55 55 55 55 55 55 55 55 55 5	1.0 1.0 0.7 0.3 0.5 0.5 0.5 0.8	1.0 1.0 0.6 0.3 0.5 0.5 0.5							5.			0.0 - 3.0 Ft. Silty San (CL-ML). 0.0-1.0 Ft. Dusky thumus appearance. medium-grained san 1.0-3.0 Ft. Moderai mottled with light bidusky yellowish bro medium-grained san	brown (5YR2/1); Fine- to nd. ate brown (5YR4/ brown (5YR5/6) : own (10YR2/2). i nd.	4) and	0-7.5 F i.d. spli sampler solid sta Boreho	
	2.2											2.0-3.0 Ft. Decreas 3.0 - 3.5 Ft. Clayey Sl Grayish red (10R4/ 3.5 - 7.5 Ft. Silty SAN reddish brown (10R fine-grained. 4.3-4.9 Ft. Modera	<u>ILT</u> (ML-CL). (2). <u>ND</u> (SM). Moder (4/6), very fine- t	rate :0	and gar	gically sampled nma-logged by berline, Corp.
												4.5-5.3 Ft. Increasi 4.9-5.3 Ft. Grayish 5.3 Ft. Small round	ing silt content. h red (5R4/2). ded pebbles.		1	ered to 4.6 Ft. 4/87; -logged to 4.0
												Bottom of borehole at Borehole backfilled wit	7.5 Ft. th spoils, 10/14/8	7.		
			POON; ; P =				, 1900	SITE	1	4		ng Valley Rd.	(LODI)		HOLE N	0. 020R

...

· ·

.

·----

	DRILL LO	PRO	JECT	USRAP	JOB NO. 14501-138	SHEET NO. HOLE NO. 1 OF 1 1023R
GEOLOGIC		COORDINATES		USKAI	ANGLE	FROM HORIZBEARING
14 Long Valley 1	Rd. (LODI)		N 2,3 DRILL MAKE			ertical
0-13-8710-14-87	G. Engel;	BNI	Minuten	an Auger 4"	10.2	5.2
DRE RECOVERY (FT./%)	CORE BOXES SAMPLE	SEL. TOP C	CASING GROUND	EL. DEPTH/EL. G	ROUND WATER DE	PTH/EL. TOP OF ROCK
4.1/78 MPLE HAMMER WEIGHT/F	ALL CASING LEF	T IN HOLE:	DIA./LENGTH	LOGGED BY:	<u></u>	OPL
N/A		NONE	<u> </u>	·	R. Migues	70~
AND DIAM. SAMP. ADU. LEN CORE SAMPLE REC. SAMPLE REC. SAMPLE REC. SAMPLE BLOWS "N" CORE RECOVERY	WATER PRESSURE TESTS W.G. W.Y.I VIII VIII VIII VIII VIII VIII VIII	ELEV.	DEPTH GRAPHICS SAMPLE	ESCRIPTION AND	CLASSIFICATIO	NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC
35 1.0 0.9 55 1.5 1.5		-		- 2.0 Ft. Sandy Silt Dusky brown (5Y2/2 medium-grained sand 1.0-2.0 Ft. Moderate (10R4/6) mottled wit (10R2/2).	n. Pieces of paper.	Borehole advanced 0-5.2 Ft. using 3" i.d. split-spoon sampler and 4" o.d. solid stem augers.
S 0.5 0.5 SS 0.3 0.3 SS 0.9 0.2		-	5	- 3.9 Ft. <u>Silty CLA</u> Moderate reddish bro grayish brown (SYR3 - 5.2 Ft. <u>Clayer SI</u> Pale reddish brown (5000 (10R4/6) with 3/2).	Borehole was radiologically samp and gamma-logged TMA-Eberline, Co
				(10R4/2). attom of borehole at 5 rehole backfilled with	.2 Ft. 1 spoils, 10/14/87.	4.6-5.0 Ft. augered with pronounced 'chattering'.
						Augered to 5.0 Ft and gamma-logge 4.0 Ft.
					· .	
						Description and classification of soils by visual examination.
SS = SPLIT SPOON; ST D = DENNISON; P = PI	i - Sheebi Iobey j	SITE		g Valley Rd.	(LODI)	HOLE NO. 1023R

e '

· ---•

	PROJECT	1	JOB NO. SHEET N	
GEOLOGIC DRILL LO	the second s	FUSRAP	4501-138 1 OF	
	COORDINATES	N 2,378 E 3,721	Vertica	
14 Long Valley Rd. (LODI)	j	RILL MAKE AND MODEL SIZE	OVERBURDEN ROCK (F	
0-15-8710-15-87 G. Engel:	BNI	Minuteman Auger 4"	4.2	4.2
CORE RECOVERY (FT./%) CORE BOXES SAMPL	ESEL. TOP CASH	NG GROUND EL. DEPTH/EL. GRO	UND WATER DEPTH/EL.	TOP OF ROCK
3.4/80 6	FT IN HOLE: DIA	A./LENGTH LOGGED BY:		200
SAMPLE HAMMER WEIGHT/FALL CASING LE N/A	NONE		R. Migues	74L
		· ·	~ ·	
ATER BRESSURE TENCORE BRESSURE TESTS BRIPLE BRESSURE TESTS BRIPLE BLOWS BRIPLE	ELEV.	S DID DESCRIPTION AND DESCRIPTION AND DESCRIPR	CLASSIFICATION WA WA CH DR	ATER LEVELS, ATER RETURN, HARACTER OF RILLING, ETC
SS 1.0 0.3 SS 1.0 0.7 SS 0.5 0.5 SS 0.5 0.5 SS 0.7 0.7		0.0 - 1.0 Ft. Sandy Silty (TOPSOIL/CL-ML). (5YR2/2). Fine- to mu Humus. 1.0 - 4.2 Ft. Sandy Silty Moderate reddish brow coarse-grained with fra	CLAY (CL-ML).	orehole advanced -4.2 Ft. using S" d. split-spoon impler and 4" o.d. olid stem augers.
<u>SS 0.5 0.5</u>		SS up to 1.0 in. 2.0-2.5 Ft. Increasing	sand.	orehole was adiologically samp nd gamma-logged
		3.9-4.2 Ft. Grayish re with very dusky red (1 Bottom of borehole at 4.2	Ft Ft	MA-Eberline, Co Lugered and amma-logged to 2 't. Refusal on
		Borehole backfilled with a	poils, 10/15/87.	oulder.
				Description and classification of soils by visual
				examination.
SS = SPLIT SPOON; ST = SHELBY TUBE; D = DENNISON; P = PITCHER; O = OTHER	SITE 1	14 Long Valley Rd. (HOLE NO. 1025R

·---