Formerly Utilized Sites Remedial Action Program (FUSRAP)

ADMINISTRATIVE RECORD

for Maywood, New Jersey

U.S. Department of Energy

0489-0613.1

ND Report # 11 41 Resultant June 1981 RAD Survey

Contract No. W-7405-eng-26

Health and Safety Research Division

RESULTS OF THE RADIOLOGICAL SURVEY AT 459 LATHAM STREET, MAYWOOD, NEW JERSEY

MJIOL

September 1981

Work performed as part of the REMEDIAL ACTION SURVEY AND CERTIFICATION ACTIVITIES

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY

Contract No. W-7405-eng-26

Health and Safety Research Division

RESULTS OF THE RADIOLOGICAL SURVEY AT 459 LATHAM STREET, MAYWOOD, NEW JERSEY

September 1981

Work performed as part of the REMEDIAL ACTION SURVEY AND CERTIFICATION ACTIVITIES

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY

CONTENTS

1	Page
LIST OF FIGURES	iv
LIST OF TABLES	۷
INTRODUCTION	1
SURVEY METHODS	2
SURVEY RESULTS	2
Outdoor Survey Results	3
Indoor Survey Results	4
SUMMARY	4
REFERENCES	6
APPENDIX I, Action and Survey Plan, Maywood, New Jersey	26
APPENDIX II, Evaluation of Radiation Exposures at 459 Latham Street in Maywood, New Jersey	36

LIST OF FIGURES

Figure		Page
1	Front view of property at 459 Latham Street	7
2	Rear view of property at 459 Latham Street	8
3	Grid point and grid block locations at 459 Latham Street	9
4	Estimated extent of contaminated areas at 459 Latham Street based on results of external gamma-ray surface scan	10
5	Location of systematic and biased surface soil samples at 459 Latham Street	11
6	Schematic of the first level floor plan at 459 Latham Street showing external gamma-ray measurement results at 1 m	12
7	Schematic of the second level floor plan at 459 Latham Street showing external gamma-ray measurement results at 1 m	13
8	Schematic of the third level floor plan at 459 Latham Street showing external gamma-ray measurement results at 1 m	14
9	Schematic of the basement floor plan at 459 Latham Street showing external gamma-ray measurement results at 1 m	15

LIST OF TABLES

Table		<u>Page</u>
1	A summary of applicable radiation guidelines	16
2	Background levels for the northern New Jersey area	17
3	Outdoor measurements at 459 Latham Street	18
4	Results of radionuclide analyses of surface soil samples from 459 Latham Street	21
5	Indoor measurements at 459 Latham Street	22
6	Radon and radon daughter measurements at 459 Latham Street	23
7	Summary of outdoor and indoor measurements and sample results at 459 Latham Street	24
8	Summary of measurement results in contaminated areas at 459 Latham Street	25

RESULTS OF THE RADIOLOGICAL SURVEY AT 459 LATHAM STREET, MAYWOOD, NEW JERSEY*

INTRODUCTION

A comprehensive radiological survey of 459 Latham Street, Maywood, New Jersey, was conducted by Oak Ridge National Laboratory (ORNL) from June 3 to 10, 1981 with assistance from Oak Ridge Associated Universities (ORAU). Contaminated material was discovered in the area during an EG&G aerial radiological survey,¹ and confirmed by a ground-level radiological survey by the Nuclear Regulatory Commission.² This contaminated material is believed to have originated from the former Maywood Chemical Company (now the Stepan Chemical Company).

The Maywood Chemical Company was founded in 1895. From about 1916 until 1957, the Maywood Chemical Company processed thorium for use in the manufacture of gas mantles for various lighting devices.¹ In 1932, Route 17 was built to the west of the main plant through an area that was used for disposal of process wastes. Although access to the sites was probably restricted, the waste disposal area had no access restrictions. In 1959, Maywood Chemical Company was purchased by the Stepan Chemical Company.

During an aerial survey of the Stepan Chemical Company and the surrounding area in Maywood, New Jersey, by EG&G¹ on January 26, 1981, anomalously high gamma-ray exposure rates (principally ²³²Th daughter radionuclides) were observed in a residential area close to the Stepan Chemical site. Seven private homes in Maywood, New Jersey, were later identified in a follow-up ground survey by the Nuclear Regulatory Commission² (NRC) as having external gamma radiation levels significantly above background. Gamma-ray exposure rates up to 3 mR/h were observed on these properties during NRC surveys.

Additional historical information about the seven private properties were obtained from John Tripuka, owner of the property at 461 Latham Street. Mr. Tripuka related that his father moved into 461 Latham in 1928, the same year the house was built. The father was employed at the Maywood

^{*}The survey was performed by members of the Off-Site Pollutant Measurements Group of the Health and Safety Research Division at Oak Ridge National Laboratory, under DOE contract W-7405-eng-26.

Chemical Plant. The plant at that time allowed removal of processing waste by-products from their operations, charging only a minimal fee for transportation. Much of the by-product material from other operations in the plant was in the form of tea and cocoa leaves mixed with other fill mate-In many instances, this material was used as a rich organic mulch rial. for topsoil for gardens, flowers, and shrubbery and as general fill material for lawns. The elder Mr. Tripuka owned a vacant lot that is now 464 Davison Avenue, and between approximately 1944-1946 had many truck loads of this material deposited at the vacant lot. This material was used primarily for fill in a ditch that laterally traversed the back of several lots between Davison Avenue and Latham Street. Apparently, some of this mulch material contained thorium process wastes. Several neighbors in the area used this material for vegetable and flower gardens as well as fill for low spots in their lawns. The remaining unused material was pushed out and spread over the 464 Davison lot. The lot was sold and a house was built on the vacant lot in 1967.

The current owner of the house at 459 Latham Street is John Schaefer. The house on this property was built in 1926, and the owner has lived there since that time. Presently, the owner is the only resident at this property.

Front and rear views of the property are provided in Figs. 1 and 2, respectively. This lot is approximately 15 m wide by 37.5 m deep. The layout of the property is shown in Fig. 3.

SURVEY METHODS

The survey measurements were performed according to the survey plan of May 27, 1981.³ The action and survey plan for Maywood, New Jersey, are provided in Appendix I. A comprehensive description of the survey methods and instrumentation, as well as the radiation guidelines used in evaluating the data, have been provided in other reports (e.g., reference 4).

SURVEY RESULTS

Applicable federal guidelines have been summarized in Table 1. The normal background levels for the northern New Jersey area are presented in Table 2. These data are provided for comparison with the survey results presented in this section.

With the exception of measurements of transferable activity which represent net count rates, all direct measurement results presented in this report are gross readings; background radiation levels have not been subtracted. Similarly, background concentrations have not been subtracted from radionuclide concentrations measured in environmental samples.

