M-681

Formerly Utilized Sites Remedial Action Program (FUSRAP)

ADMINISTRATIVE RECORD

for the Maywood Site, New Jersey

US Army Corps of Engineers.

067593-03 M-681 ORNL/RASA-88/34 / NJ/MAY

RESULTS OF THE RADIOLOGICAL SURVEY AT 14 SAINT ANN PLACE, ROCHELLE PARK, NEW JERSEY (MJ032)

> R. D. Foley L. M. Floyd

OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

OAK RIDGE

LABORATORY

MARTIN MARIL

ORNL/RASA-88/34

HEALTH AND SAFETY RESEARCH DIVISION

Waste Management Research and Development Programs (Activity No. AH 10 05 00 0; NEAH001)

RESULTS OF THE RADIOLOGICAL SURVEY AT 14 SAINT ANN PLACE, ROCHELLE PARK, NEW JERSEY (MJ032)

R. D. Foley and L. M. Floyd

Date Published – March 1990

Investigation Team

R. E. Swaja – Measurement Applications and Development Manager W. D. Cottrell – FUSRAP Project Director R. D. Foley – Field Survey Supervisor

Survey Team Members

A. C. Butler^{*} P. F. Tiner C. J. Miller

*Former Employee Martin Marietta Energy Systems, Inc.

Work performed by the MEASUREMENT APPLICATIONS AND DEVELOPMENT GROUP

Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6285 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-84OR21400

CONTENTS

LIST OF TABLES	••	• •	•	••	•	٠	•	v
ACKNOWLEDGMENTS	•••	•••	•	••	•	•		vii
ABSTRACT	• •	••	•		•	•	•	ix
INTRODUCTION		••	•	••	•	•	•	1
SURVEY METHODS	•••	••	•	••	•	٠	•	2
SURVEY RESULTS	• •	• •	•	•••		•	•	2
Surface Gamma Radiation Levels	•••	•••	•	•••	•	•	•	2 2
SIGNIFICANCE OF FINDINGS		•••	•	• •	•	•	•	3
REFERENCES		• •	•	•••	•	•	•	3

LIST OF TABLES

1	Applicable guidelines for protection against radiation	4
2	Background radiation levels in soil from the northern New Jersey area	4
3	Concentrations of radionuclides in soil at 14 Saint Ann Place, Rochelle Park, New Jersey (MJ032)	5

V

-

ACKNOWLEDGMENTS

Research for this project was sponsored by the Division of Facility and Site Decommissioning Projects, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. The authors wish to acknowledge the support of J. E. Baublitz, Acting Director, Office of Remedial Action and Waste Technology; J. J. Fiore, Director, Division of Facility and Site Decommissioning Projects; and members of their staffs. The authors also appreciate the contributions of J. L. Rich and L. J. Jeffers of the Publications Division; A. C. Butler, former employee of Martin Marietta Energy Systems, Inc.; and D. A. Roberts of the Measurement Applications and Development Group for participation in the collection, analyses, editing, and reporting of data for this survey.

ABSTRACT

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid-1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the U.S. Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally²²⁰Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 14 Saint Ann Place, Rochelle Park, New Jersey (MJ032), was conducted during 1987.

Results of the survey demonstrated no radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program guideline values. The radionuclide distributions were not significantly different from normal background levels in the northern New Jersey area.

RESULTS OF THE RADIOLOGICAL SURVEY AT 14 SAINT ANN PLACE, ROCHELLE PARK, NEW JERSEY (MJ032)*

INTRODUCTION

From 1916 to 1956, process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores were generated by the Maywood Chemical Works (MCW), Maywood, New Jersey. During the latter part of this period, MCW supplied rare earth metals and thorium compounds to various government agencies. In the 1940s and 1950s, MCW produced thorium and lithium, under contract, for the Atomic Energy Commission (AEC). These activities ceased in 1956, and, approximately three years later, the 30-acre real estate was purchased by the Stepan Company. The property is located at 100 Hunter Avenue in a highly developed area in Maywood and Rochelle Park, Bergen County, New Jersey.

