M-688

Formerly Utilized Sites Remedial Action Program (FUSRAP)

ADMINISTRATIVE RECORD

for the Maywood Site, New Jersey

US Army Corps of Engineers®

M-68

ORNL/RASA-88/56

HEALTH AND SAFETY RESEARCH DIVISION

Nuclear and Chemical Waste Programs (Activity No. AH 10 05 00 0; ONLWC01)

RESULTS OF THE RADIOLOGICAL SURVEY AT 106 COLUMBIA LANE, LODI, NEW JERSEY (LJ063)

R. D. Foley, L. M. Floyd, and J. W. Crutcher

Date Published – July 1989

Investigation Team

R. E. Swaja – Measurement Applications and Development Manager W. D. Cottrell – FUSRAP Project Director R. D. Foley – Field Survey Supervisor

Survey Team Members

K. S. Dickerson A. K. Klitz R. A. Mathis W. H. Shinpaugh[•] W. Winton

*Stone Associates

Work performed by the MEASUREMENT APPLICATIONS AND DEVELOPMENT GROUP

Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6285 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-84OR21400

CONTENTS

1...

-

LIST OF FIGURES	
LIST OF TABLES	vii
ACKNOWLEDGMENTS	
ASBTRACT	
INTRODUCTION	1
SURVEY METHODS	2
SURVEY RESULTS	3
Surface Gamma Radiation Levels	3
Systematic Soil Samples	3
Auger Soil Samples	3
SIGNIFICANCE OF FINDINGS	4
REFERENCES	4

LIST OF FIGURES

4 3 | :-

1	Gamma radiation levels $(\mu R/h)$ measured on the surface at 106 Columbia Lane, Lodi, New Jersey (LJ063)	5
2	Diagram showing locations of soil samples taken at 106 Columbia Lane, Lodi, New Jersey (LJ063)	6
3	Gamma profile for auger hole 1 at 106 Columbia Lane, Lodi, New Jersey	7
4	Gamma profile for auger hole 2 at 106 Columbia Lane, Lodi, New Jersey	8
5	Gamma profile for auger hole 3 at 106 Columbia Lane, Lodi, New Jersey	9
6	Gamma profile for auger hole 4 at 106 Columbia Lane, Lodi, New Jersey	10
7	Gamma profile for auger hole 5 at 106 Columbia Lane, Lodi, New Jersey	11

y

LIST OF TABLES

1	Applicable guidelines for protection against radiation	12
2	Background radiation levels for the northern New Jersey area	12
3	Concentrations of radionuclides in soil at 106 Columbia Lane, Lodi, New Jersey (LJ063)	13

ACKNOWLEDGMENTS

Research for this project was sponsored by the Division of Facility and Site Decommissioning Projects, U.S. Department of Energy, under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. The authors wish to acknowledge the support of J. E. Baublitz, Acting Director, Office of Remedial Action and Waste Technology; J. J. Fiore, Director, Division of Facility and Site Decommissioning Projects; and members of their staffs. The authors also appreciate the contributions of J. L. Rich, S. W. Hawthorne, B. C. Littleton, and L. J. Jeffers of the Publications Division; M. S. Uziel of the Environmental Information Systems Group; D. A. Roberts, and T. R. Stewart of the Measurement Applications and Development Group; B. S. Ellis former employee of Martin Marietta Energy Systems, Inc.; and W. H. Shinpaugh of Don Stone Associates for participation in the collection, analyses, editing, and reporting of data for this survey.

ABSTRACT

Maywood Chemical Works (MCW) of Maywood, New Jersey, generated process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores from 1916 to 1956. MCW supplied rare earth metals and thorium compounds to the Atomic Energy Commission and various other government agencies from the late 1940s to the mid–1950s. Area residents used the sandlike waste from this thorium extraction process mixed with tea and cocoa leaves as mulch in their yards. Some of these contaminated wastes were also eroded from the site into Lodi Brook. At the request of the U.S. Department of Energy (DOE), a group from Oak Ridge National Laboratory conducts investigative radiological surveys of properties in the vicinity of MCW to determine whether a property is contaminated with radioactive residues, principally ²³²Th, derived from the MCW site. The survey typically includes direct measurement of gamma radiation levels and soil sampling for radionuclide analyses. The survey of this site, 106 Columbia Lane, Lodi, New Jersey (LJ063), was conducted during 1987.