Outdoor survey results

External gamma-ray and beta-gamma measurements. Results of grid point/grid block measurements are presented in Table 3. The location of grid points/blocks are shown in Fig. 3. Elevated gamma levels were observed on the eastern side of 459 Latham Street, (adjacent to 461 Latham Street), however, these levels decreased to background levels on the western side of this property. All elevated gamma levels were related to contaminated material on the adjacent 461 Latham Street property, with the exception of a 0.3-m wide by 16-m long strip of property with spotty contamination along the northeast corner of the property (see shading on Fig. 4). The maximum gamma-ray exposure rate at 1 m on this property $(82 \mu R/h)$ exceeded the background value by a factor of 10 and guideline value (10 CFR 20) by a factor of 1.4. The average gamma level on this property at 1 m was 16 μ R/h (twice the background level). Beta-gamma dose-rate measurements at grid points ranged from 0.01 to 0.1 mrad/h, and averaged 0.03 mrad/h.

<u>Surface soil samples</u>. Samples of surface soil (top 15 cm) were taken from various locations on the property for radionuclide analyses. Locations of the systematic (MJ samples) and biased (MJB samples) sampling locations are shown in Fig. 5, with results of laboratory analyses provided in Table 4.

All systematic surface soil samples were within background levels with the exception of MJ79, which was obtained in the 0.3 m x 16 m strip of spotty contamination identified in the gamma-ray scan of the property. The 232 Th concentration in this sample was 4.0 pCi/g. The single biased sample also taken from this slightly contaminated area (MJB26) had a 232 Th concentration of 7.1 pCi/g. The contamination along the previously identified strip was in the upper 20 cm of soil.

Indoor survey results

<u>Alpha, beta-gamma, and gamma-ray measurements</u>. Schematic diagrams of the interior of the house at 459 Latham Street are shown in Figs. 6-9. The results of the indoor measurements are presented in Table 5 and these figures.

Transferable long-lived alpha and beta-gamma activity on room surfaces was at background levels at all locations in the house. Also, all direct alpha readings on the surface of walls and floors were within the normal background range.

Beta-gamma dose rate measurements were within background levels at all locations in the house where measurements were performed.

External gamma-ray exposure rates inside the house were generally elevated above background. Gamma-ray exposure rates at 1 m ranged from 8 to 17 μ R/h and averaged 11 μ R/h. There was no evidence that the source of these slightly elevated measurements was contaminated material indoors. However, these measurements can be related to outdoor contamination. Indoor external gamma-ray measurements were highest at locations in the north and east rooms of the house near areas where outdoor contamination was greatest (e.g., the porch on the street level, and the bath and stairway on the second level).

<u>Radon and radon daughters</u>. Results of radon daughter measurements inside the house are presented in Table 6. No radon concentrations in air were determined for this residence. The radon daughter concentrations were 0.0013 WL and 0.0003 WL for the basement and first level, respectively. These values are within typical background levels.

SUMMARY

Summaries of outdoor and indoor measurement results of the radiological survey conducted at 459 Latham Street are provided in Table 7. These measurement results indicate that this property contains a slight amount of radioactive contamination (primarily from the 232 Th decay chain). This material is irregularly distributed in a 0.3 m x 16 m strip along the northeast border of the property (adjacent to 461 Latham property). The contaminated material is contained within the top 20 cm of the ground surface. Based on these estimates, the volume of contaminated material is approximately 0.8 m^3 . No contaminated material is present inside or beneath the house.

The average external gamma-ray exposure rate at 1 m above the ground surface was twice background. The maximum exposure rate at 1 m on this property exceeded NRC guidelines for continuous exposure (10 CFR 20) by about a factor of 1.4. The source of the elevated external gamma radiation levels was primarily contaminated material on the adjacent property (461 Latham Street). Maximum 232 Th concentrations in soil at this property exceeded background by a factor of about eight. An estimate of the volume of contaminated material on this property is 0.8 m³ (see Table 8).

Inside the house, the average external exposure rate at 1 m above the floor was well within NRC guidelines for continuous exposure (10 CFR 20), but a factor of approximately 1.4 above background levels. This elevated activity is due to the presence of contaminated materials outdoors. No elevated levels of alpha activity, beta-gamma activity or radon daughter concentrations were observed inside the house.

Using the results of this radiological survey, a preliminary evaluation of the potential exposure pathways for radiation exposures to residents at this location has been conducted. The four primary pathways for radiation exposure from the type of contamination found on this property are: (1) direct radiation exposure, (2) inhalation of radon and radon daughter products, (3) inhalation of resuspended radioactive particles, and (4) ingestion of radionuclides through food pathways. An evaluation of the first two pathways is provided in Appendix II. There are no pathways which are considered to be significant at this property, under present conditions of property use. These pathways would only become significant if major changes in land use occur in the future. Based on conservative assumptions, preliminary estimates of the total risk of cancer from radiological conditions at this site are given in Appendix II. The estimated total increased risk due to radiation induced cancer for residents at 459 Latham Street was calculated to be 0.01%.8 Thus, for a person living a lifetime at 459 Latham, the hypothetical average chance of dying from cancer would increase from 24.4% (the average for Bergan County, New Jersey in 1975⁹) to 24.41%.

REFERENCES

- 1. EG&G, An Aerial Radiological Survey of the Stepan Chemical Company and Surrounding Area, Maywood, New Jersey, EG&G Survey Report NRC-8109, April 1981.
- Nuclear Regulatory Commission, memorandum from M. Campbell to J. D. Kinnerman, re: Records of Surveys of Private Homes in Maywood, New Jersey, Docket No. 40-8610, May 15, 1981.
- 3. W. A. Goldsmith to R. W. Barber, Letter of May 28, 1981, transmitting Action Plan and Radiological Survey Plan for Maywood, New Jersey.
- 4. R. W. Leggett, D. L. Anderson, D. J. Christian, W. D. Cottrell, D. J. Crawford, R. W. Doane, W. A. Goldsmith, F. F. Haywood, T. E. Myrick, W. H. Shinpaugh, and E. B. Wagner, *Radiological* Survey of Properties in the Middlesex, New Jersey, Area, DOE/EV-0005/1 (Supplement) ORNL-5680, March 1981.
- 5. U.S. Department of Energy, Radiological Survey of the Middlesex Municipal Landfill, Middlesex, New Jersey, DOE/EV-0005/20, April 1980.
- A. C. George and A. J. Breslin, "The Distribution of Ambient Radon and Radon Daughters in Residential Buildings in the New Jersey -New York Area," *Proceedings of the Natural Radiation Environment III*, pp. 1272-93, CONF-780422 (Vol. 2), NTIS, 1980.
- 7. T. E. Myrick and B. A. Berven, State Background Radiation Levels: Results of Measurements Taken During 1975-1979, ORNL/TM-7343, Oak Ridge National Laboratory (in press).
- 8. J. W. Healy and W. J. Bair, "Preliminary Report Radiological Appraisal of Houses in Maywood, New Jersey". Attachment to letter from W. J. Bair, Battelle Pacific Northwest Laboratories to W. E. Mott, Department of Energy, Washington, D.C., July 17, 1981.
- 9. U. S. Department of Health, Education and Welfare, Vital Statistics of the United States - 1975, Volume II - Mortality, Part B, Public Health Service, National Center for Health Statistics, (PHS) 78-1102, 1977.