During the early years of operation, MCW stored wastes and residues in lowlying areas west of the processing facilities. In the early 1930s, these areas were separated from the rest of the property by the construction of New Jersey State Highway 17. The Stepan property, the interim storage facility, and several vicinity properties have been designated for remedial action by the U.S. Department of Energy (DOE).

The waste produced by the thorium extraction process was a sandlike material containing residual amounts of thorium and its decay products, with smaller quantities of uranium and its decay products. During the years 1928 and 1944 to 1946, area residents used these process wastes mixed with tea and cocoa leaves as mulch in their lawns and gardens. In addition, some of the contaminated wastes were apparently eroded from the site into Lodi Brook and carried downstream.

As a result of the Energy and Water Appropriations Act of Fiscal Year 1984, the property discussed in this report and properties in its vicinity contaminated with residues from the former MCW were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. As part of this project, DOE is conducting radiological surveys in the vicinity of the site to identify properties contaminated with residues derived from the MCW. The principal radionuclide of concern is thorium-232. The radiological surveys discussed in this report are part of that effort and were conducted, at the request of DOE, by members of the Measurement Applications and Development Group of the Oak Ridge National Laboratory.

A radiological survey of the private, residential property at 14 Saint Ann Place, Rochelle Park, New Jersey, was conducted during 1987. The survey and sampling of the ground surface were carried out on May 1, 1987.

^{*}The survey was performed by members of the Measurement Applications and Development Group of the Health and Safety Research Division at Oak Ridge National Laboratory under DOE contract DE-AC05-840R21400.

SURVEY METHODS

The radiological survey of the property included: (1) a gamma scan of the entire property surface outdoors and (2) collection of soil samples. These survey methods followed the plan outlined in Reference 1. No indoor survey measurements were performed.

Using a portable gamma scintillation meter, ranges of measurements were recorded for areas of the property surface. If the gamma readings were elevated, a biased soil sample was taken at the point showing the highest gamma radiation level. These samples were taken from the surface at 15 cm intervals to a depth of 30 cm. A comprehensive description of the survey methods and instrumentation has been presented in another report.²

SURVEY RESULTS

Applicable federal guidelines are summarized in Table 1.³ The normal background radiation levels for the northern New Jersey area are presented in Table 2.⁴ These data are provided for comparison with survey results presented in this report. All direct measurement results presented in this report are gross readings; background radiation levels have not been subtracted. Similarly, background concentrations have not been subtracted from radionuclide concentrations measured in environmental samples.

Surface Gamma Radiation Levels

Gamma radiation levels were measured during a gamma scan of the entire property surface. Gamma exposure rates over the major portion of the property ranged from 7 to 12 μ R/h. The highest gamma level, measuring 14 μ R/h, was found approximately 4 feet west of the fence at the southeastern corner of the house foundation. This slight elevation in gamma levels is typical of the naturally occurring radioactive substances present in bricks, concrete, granite, and other such materials used in paving and building construction. Otherwise, none of the readings were elevated.

Biased Soil Samples

Biased soil samples were taken from the one area of slightly elevated gamma readings. Results of laboratory analyses are provided in Table 3. Concentrations of radium and thorium in these samples ranged from 1.4 to 2.2 pCi/g and 1.3 to 2.1 pCi/g, respectively. Both samples were below DOE criteria (Table 1) and were not significantly different from normal background levels for the northern New Jersey area (Table 2).

SIGNIFICANCE OF FINDINGS

Measurements taken at 14 Saint Ann Place indicate that the property contained no significant radioactive contamination above normal background levels in this area. Radiological assessments of soil samples from the site demonstrate no radionuclide concentrations in excess of applicable Federal guideline values.