Results of the survey demonstrated radionuclide concentrations in excess of the DOE Formerly Utilized Sites Remedial Action Program criteria. The radionuclide distributions are typical of the type of material originating from the MCW site.

RESULTS OF THE RADIOLOGICAL SURVEY AT 106 COLUMBIA LANE, LODI, NEW JERSEY (LJ063)*

INTRODUCTION

From 1916 to 1956, process wastes and residues associated with the production and refining of thorium and thorium compounds from monazite ores were generated by the Maywood Chemical Works (MCW), Maywood, New Jersey. During the latter part of this period, MCW supplied rare earth metals and thorium compounds to various government agencies. In the 1940s and 1950s, MCW produced thorium and lithium, under contract, for the Atomic Energy Commission (AEC). These activities ceased in 1956, and, approximately three years later, the 30-acre real estate was purchased by the Stepan Company. The property is located at 100 Hunter Avenue in a highly developed area in Maywood and Rochelle Park, Bergen County, New Jersey.

During the early years of operation, MCW stored wastes and residues in low-lying areas west of the processing facilities. In the early 1930s, these areas were separated from the rest of the property by the construction of New Jersey State Highway 17. The Stepan property, the interim storage facility, and several vicinity properties have been designated for remedial action by the U.S. Department of Energy (DOE).

The waste produced by the thorium extraction process was a sandlike material containing residual amounts of thorium and its decay products, with smaller quantities of uranium and its decay products. During the years 1928 and 1944 to 1946, area residents used these process wastes mixed with tea and cocoa leaves as mulch in their lawns and gardens. In addition, some of the contaminated wastes were apparently eroded from the site into Lodi Brook and carried downstream.

Lodi Brook is a small stream flowing south from Maywood with its headwaters near the Stepan waste storage site. Approximately 150 ft after passing under State Route 17, the stream has been diverted underground through concrete or steel culverts until it merges with the Saddle River in Lodi, New Jersey. Only a small section near Interstate 80 remains uncovered. From the 1940s to the 1970s when the stream was being diverted underground, its course was altered several times. Some of these changes resulted in the movement of contaminated soil to the surface of a few properties, where it is still in evidence. In other instances, the contaminated soil was covered over or mixed with clean fill, leaving no immediate evidence on the surface. Therefore, properties in question may be

^{*}The survey was performed by members of the Measurement Applications and Development Group of the Health and Safety Research Division at Oak Ridge National Laboratory under U.S. DOE contract DE-AC05-840R21400.

drilled in search of former streambed material, even in the absence of surface contamination.

As a result of the Energy and Water Appropriations Act of Fiscal Year 1984, the property discussed in this report and properties in its vicinity contaminated with residues from the former MCW were included as a decontamination research and development project under the DOE Formerly Utilized Sites Remedial Action Program. As part of this project, DOE is conducting radiological surveys in the vicinity of the site to identify properties contaminated with residues derived from the MCW. The principal radionuclide of concern is thorium-232. The radiological surveys discussed in this report are part of that effort and were conducted, at the request of DOE, by members of the Measurement Applications and Development Group of the Oak Ridge National Laboratory.

A radiological survey of the private, residential property at 106 Columbia Lane, Lodi, New Jersey, was conducted during 1987. The survey and sampling of the ground surface, as well as the subsurface investigation, were carried out on June 1-4, 1987.

SURVEY METHODS

The radiological survey of the property included: (1) a gamma scan of the entire property outdoors, (2) collection of surface and subsurface soil samples, and (3) gamma profiles of auger holes. No indoor survey measurements were performed.

Using a portable gamma scintillation meter, ranges of measurements were recorded for areas of the property surface. Systematic soil samples were taken at various locations on the property, irrespective of gamma radiation levels. These survey methods followed the plan outlined in Reference 1.