LATHAM ST.

Fig. 3. Grid point and block locations at 459 Latham Street.

9

Fig. 4. Estimated extent of contaminated areas at 459 Latham Street based on results of external gamma-ray surface scan.

Fig. 5. Location of systematic (MJ) and biased (MJB) surface soil samples at 459 Latham Street.

. .

Fig. 6. Schematic of the first level floor plan at 459 Latham Street showing external gamma-ray measurement results at 1 m.

All external gamma-ray measurement results are given in $\mu R/h$ at 1 m above the surface.

SECOND LEVEL 459 LATHAM ST.

Fig. 7. Schematic of the second level floor plan at 459 Latham Street _____ showing external gamma-ray measurement results at 1 m.

All external gamma-ray measurement results are given in $\mu R/h$ at 1 m above the surface.

.

Fig. 8. Schematic of the third level floor plan at 459 Latham Street showing external gamma-ray measurement results at 1 m.

BASEMENT

459 LATHAM ST.

Fig. 9. Schematic of the basement floor plan at 459 Latham Street showing external gamma-ray measurement results at 1 m.

	Mode of exposure	Exposure conditions	Guideline value	Guideline source
1.	External gamma radiation	Continuous exposure to individual in general population (whole body)	60 µR/h	Nuclear Regulatory Commission (NRC) - Standards for Protection Against Radiation (10 CFR 20.105)
2.	Surface alpha contamination	²²⁶ Ra contamination fixed on surfaces	100 dpm/100 cm ²	NRC Guidelines for Decontamination of Facilities and Equipment Prior
		Removable ²²⁶ Ra contamination	20 dpm/100 cm ²	to Release for Unrestricted Use or Termination of Licenses for By- product, Source, or Special Nuclear Material (Adapted from NRC Reg. Guide 1.86
3.	Surface beta contamination	Removable beta-gamma emitters	1000 dpm/100 cm ²	Same as number 2
4.	Beta-gamma dose rates	Average dose rate on an area no greater than 1 m²	0.20 mrad/h	Same as number 2
		Maximum dose rate in any 100 cm² area	1.0 mrad/h	Same as number 2
j.	Exposure to radon	Maximum permissible concen- tration of ²²² Rn in air in unrestricted areas	3.0 pCi/L	NRC 10 CFR 20.103, Appendix B, Table II
5.	Radionuclides in water	Maximum contaminant level for combined ²²⁶ Ra and ²²⁸ Ra in drinking water	5 pCi/L	EPA Interim Standards 40 CFR 141.15
	· · ·	Maximum permissible concen- tration of the following radionuclides in water for unrestricted areas		NRC 10 CFR 20.103 Appendix B, Table II
	·	226Ra 238U 230Th 210Pb	30 pCi/L 40,000 pCi/L 2,000 pCi/L 100 pCi/L	
'.	Airborne ²²² Rn progeny	Remedial action indicated if ²²² Rn progeny exceed this concentration because of uranium mill tailings under or around the structure	0.01 WL	10 CFR 712.7

Table 1. A summary of applicable radiation guidelines

.

i

ł

l

Ľ

••

•

Type of radiation measurement or sample	Radiation level or radionuclide concentration		
Gamma-ray exposure rate at 1 m above floor or ground surface ($\mu R/h$)	8 ^a		
Direct alpha activity on indoor floor or wall surface (dpm/100 cm ²)	26		
Transferable alpha activity on indoor floor or wall surface (dpm/100 cm ²)	10		
Transferable beta-gamma activity on indoor floor or wall surface (dpm/100 cm²)	20		
Beta-gamma dose rate activity on ground, floor and wall surfaces (mrad/h)	0.01 - 0.03		
Indoor radon concentration (pCi/L) Basement Upstairs	1.7 ^b 0.8 ^b		
Indoor radon daughter concentration (WL) Basement Upstairs	0.008 ^b 0.004 ^b		
Concentration of radionuclides in soil (pCi/g) ²³² Th ²³⁸ U ²²⁶ Ra	0.9 ^c 0.9 ^c 0.9 ^c		

Table 2. Background radiation levels for the northern New Jersey area.

a_{Reference} 5. bReference 6. cReference 7.

		·		C			
Grid ^a location	Gamma exposure at 1 m (μR/h)	<u>Grid point measureme</u> Gamma exposure at the surface (µR/h)	nts" Beta-gamma dose rate at 1 cm above the surface (mrad/h)	Maximum gamma exposure at 1 m (µR/h)	Haximum gamma exposure at the surface (µR/h)	Beta-gamma dose rate at maximum 1 G above the surface (mrad/h)	
		10	······································		10		
0,03 8	11	12			10	•	
0+03, BL	13	14			14		
0+08, BL	10	18	0.03		17		
0+09, BL	27	10	0.01		17		
0+12, BL	24	19			15		
U+15, BL	20	15	0.62		15		
0+18, BL	22	10	0.01	49	33	0.06	
0+21, BL	. 22	15	0.02		27		
0+24, BL	51		0.02		27		
0+27, BL	55	8L	0.03		27		
0+30, BL	49	31	0.05		27		
0+33, BL	49	86	0.05	75	53	0.06	
0+36, BL	60.	55	0.11	15	••		
0+37.5, BL	89	82	0.06		q		
0+00, 3L	9	8			10		
0+03, 3L	10	10			10		
0+06, 3L	13	12			11		
0+09, 3L	14	. 13			11	•	
0+12, 3L	14	14			11		
0+15, 3L	15	14			13		
0+18, 3L	15	14			13		
0+21, 3L	17	16			13		
0+24, 3L	20	15			14		
0+27, 3L	20	15			13		
0+36, 3L	35	24	0.02		22		
0+37.5, 31	40	29	0.02				
0+30, 4.51	9	13			13		
0+33, 4.51	14	10			14		
0+36. 4.5	28	20	0.02		21		
0+00.61	8.9	9			9		
0+03, 61	10	10			10	•	
0+06 61	n	11			12		

 \cdot

Table 3.	Outdoor	measurements	at	459	Latham	Street
----------	---------	--------------	----	-----	--------	--------