REFERENCES

- 1. W. D. Cottrell, ORNL, to A. J. Whitman, DOE/HQ, correspondence, "Radiological Survey of Private Properties in Lodi, New Jersey" (August 15, 1984).
- T. E. Myrick, B. A. Berven, W. D. Cottrell, W. A. Goldsmith, and F. F. Haywood, Procedures Manual for the ORNL Radiological Survey Activities (RASA) Program, Oak Ridge National Laboratory, ORNL/TM-8600 (April 1987).
- 3. U.S. Department of Energy, Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Rev. 2, March 1987).
- 4. T. E. Myrick, B. A. Berven, and F. F. Haywood, State Background Radiation Levels: Results of Measurements Taken During 1975-1979, Oak Ridge National Laboratory, ORNL/TM-7343 (November 1981).

Mode of exposure	Exposure conditions	Guideline value			
Radionuclide concen- trations in soil	Maximum permissible con- centration of the follow- ing radionuclides in soil above background levels averaged over 100 m ² area 232Th 230Th 228Ra 226Ra	5 pCi/g averaged over the first 15-cm of soil below the sur- face; 15 pCi/g when averaged over 15-cm thick soil layers more than 15 cm below the surface			
	238U	Derived (site specific)			

TADIE I. ADDIICADIE guidennes foi protection against fadiati	Table	1. Applicable gui	delines for	protection	against	radiatio
--	-------	-------------------	-------------	------------	---------	----------

*Reference 3.

Table 2. Background radiation levels in soil from the northern New Jersey area

Radionuclide	Concentration (pCi/g)*
226Ra	0.9*
232Th	0.9
238U	0.9

"These values represent an average of normal radionuclide concentrations in this part of the state. Actual values may fluctuate. "Reference 4.

	-	Radionuclide conce	entration (pCi/g
Sample	Depth (cm)	²²⁶ Ra ^a	²³² Th ^a
	Bia	sed samples ^b	
B1A B1B	0-15 15-30	1.4±0.2 2.2±0.08	1.3 ± 0.1 2.1 ± 0.2

	Table	3. C	Concent	rations (of radio	nuclio	les in so	oil at	
14	Saint	\mathbf{Ann}	Place,	Rochell	e Park,	New	Jersey	(MJ032)	ł

^aIndicated counting error is at the 95% confidence level $(\pm 2\sigma)$. ^bBiased samples are taken from areas shown to have elevated gamma exposure rates.

ORNL/RASA-88/34

INTERNAL DISTRIBUTION

- 1. B. A. Berven
- 2. R. F. Carrier
- 3. W. D. Cottrell
- 4. A. G. Croff
- 5. J. W. Crutcher
- 6. L. M. Floyd
- 7-11. R. D. Foley
- 12. S. V. Kaye

13. P. Y. Lu

- 14. P. T. Owen
- 15-17. R. E. Swaja
 - 18. J. K. Williams
 - 19. Central Research Library
 - 20. BEIA Publications Office
 - 21. Laboratory Records RC
 - 22. Y-12 Technical Library

EXTERNAL DISTRIBUTION

- 23. J. D. Berger, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831
- 24. R. W. Doane, Eberline, Inc., 800 Oak Ridge Turnpike, P.O. Box 350, Oak Ridge, Tn 37831
- 25. J. J. Fiore, U.S. Department of Energy, Division of Facility and Site Decommissioning Projects, NE-23, Washington, D. C. 20545
- 26-28. G. K. Hovey, Bechtel National, Inc., 800 Oak Ridge Turnpike, P.O. Box 350, Oak Ridge, TN 37831
 - 29. L. R. Levis, Roy F. Weston, Inc., 20030 Century Blvd., Germantown, MD 20874
 - 30. G. P. Turi, U.S. Department of Energy, Division of Facility and Site Decommissioning Projects, NE-23, Washington, D. C. 20545
 - 31. J. W. Wagoner, U.S. Department of Energy, Office of Environmental Restoration and Waste Management, Division of Decontamination and Decommissioning, EM-423, Washington, D. C. 20545
- 32-34. Andrew Wallo III, U.S. Department of Energy, Division of Environmental Guidance, EH-231, 1000 Independence Avenue, Washington, D. C. 20581
 - 35. Office of Assistant Manager, Energy Research and Development, Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 37831-8600
- 36-37. Office of Scientific and Technical Information, DOE, P.O. Box 62, Oak Ridge, TN 37831