To define the extent of possible subsurface soil contamination, the auger holes were drilled to depths of approximately 2.9 m. A plastic pipe was placed in each hole, and a NaI scintillation probe was lowered inside the pipe. The probe was encased in a lead shield with a horizontal row of collimating slits on the side. This collimation allows measurement of gamma radiation intensities resulting from contamination within small fractions of the hole depth. Measurements were usually made at 15- or 30-cm intervals. If the gamma readings in the hole were elevated, a soil sample was scraped from the wall of the auger hole at the point showing the highest gamma radiation level. The auger hole loggings were used to select locations where further soil sampling would be useful. A split-spoon sampler was used to collect subsurface samples at known depths. In some auger holes, a combination of split-spoon sampling and side-wall scraping was used to collect samples. A comprehensive description of the survey methods and instrumentation has been presented in another report.²

SURVEY RESULTS

Applicable federal guidelines are summarized in Table 1.³ The normal background radiation levels for the northern New Jersey area are presented in Table 2.⁴ These data are provided for comparison with survey results presented in this section. All direct measurement results presented in this report are gross readings; background radiation levels have not been subtracted. Similarly, background concentrations have not been subtracted from radionuclide concentrations measured in environmental samples.

Surface Gamma Radiation Levels

Gamma radiation levels measured during a gamma scan of the surface of the property are given in Fig. 1. Gamma exposure rates over the major portion of the property ranged from 4 to 11 μ R/h. The highest gamma levels were from the bricks on the house and the front steps (9 to 13 μ R/h), the back steps (13 μ R/h), and the soil bordering the southeastern side of the house (9 to 12 μ R/h).

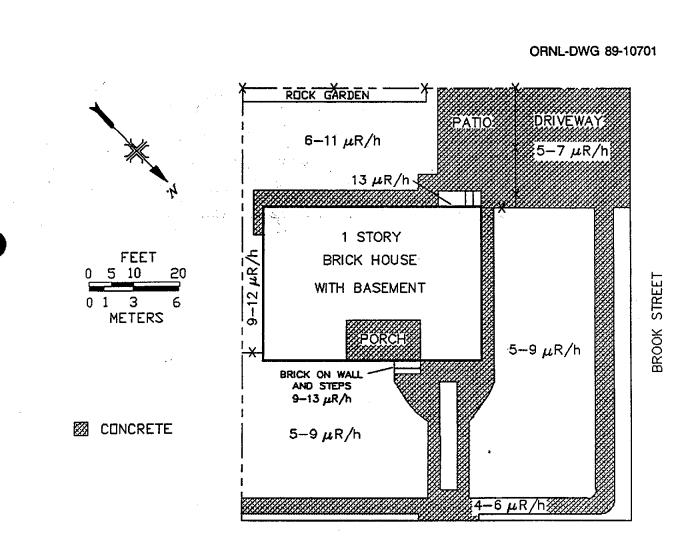
Systematic Soil Samples

Systematic soil samples were taken from various locations on the property for radionuclide analyses. Locations of the systematic (S) samples are shown in Fig. 2, with results of laboratory analyses provided in Table 3. Concentrations of radium and thorium in these samples ranged from 0.68 to 0.73 pCi/g and 0.77 to 0.78 pCi/g, respectively. All samples were below background for the northern New Jersey area (Table 2).

Auger Soil Samples

Varying thicknesses of subsurface soil were sampled from depths of 0 to 245 cm in auger holes (A) drilled at five separate locations indicated in Fig. 2, except for A4 which was not sampled due to the absence of elevated gamma activity. The results of analyses of these samples are given in Table 3. Concentrations of 226 Ra and 232 Th in soil samples from four auger holes ranged from 0.52 to 9.9 and 0.52 to 51 pCi/g, respectively. Radionuclide concentrations in samples A2D, A3E&F, and A5I were above DOE criteria (Table 1) for thorium, with levels ranging from 30 to 51 pCi/g. Elevated concentrations were found at depths between 135 and 225 cm.