с.³і

	Grid point measurements ^b			Grid block measurements ^C				
Grid ^a location	Gamma exposure Gamma exposure at 1 m at the surface (µR/h) (µR/h)		Beta-gamma dose rate at 1 cm above the surface (mrad/h)	Maximum gamma exposuge at 1 m (µR/h)	Maximum gamma exposure at the surface (µR/h)	Beta-gamma dose rate at maximum 1 g above the surface (mrad/h)		
0+09, 6L	12	13						
0+12, 6L	12	12						
)+15, 6L	12	11						
0+18, 6L	14	15			13			
)+21, 6L	17	16			13			
)+24, 6L	15	14			13			
)+27, 6L	15	14			13			
0+30, 6L	13	13			14			
D+33, 6L	15	14			16	,		
0+36, 6L	27	20	0.02		. 18			
0+37.5 , 6 L	24	22	0.02					
)+06, 7L	10	12						
)+00, 9L	9	9			8			
0+03, 9L	9	9			9			
)+06, 9L	8	8						
)+18, 9L	13	15			13			
)+21, 9L	14	14			11			
)+24, 9L	14	14			12			
)+27, 9L	13	13			13			
)+30, 9L	15	- 14			14			
)+33, 9L	17	16			15			
)+36, 9L	22	20	0.02		15			
)+37.5, 9L	22	18	0.02					
)+00, 12L	7	1			8			
)+03, 12L	9	9			8			
0+06, 12L	8	10			11			
H16, 12L	9	10			11			
)+18, 12L	13	12			11			
)+21, 12L	13	13	. •		11			
)+24, 12L	12	13			13			
D+27, 12L	14	13			13			
)+ 30, 12L	14	15			15			
J+33, 12L	17	17			14			

Table 3. (continued)

(

i

, r 1 í

		Grid point measureme	nts ^b	Grid block measurements ^C				
Grid ^a location	Gamma exposure at 1 m (µR/h)	Gamma exposure at the surface (µR/h)	Beta-gamma dose rate at 1 cm above the surface (mrad/h)	Maximum gamma exposure at 1 m (µR/h)	Maximum gamma exposure d at the surface (μR/h)	Beta-gamma dose rate at maximum 1 gm above the surface (mrad/h)		
0+36, 12L	22	18	0.02	18	18	0.06		
0+37.5, 12L	22	18	0.02					
0+09, 13L	· 7	9			9			
0+12, 13.5L	8	9			11			
0+15, 13.5L	9	10			9			
0+00, 15L	7	11						
0+03, 15L	9	9						
0+06, 15L	8	9						
0+09, 15L	9	9						
0+12, 15L	8	9						
0+15, 15L	11	10						
0+18, 15L	11	11						
D+21, 15L	12	12						
0+24, 15L	12	11						
0+27, 15L	13	12						
0+30, 15L	14	13						
0+33, 15L	· 15	15						
0+36, 15L	18	15						
0+37.5, 15L	22	20						

Table 3. (continued)

ſ

i.

. [

- E

1

ľ

i

^aGrid location is shown on Fig. 3.

í

f

ł

^bGrid point measurements are discrete measurements at each grid point.

^CGrid block measurements are obtained by a gamma-ray scan of the entire block.

^dAbsence of a value indicates no measurement was taken.

Sample ^a	location ^b	Radionucli	Radionuclide concentration (
<u> </u>	Locación	232 _{Th} c	238Ud	226 Ra ^C			
MJ74	0+03, 13.5L	0.82 ± 0.04	1.1	1.1 ± 0.04			
MJ75	0+04, 7.5L	0.79 ± 0.06	0.66	0.70 ± 0.06			
MJ76	0+10.5, 1.5L	1.1 ± 0.4	1.0	0.96 ± 0.4			
MJ77	0+19.5, 1.5L	0.95 ± 0.03	0.95	0.58 ± 0.03			
MJ78	0+27, 1.5L	1.8 ± 1	1.4	1.4 ± 0.03			
MJ79	0+33.2, 0.2L	4.0 ± 2	1.2	1.7 ± 0.04			
MJ80	0+36.2, 8L	1.3 ± 0.04	1.1	1.1 ± 0.04			
MJ81	0+36.5, 13.5L	2.0 ± 0.06	1.1	1.1 ± 0.06			
MJ82	0+28.5, 13.5L	1.2 ± 0.04	1.2	1.1 ± 0.02			
MJ83	0+28.5, 7.5L	1.2 ± 0.05	1.2	1.0 ± 0.05			
MJ84	0+23, 9L.	0.99 ± 0.04	1.0	0.86 ± 0.04			
MJ85	0+19, 12L	1.6 ± 0.04	1.1	1.0 ± 0.3			
MJ86	0+14, 14L	1.0 ± 0.04	1.0	0.73 ± 0.02			
MJB26	0+24, BL	7.1 ± 2	1.3	2.9 ± 1			

Table 4. Results of radionuclide analyses of surface soil samples from 459 Latham Street

^aMJ is a systematic surface soil sample; MJB is a bias surface soil sample. All samples were obtained from the top 15 cm of the soil surface.

^bLocation is shown on Fig. 5.

^CIndicated counting error is at the 95% confidence level $(\pm 2\sigma)$.

^dTotal error on measurement results are less than ±3% error (95% confidence level).

	External gamma exposure rate (µR/h)		Beta-gamma dose rate at 1 cm in the	Average direct alpha activity	Transferable alpha activity/Transferable
Location ^a	Center of room at 1 m	Surface maximum	center of room (mrad/h)	on surface (dpm/100 cm²)	beta-gamma activity (dpm/100 cm²)
Street level				•	
Room 1 (Fotry)	9	10	0.02	<26	b
Room 2 (Living room)	Å	12	0.02	<26	b
loom 2 (Dining room)	ğ	10	0.02	<26	< 10/<20
com A (Kitchen)	11	12	0.02	<26	ь
Ann 5 (Pantry)	10	11	0.02	< 26	b
som 6 (Donch)	17	15	0.02	<26	b
loom 7 (Stairway)	12	12	0.01	<26	b
econd level					
toom 8 (Hall)	10	12	0.02	<26	b
aom 9 (Study)	10	10	0.02	<26	b
oom 10 (Bedroom)	10	10	0.02	<26	<10/<20
com 10 (Bedroom)	11	11	0.02	<26	Δ.
nom 12 (Bathroom)	13	13	0.04	<26	b
oom 13 (Stairway)	14	15	0.01	<26	<10/<20
[hird leve]					
Room 14 (Attic)	12	14	0.01	< 26	b
Basement level					
Doom 15 (Stairway)	11	11	0.02	<26	b
16 (Main recal	ii	12	0.02	<26	<10/<20
com 17 (Rathroom)	10	12	0.03	<26	b
oom 19 (Pantru)	13	14	0.03	<26	b
to (Tanlify)	11	14	0.02	<26	b

Table 5. Indoor measurements at 459 Latham Street.

^aLocation shown on Figs. 6-9.

^bNo measurement taken.

THE REPORT FROM FROM THE CONTRACT FOR CONTRACT FOR CONTRACT, IN

	Concentration of	Radon daughter concentration in air (WL)	Concentration of radionuclides in air (pCi/L)				
Location	²²² Rn in air (pCi/L)		²¹⁸ Po (Ra A)	²¹⁴ Pb (Ra B)	²¹⁴ Bi (Ra C)	²¹² рь (Th B)	²¹² Bi (Th C)
Basement	a	0.0013	0.39	0.11	0.091	b	b
First level, living room	à	0.00027	0.047	0.044	0.00043	b	b

Table 6. Radon and radon daughter measurements at 459 Latham Street

^aSample not taken.

^bBelow minimum detectable concentration (MDC).

Measurement or sample type	Number of measurements/ samples	Range	Mean
Outdoors			· .
Grid point measurements			
External gamma exposure rate at 1 m ($\mu R/h$)	84	7-89	16
External gamma exposure rate at the surface (µR/h)	84	7-82	18
<pre>Beta-gamma dose rate at 1 cm above the surface (mrad/h)</pre>	19	0.01-0.1	0.03
Systematic surface soil samples (pCi/g)			
232Th 238U 226Pa	13 13 13	0.79-4.0 0.66-1.4 0.58-1.7	1.4 1.1 1.0
Tedeous	10	0.00 1.7	4.0
Indoors			
Systematic room surveys			
External gamma-ray exposure rate at 1 m (µR/ḥ)	19	8-17	11
Beta-gamma dose rate at 1 cm above the floor surface (mrad/h)	19	0.01-0.04	0.02
Direct alpha activity on the surface (dpm/100 cm ²)	19	<26	<26

Table 7. Summary of outdoor and indoor measurements and sample results at 459 Latham Street

Location ^a	Measurement type	Measurement result
Area A	Maximum external gamma-ray exposure rate	82
	Range of ²³² Th concentrations measured	•••
	in surface soil (pCi/g)	4.0-7.1
	Estimated areal extent of	
	contamination (m²)	5
	Estimated average depth of	
	contamination (m)	0.15
	Estimated total volume of	
	contaminated material ^D (m ³)	0.8

Table 8. Summary of measurements results in contaminated areas at 459 Latham Street

^aFor area designation see Fig. 4.

^bVolume estimates are based on a correlation of surface measurements and subsurface investigations using a reasonable number of drill holes. The exact shape of the contaminated regions cannot be precisely determined by this type of investigation. Actual irregular shapes have therefore been approximated by the most reasonable regular geometric shape (e.g., cylinder, or rectangular prism).

APPENDIX I

ہ۔ ایسانہ

ς...

1

5 . . .

ACTION AND SURVEY PLAN, MAYWOOD, NEW JERSEY ACTION PLAN FOR PRIVATE PROPERTY SURVEYS IN MAYWOOD, NEW JERSEY

Purpose

This plan defines the ORNL activities to survey private properties in Maywood, New Jersey, which are believed to be contaminated with residues from thorium processing operations at the former Maywood Chemical Company. There are three objectives of these surveys: (1) define the current radiological status of each property, (2) define the sources of radiation exposures on each property and estimate the volume of material involved, and (3) prepare an exposure evaluation, comparing radiation exposures with guidelines.

Approach

Initially, ORNL will review all available data relevant to the properties involved. A generic survey plan will then be developed for conduct of private property surveys and will be modified in the field as needed to characterize the properties and radiation sources. Following approval of this approach, ORNL will conduct the radiological surveys at each private property for which consent can be obtained. The findings of each field survey will be prepared and submitted to DOE as a preliminary report; a final report on each property will be submitted after environmental samples are analyzed. The required work is separated into individual tasks which may be summarized as follows:

Task 1. Review of Available Data

Data provided by ESED have been reviewed and incorporated in the survey planning process. Other data have been volunteered by ORAU, and by the New Jersey Department of Environmental Protection. It is anticipated that additional contacts will be made with NRC Region I personnel. Historical information about each property will be obtained from brief home owner/occupant interviews.

Task 2. Preparation of Survey Plan

The radiological survey plan for private properties will be developed after the available data are reviewed. Ordinarily, a site visit would precede this task. However, due to the immediate need for the surveys, a general plan will be prepared based on prior experience. This plan will be modified in the field as needed to fully characterize any property.

Task 3. Implementation of Radiological Surveys

Radiological surveys of private properties will be conducted according to the approved survey plan. Surveys will only be conducted on properties for which consent can be obtained. Outdoor drilling will be done on an as-needed basis. <u>Drilling or coring through basement</u> <u>floors will only be done as a last resort for obtaining necessary data</u> about subsurface radioactivity profiles.

Task 4. Gamma-Ray Scans of Adjacent Properties

Because of the crescent shapes of the isopleths in the EG&G aerial survey and the possibility of spill-over contamination, it is recommended that gamma-ray scans be conducted on adjacent properties along Latham and Davidson Streets. These scans would be conducted by survey personnel walking on the property. The ground would be scanned with an NaI(Tl) scintillation survey meter at the surface; building foundation walls would also be scanned. If any anomalies were found during this scan, a full radiological survey of the property would be conducted. A scanning survey of a property would be done only with the property owner's consent.

Task 5. Radiological Survey Reporting

The radiological survey findings for each property will be reported in two separate reports. One report will contain all field measurement data obtained at each property. These preliminary letter reports will be submitted to DOE within five days following the completion of the survey. Conclusions in these letter reports will relate the radiation exposures found on each site to established guidelines for members of the public. Sources of radiation exposures will be identified and the quantity of radioactive material involved will be estimated. An evaluation of radiation exposure will be prepared for each property. The second letter report for each property will contain all analytical results for environmental samples taken during the survey. These analytical results will be related to on-site measurements. Comments received on the preliminary report will be incorporated in preparation of the second report. Any properties for which access was denied will be identified as will any property which had no anomalies on the surface gamma-ray scan. These identifications will be made in the cover letter transmitting the first series of reports.

Schedule

Task 1 and Task 2.

These tasks will be completed during the week ending May 20, 1981.

Task 3 and Task 4.

These tasks will be performed concurrently. Task 3 is scheduled to begin June 3, 1981.

Task 5.

Preliminary reports will be transmitted during the week of June 19, 1981. Target date for transmittal is June 15, 1981. Draft final letter reports will be transmitted approximately six weeks following the preliminary report transmittal.

RADIOLOGICAL SURVEY PLAN FOR PRIVATE PROPERTIES IN MAYWOOD, NEW JERSEY

INTRODUCTION

The Stepan Chemical Company (formerly Maywood Chemical Company) was developed in 1895. From about 1916 until 1957 the Maywood Chemical Company processed thorium for use in the manufacture of gas mantles for various lighting devices.¹ In 1932, Route 17 was built to the west of the main plant through an area that was used for disposal of process wastes. Although access to the site was probably restricted, the waste disposal area had no access restrictions. In 1959, Maywood Chemical Company was purchased by the Stepan Chemical Company. A federally supervised cleanup of a portion of the waste dump was conducted in 1960. Presently, Stepan Chemical Company owns a 30-acre site east of N.J. Route 17, just south of the New York, Susquehanna and Western Railroad right of way. On the west side of N.J. Route 17, SWS Industries owns a vacant 8.7-acre site (formerly a portion of the waste disposal area); plans have been made to locate a warehouse/office complex on this site.