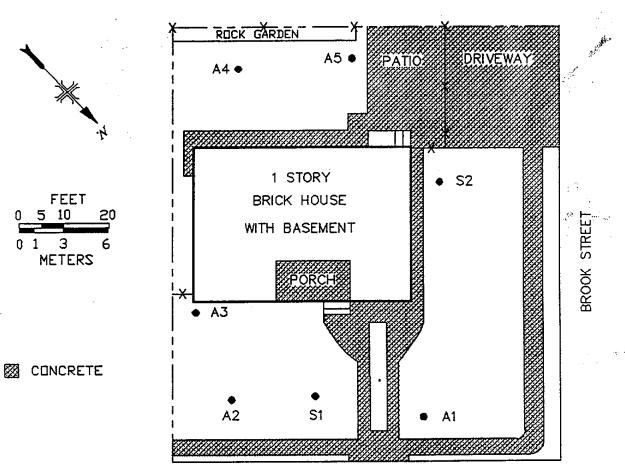
Gamma logging was performed in each of the five auger holes to characterize and further define the extent of possible contamination. The logging technique used here is not radionuclide specific. However, logging data, in conjunction with soil analyses data, may be used to estimate regions of elevated radionuclide concentrations in auger holes when compared with background levels for the area. Following a comparison of these data, it appears that any shielded scintillator readings of 1000 counts per minute (cpm) or greater generally indicate the presence of elevated concentrations of ²²⁶Ra and/or ²³²Th. Data from the gamma profiles of the logged auger holes are graphically represented in Figs. 3 through 7. Readings at depths from 1.2 to 1.5 m were greater than 1000 cpm in auger hole 1, with a maximum reading of 1468 cpm at 1.5 m. Readings in auger hole 2 were elevated from 1.2 to 2.0 m, with a maximum of 8540 cpm at 1.7 m. In hole 3, elevated readings were found from 1.5 to 2.0 m, with a maximum of 4121 cpm at 1.7 m. No readings above 581 cpm were found in hole 4. Finally, elevated readings in hole 5


were found from 0.3 to 1.7 m, with a maximum of 4931 cpm at 1.5 m. The areas of highest gamma loggings correspond to the greatest concentrations of radionuclides shown in Table 3.

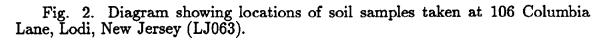
SIGNIFICANCE OF FINDINGS

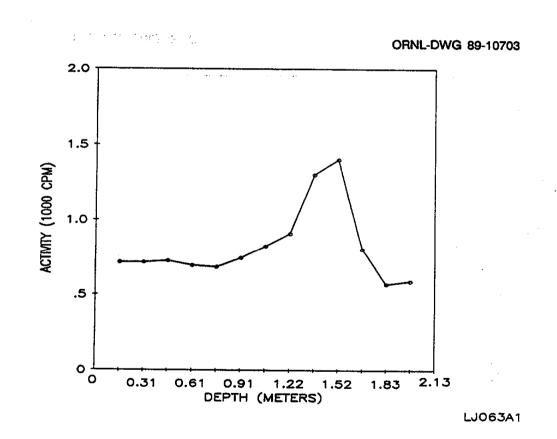
Measurements taken at 106 Columbia Lane indicate that the property contained radioactive contamination primarily from the 232 Th decay chain, with some contamination from 226 Ra. These radionuclide distributions are typical of the type of material originating from the processing operations at the MCW site. The concentration and extent of 232 Th on this property was in excess of the applicable DOE guidelines (Table 1). This material was found at sample locations A2, A3, and A5, as shown in Fig. 2. Based on the results of this radiological assessment, it is recommended that this site be considered for inclusion in the DOE remedial action program.