During an aerial survey of the Stepan Chemical Company and the surrounding area in Maywood, New Jersey, by EG&G¹ on January 26, 1981, anamously high gamma-ray exposure rates (principally ²³²Th daughter radionuclides were observed in a residential area close to the Stepan Chemical site. Seven private homes in Maywood, New Jersey, were later identified in a follow-up ground survey by the Nuclear Regulatory Commission² as having external gamma radiation levels significantly above background. Exposure rates up to 3 mR/h have been observed on these properties. It is surmized that thorium residues were obtained from the Maywood Chemical Waste disposal area and used as fill material on these private properties.

At the request of the Environmental and Safety Engineering Division (ESED) of the Department of Energy, the Off-Site Pollutant Measurements Group, at Oak Ridge National Laboratory (ORNL) will perform a comprehensive radiological survey on seven private properties in Maywood, New Jersey. The survey is scheduled to begin June 3, 1981.

SURVEY METHODS

The following section describes the survey methods to be employed in performing the ORNL radiological survey. Detailed descriptions of instrumentation, measurement procedures and sample analyses are presented in an ORNL/TM report.³

Outdoor Survey

Grid system

Prior to radiological measurements, a rectangular grid will be established covering the entire area to be surveyed. The spacing of mutually perpendicular grid lines will be determined by the size of the area involved and by the level of detail required for any given area. At least 30 grid points (intersection of grid lines) will be established for each property. At some locations where significant levels of contamination are observed, a smaller grid system will be superimposed to provide more detailed information as required. The size of the smaller grid system will be determined in the field as conditions dictate.

External gamma radiation measurements

External gamma radiation levels will be measured using a $3.2 \text{ cm} \times 3.8 \text{ cm}$ NaI(T1) probe attached to a ratemeter (calibration for this instrument is performed in the field using a Reuter-Stokes Pressurized Ion Chamber [PIC]). External gamma-ray exposure rates are measured at the ground surface and 1 m above the ground surface at grid points; these measurements will be recorded. Each grid block (square formed by the grid lines) will be scanned at the surface, and the maximum gamma radiation level within each block will be noted.

Beta-gamma dose rates

Beta-gamma dose rate measurements at 1 cm above the ground surface will be performed at those locations where surface gamma radiation levels are significantly above background. The instrument used for these measurements is a Geiger-Mueller (G-M) survey meter with a window thickness of 7 mg/cm² and a halogen-quenched GM tube (open and closed window).

Surface deposits of radioactive materials

Samples of surface soil (a 10 cm \times 10 cm area soil sample to a 15-cm depth) will be collected at systematic locations and analyzed in order to identify the locations and estimated quantities of surface deposits of radioactivity. In addition, biased surface soil samples will be obtained at representative locations where elevated external gamma radiation levels are observed. Soil samples will be packaged and transported back to ORNL for processing and analyses for concentrations of 238 U, 226 Ra, 232 Th and other radionuclides as appropriate.

Subsurface deposits of radioactive materials

Drillings and/or corings will be made at selected locations throughout any area suspected of having subsurface deposits of contaminated materials. The purpose of drilling and/or coring is to locate and estimate the quantities of subsurface deposits of radioactivity. If subsurface radioactivity is suspected within an area and no surface contamination is evident, a random search technique of drilling and gamma-ray logging within that area will be used to locate and identify the boundaries of any subsurface contamination. Drill holes will be augered to an approximate 15-cm diameter and to a depth where a naturally occurring soil strata is encountered. A plastic pipe with a 10-cm (4-inch) inside diameter will be placed in each hole, and an NaI(T1) gamma-ray scintillation probe will be lowered inside the pipe. The probe is encased in a lead shield with a narrow collimating slot on the side. This arrangement provides measurement of gamma radiation intensities resulting from contamination within small fractions of the hole depth. Measurements are usually made at 15-cm or 30-cm intervals. This "logging" of the core holes is done in order to define the profile of radioactivity underground and as a first step in determining the extent of subsurface contamination at each location. Samples of

subsurface soil from core holes will be collected at random locations and returned to ORNL for analysis for ²²⁶Ra, ²³⁸U, ²³²Th and other radionuclides deemed appropriate. The number of locations of core holes will be determined in the field based on the results of augerhole loggins and surface gamma radiation levels. The core holes will be drilled and split-spoon samples will be taken at 15- to 30-cm intervals as required. After sampling, the core holes will be augered to a 15-cm diameter and logged at 15- to 30-cm intervals (as required) using the lead-shielded gamma-ray scintillator.

Indoor Surveys

External gamma radiation measurements

External gamma radiation levels will be measured at a height of 1 m above the floor in the center of each room using an NaI(Tl) scintillation survey meter. The survey meter will be cross-calibrated with the Reuter-Stokes PIC in the most frequently occupied room of the house. The floor and walls of each room will be scanned for gamma radiation at the surface and the maximum gamma radiation level associated with each surface will be noted.

Beta-gamma dose rates

Beta-gamma dose rates will be measured at those locations where external gamma-ray exposure rates were found to be significantly above background. These measurements will consist of open- and closed-window Geiger-Mueller (G-M) survey meter readings.

Surface alpha radiation levels

Surface alpha radiation levels will be measured at the center of the room as well as several other locations as determined in the field. A ZnS(Ag) detector (covered by a 0.03-mil aluminized mylar sheet) will be used and have an attached photomultiplier tube with a portable scaler/ratemeter.

Removable alpha and beta-gamma activity from surfaces

Removable or transferable surface contamination levels will be measured by taking standard smears. The smears are lightly rubbed over a 100-cm² area and counted for removable long-lived alpha and beta-gamma activity. A smear sample will be obtained near the center of the room where a hard surface is accessible. Smear samples will also be taken at locations where elevated gamma, beta-gamma, and/or alpha radiation levels are observed.

Radon and radon progeny measurements

Concentration of radon (^{222}Rn) will be measured indoors at the houses if evidence of indoor contamination is found. Individual radon (radon $[^{222}Rn]$, thoron $[^{220}Rn]$, actinon $[^{219}Rn]$) progeny concentrations in air will be measured at various locations and times within all houses.

Other samples

During the gamma-ray scanning of the property, building materials such as wood, concrete, or bricks may be found to have elevated gamma radiation levels associated with them. These materials as well as atypical samples from the outdoor survey (e.g., large rocks, vegetation, etc.) may be obtained and returned to ORNL for analyses. The resulting laboratory analysis is sample-specific, dependent on the pattern of contamination (i.e., radionuclide concentration versus measurement of surface contamination).

REFERENCES

- EG&G, An Aerial Radiological Survey of the Stepan Chemical Company and Surrounding Area, Maywood, New Jersey, EG&G Survey Report NRC-8109 (April 1981).
- Nuclear Regulatory Commission, memorandum from M. Campbell to J. D. Kinnerman, re: Records of Surveys of Private Homes in Maywood, New Jersey, Docket No. 40-8610, May 15, 1981.
- 3. B. A. Berven, T. E. Myrick, R. W. Leggett, W. A. Goldsmith, and F. F. Haywood, Generic Radiological Survey and Post Remedial Action Survey Plan for Private and Public Properties Associated with the Department of Energy's Remedial Action Program, ORNL/TM-7850 (in draft).

APPENDIX II

EVALUATION OF RADIATION EXPOSURES AT 459 LATHAM STREET IN MAYWOOD, NEW JERSEY

S

EVALUATION OF RADIATION EXPOSURES AT 459 LATHAM STREET IN MAYWOOD, NEW JERSEY

INTRODUCTION

Contaminated material was first discovered at this property and several nearby properties during an EG&G aerial radiological survey and subsequent ground-level Nuclear Regulatory Commission radiological survey. Because the contaminated material was similar to waste material that was generated by the Maywood Chemical Company (now Stepan Chemical Company), the material is believed to have originated from that source.

John Tripuka, owner of 461 Latham Street, confirmed that from 1944-1946, material from the former Maywood Chemical Company was transported to 464 Davison (then a vacant lot) by his father and was used for fill and mulching material at both properties. Other neighbors also had access to this material for use in their yards.

In June 1981, on request of the Department of Energy (DOE), Oak Ridge National Laboratory (ORNL) performed a radiological survey of this property. It was determined that much of the exterior property was contaminated with radioactive material of the naturally occurring thorium and uranium decay chains. The contamination is limited to approximately the upper 8 inches (0.2 meter) of soil. The contaminated material was found in the lawn along a 1-foot wide by 50-foot long strip of property along the very back (northeast corner) of the property in the back yard (adjacent to 461 Latham). No radioactive contamination was found in the house.

BACKGROUND RADIATION EXPOSURES

The naturally occurring radionuclides present at this property are present normally in minute quantities throughout our environment. Concentrations of these radionuclides in normal soils, air, water, food, etc., are referred to as background concentrations. Radiation exposures resulting from this environmental radioactivity are referred to as background exposures. These background exposures are not caused by any human activity and, to a large extent, can be controlled only through man's moving to areas with lower background exposures. Each and every human receives some background exposure daily.

The use of radioactive materials for scientific, industrial, or medical purposes may cause radiation exposures above the background level to be received by workers in the industry and, to a lesser extent, by members of the general public. Scientifically based guidelines have been developed to place an upper limit on these additional exposures. Limits established for exposures to the general public are much lower than limits established for workers in the nuclear industry.

As described previously, the contaminated materials present on this property consisted of radionuclides of the thorium and the uranium decay chains. Uranium-238 and thorium-232 were created when the earth was formed, and are still present today because they take a very long time to undergo radioactive decay. The half-life is a measure of the time required for radioactive decay; for uranium-238 it is 4.5 billion years. Thus, if 4.5 billion years ago you had a curie* of uranium-238, today you would have one-half curie; 4.5 billion years hence, this would only be one-fourth curie. As the uranium-238 decays, it changes into another substance, thorium-234. Thorium-234 is called the "daughter" of uranium-238. In turn, thorium-234 is the "parent" of protactinium-234. Radioactive decay started by uranium-238 continues as shown in Table II-1 until stable lead is formed. The "decay product" listed in Table II-1 is the radiation produced as the parent decays. Radioactive decay started by thorium-232 continues as shown in Table II-2 until stable lead is also formed.

RADIATION EXPOSURES AT 459 LATHAM STREET

There are four primary pathways to humans from the type of contaminated material found on this property. These potential pathways are: (1) direct gamma-ray exposures, (2) inhalation of radon and radon daughters from radon decay, (3) inhalation of airborne radioactive particles, and (4) ingestion of radioactively contaminated foods or water.

÷

^{*}The curie is a unit used to measure the amount of radioactivity in a substance; one curie represents 37 billion radioactive distintegrations per second.

In the following sections, the magnitude of each of these pathways at 459 Latham Street is described, based on the radiological conditions determined from the recent radiation survey. A summary of this radiation exposure data is given in Table II-3 along with a listing of the normal background levels for this area and the applicable guideline values for comparison.

Direct Gamma-Ray Exposures

As shown in Tables II-1 and II-2, several of the daughters of uranium-238 and of thorium-232 emit gamma radiation (gamma-rays are penetrating radiation like X-rays). Hence, the contamination present on this property is a source of external gamma radiation exposure to persons who reside near or come in contact with this material. Measurements of the gamma radiation levels outdoors on the property determined that the exposure rate at 1 m above the ground ranged from 7 to 82 microroentgens* per hour, with an average of 16 microroentgens per hour. Inside the house, the exposure rates ranged from 8 to 17 microroentgens per hour, with an average value of 11 mircoroentgens per hour. For comparison, the normal background gamma-ray exposure rate for the Maywood area is 8 microroentgens per hour.

The NRC guidelines (found in the Code of Federal Regulations, Title 10, Part 20^{\dagger}) require that the continuous gamma radiation exposure to any individual in the general population not exceed 500 milliroentgens per year. For persons residing at this property, continuous exposure (24 hours a day, 365 days per year) to the average levels found outdoors would result in an annual gamma-ray exposure of 140 milliroentgens, a value below the guideline limit. Exposures above the guideline could occur only at isolated areas outdoors on the property, and only under continuous exposure conditions. Indoors, the continuous annual exposure

*The roentgen is a unit which was defined for radiation protection purposes for people exposed to penetrating gamma radiation. A microroentgen is one-millionth of a roentgen. A milliroentgen is onethousandth of a roentgen, or one thousand microroentgens.

^TTitle 10, Code of Federal Regulations, Part 20, is a regulatory document published by the Nuclear Regulatory Commission and may be found in the Federal Register.

from the average radiation levels would be 96 milliroentgens. Again, this exposure is below the applicable guideline. For comparison with everyday exposures, these values can be compared to a normal background exposure of 70 milliroentgens per year in New Jersey or a typical chest X-ray exposure of 27 milliroentgens.

Inhalation of Radon and Radon Daughters

Radon-222 (the daughter of radium-226) and radon-220 (the daughter of radium-224) are inert gases produced by decay of their respective parent radionuclides. When produced, this gas can migrate through the soil or other materials and eventually be released to the atmosphere. If the gas enters a structure with poor ventilation, accumulation of the gas and its short-lived daughters in room air can occur. Breathing of this short-lived radon daughter results in exposure of the respiratory tract to radiation.

Since contaminated soil containing the radioactive parents of radon-222 and radon-220 was found outdoors on this property, the potential for radon migration into the house was believed to exist. Measurements of the indoor concentrations of radon daughters in air were made for comparison with normal background levels, as well as current guidelines.

The measured radon daughter concentrations in the house were determined to be less than 0.002 working level.* These concentrations are below the normal background range for the New Jersey area (0.004 to 0.008 working level), and are well below the guideline values of 0.03 working level suggested in 10 CFR 20 or 0.01 working level given in the Surgeon General's Guidelines.[†]

^{*}The working level is a unit which was defined for radiation protection purposes for uranium miners. It represents a specific level of energy emitted by the short-lived daughters of radon.

^TFederal Register, Vol. 41, No. 253, pages 56777-56778, December 30, 1976 (10 CFR 712).