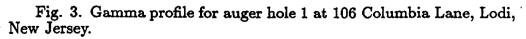
REFERENCES


- 1. W. D. Cottrell, ORNL, to A. J. Whitman, DOE/HQ, correspondence, "Radiological Survey of Private Properties in Lodi, New Jersey" (August 15, 1984).
- 2. T. E. Myrick, B. A. Berven, W. D. Cottrell, W. A. Goldsmith, and F. F. Haywood, Procedures Manual for the ORNL Radiological Survey Activities (RASA) Program, Oak Ridge National Laboratory, ORNL/TM-8600 (April 1987).
- 3. U.S. Department of Energy, Guidelines for Residual Radioactive Material at Formerly Utilized Sites, Remedial Action Program and Remote Surplus Facilities Management Program Sites (Rev. 2, March 1987).
- 4. T. E. Myrick, B. A. Berven, and F. F. Haywood, State Background Radiation Levels: Results of Measurements Taken During 1975-1979, Oak Ridge National Laboratory, ORNL/TM-7343 (November 1981).

COLUMBIA LANE


Fig. 1. Gamma radiation levels $(\mu R/h)$ measured on the surface at 106 Columbia Lane, Lodi, New Jersey (LJ063).


 $\mathbf{5}$



ORNL-DWG 89-10702

COLUMBIA LANE

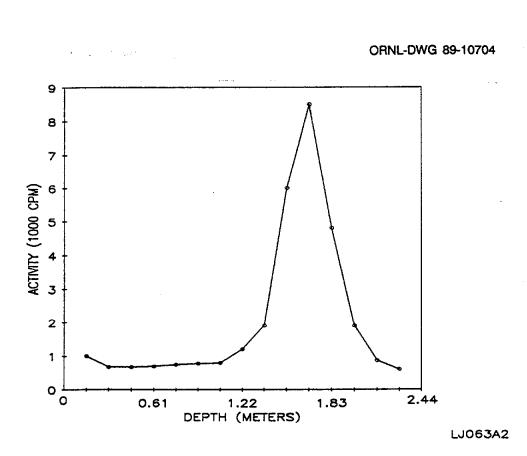
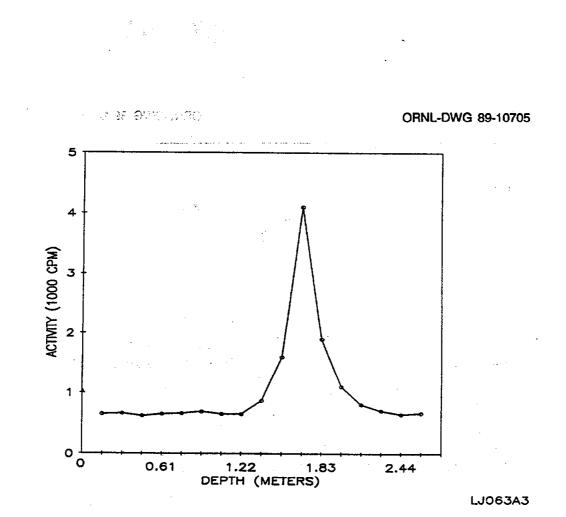



Fig. 4. Gamma profile for auger hole 2 at 106 Columbia Lane, Lodi, New Jersey.

in a

i

Fig. 5. Gamma profile for auger hole 3 at 106 Columbia Lane, Lodi, New Jersey.