Inhalation of Airborne Radioactive Particles

Radioactive particles associated with soil or similar materials can become airborne due to natural (e.g., wind) or human (scraping) forces. Once airborne, these particles can become inhaled, with subsequent exposure of the respiratory tract. Guidelines for acceptable concentrations of radionuclides in air have been developed and are presented in 10 CFR 20. At 461 Latham, this exposure pathway is of no concern due to the location of the contaminated material under grass and other vegetation. However, if present land use changes and extensive handling or scraping of the contaminated material occurs, the potential for radiation exposure from this pathway would be increased.

Ingestion of Radioactivity

The final pathway of potential radiation exposure for residents at this property is the ingestion of radionuclides through contaminated foods or water. Since the water supply at this residence is the public water system, unaffected by the contamination on the property, ingestion of contaminated water is considered insignificant.

The magnitude of the radiation exposure to an individual ingesting foods grown in contaminated soil is dependent upon a number of factors, including: (1) the concentration of radionuclides in the soil, (2) the amount of uptake of the specific radionuclide by the plant of concern, and (3) the amount of the plant consumed by the individual. At the present time, no guidelines are available listing the acceptable concentrations of radionuclides in the soil or foods for the radionuclides of concern at this property. Due to the small amount of contaminated material on this property and its spotty distribution, this radiation exposure pathway would be negligible in comparison to the direct gammaray exposure pathway.

PRELIMINARY ESTIMATE OF RADIATION RISK

For purposes of radiation protection, all radiation exposures are assumed to be capable of increasing an individual's risk of contracting cancer. A precise numerical value cannot be assigned with any certainty

to a given individual's increase in risk attributable to radiation exposure. The reasons for this are numerous; they include the individual's age at onset of exposure, variability in latency period (time between exposure and physical evidence of disease), the individual's personal habits and state of health, previous or concurrent exposure to other cancer-causing agents, and the individual's family medical history. Because of these variables, large uncertainties exist in any estimates of the number of increased cancer deaths in the relatively small population exposed at this property.

Using the results of the radiological survey at this property, preliminary estimates of the increased risk of cancer for residents living there have been calculated.* These estimates considered only the two most significant exposure pathways (direct radiation exposure and inhalation of radon and radon daughters) and were based on the following assumptions:

- The measurements that are reported in Table II-3 are respresentative of the conditions throughout the year and for every year. It is recognized that radon and radondaughter levels in the homes could be higher in winter because of less ventilation.
- The inhabitants spend 5% of their time in the basement (or the radon escaping to the upstairs when the door is opened adds an equivalent exposure).
- 3. The inhabitants live in this house all of their lives, from birth to age 70.
- 4. Each day the inhabitants spend an average of two hours away from the house and property, four hours outside the house but on the property, and 18 hours inside the house.

^{*}J. W. Healy and W. J. Bair, "Preliminary Report - Radiological Appraisal of Houses in Maywood, N. J." Attachment to letter from W. J. Bair, Battelle Pacific Northwest Laboratories to W. E. Mott, Department of Energy, Washington, D. C., July 17, 1981.

The total estimated increased risk due to radiation induced cancer for residents at 459 Latham Street was calculated to be approximately 0.01%.* Thus, for persons living for a lifetime at 459 Latham, instead of an average chance of 24.4% of eventually dying from cancer (the average for Bergen County, New Jersey in 1975)[†], they might have a hypothetical average chance of 24.41% of dying from cancer. These values compare with a lifetime average chance of dying from cancer of 21.8% for the state of New Jersey, and 19.3% for the United States.

SUMMARY

A summary of radiation exposure data at 459 Latham Street is presented in Table II-3. Of the four primary radiation exposure pathways, only one may be of immediate concern at this site under present conditions of property use. Radon and radon daughters are within background levels, therefore, no significant exposure above background from this pathway is anticipated. Inhalation of radionuclides is considered a negligible source of radiation exposure at the present since there is no apparent ordinary mechanism to cause contaminated material in the soil to become airborne. It is believed that possible future use of portions of the property for growing food could contribute appreciable radiation exposure to an individual consuming this food as a large fraction of his diet; however, under current conditions of use, this pathway is of no concern. Exposures to gamma radiation outdoors on this property could approach the guidelines for exposure to individuals in the general public. This pathway is, therefore, the most significant exposure mechanism at this site under current conditions of property use.

^{*}J. W. Healy and W. J. Bair, "Preliminary Report - Radiological Appraisal of Houses in Maywood, N. J." Attachment to letter from W. J. Bair, Battelle Pacific Northwest Laboratories, to W. E. Mott, Department of Energy, Washington, D. C., July 17, 1981.

^TMortality statistics were obtained from data in <u>Vital Statistics</u> of the United States - 1975, Volume II - Mortality, Part B, U. S. Department of Health, Education and Welfare, Public Health Service, National Center for Health Statistics, (PHS) 78-1102, 1977.

Exposures to gamma radiation outdoors on this property could approach the guidelines for exposure to individuals in the general public. This pathway is, therefore, the most significant exposure mechanism at this site under current conditions of property use.

Parent	Half-life	Decay products	Daughter
Uranium-238	4.5 billion years	alpha	thorium-234
Thorium-234	24 days	beta, gamma	protactinium-234
Protactinium-234	1.2 minutes	beta, gamma	uranium-234
Uranium-234	250 thousand years	alpha	thorium-230
Thorium-230	80 thousand years	alpha	radium-226
Radium-226	1,600 years	alpha	radon-222
Radon-222	3.8 days	alpha	polonium-218
Polonium-218 ^a	3 minutes	alpha	1ead-214
Lead-214 ^a	27 minutes	beta, gamma	bismuth-214
Bismuth-214 ^a	20 minutes	beta, gamma	polonium-214
Polonium-214 ^a	2 10,000 second	alpha	lead-210
Lead-210	22 years	beta	bismuth-210
Bismuth-210	5 days	beta	polonium-210
Polonium-210	140 days	alpha	1ead-206
Lead-206	stable	none	none

<u>,</u>

Table II-1. Uranium-238 decay series

^aShort-lived radon daughters.

Parent	Half-life	Decay products	Daughter	
Thorium-232	14 billion years	alpha	radium-228	
Radium-228	6.7 years	beta	beta actinium-228	
Actinium-228	6.1 hours	beta, gamma	thorium-228	
Thorium-228	1.9 years	alpha, gamma	radium-224	
Radium-224	3.6 days	alpha, gamma	radon-220	
Radon-220	55 seconds	alpha, gamma	polonium-216	
Polonium-216	0.15 seconds	alpha	lead-212	
Lead-212	11 hours	beta, gamma	bismuth-212	
Bismuth-212	61 minutes	alpha, beta,	polonium-212 (64%) r +ballium-208 (36%)	
Polonium-212	0.3 millionth of a second	alpha	lead-208	
or	(<u>3</u>)			
Thallium-208	3.1 minutes	beta, gamma	1ead-208	
Lead-208	stable	none	none	

Table II-2. Thorium-232 decay series

< >

١.

~

· . .