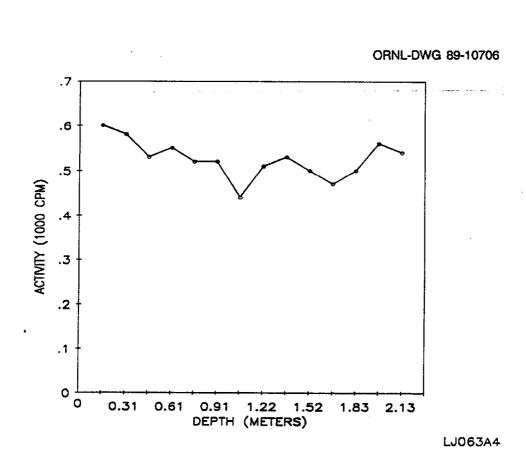
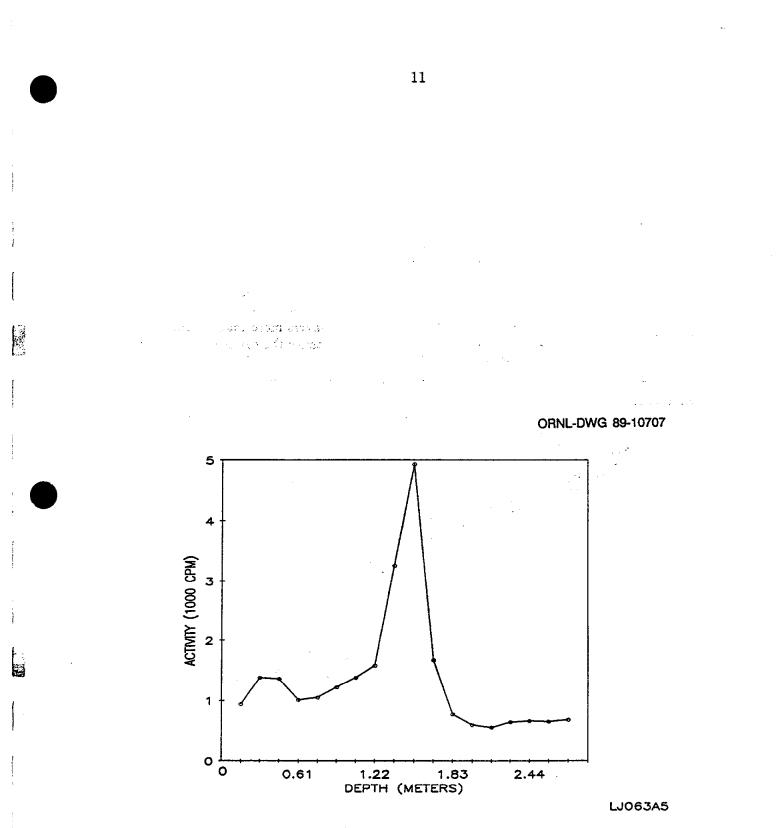
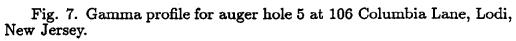




Fig. 6. Gamma profile for auger hole 4 at 106 Columbia Lane, Lodi, New Jersey.

Mode of exposure	Exposure conditions	Guideline value
Radionuclide concentrations in soil	Maximum permissible concen- tration of the following radionuclides in soil above background levels averaged over 100 m ² area ²³² Th ²³⁰ Th ²²⁸ Ra ²²⁶ Ra	5 pCi/g averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over 15-cm thick soil layers more than 15 cm below the surface

.•

Table 1. Applicable guidelines for protection against radiation^a

^aReference 3.

 Table 2. Background radiation levels for the northern New Jersey area

radionuclide concentration
0.9ª
0.9ª
0.9 ^a

^aReference 4.

71.8	Denth	Radionuclide concentration (pCi/g)	
Sample ^a	Depth (cm)	²²⁶ Ra ^b	²³² Th ^b
	System	natic samples ^c	······································
51	0-15	0.68 ± 0.09	0.78 ± 0.08
52	0-15	0.73 ± 0.05	0.77 ± 0.2
. •	Auge	er samples ^d	
A1A	30-45	0.61 ± 0.01	0.81 ± 0.2
AIB and	45-60	0.60 ± 0.09	0.84 ± 0.1
	90-105	0.73 ± 0.2	1.0 ± 0.1
AID SALESSING	105-120	0.58 ± 0.03	0.57 ± 0.2
AIE	120-135	5.9 ± 0.1	8.9 ±0.8
A1F	135-150	1.5 ± 0.3	2.8 ± 0.7
A1G	150-165	1.5 ± 0.2	1.0 ± 0.3
A1H	165-185	0.69 ± 0.1	0.52 ± 0.1
A2A	105-120	0.88 ± 0.2	1.1 ± 0.2
A2B	120-135	0.73 ± 0.1	0.99 ± 0.3
A2C	135-150	0.67 ± 0.2	0.95 ± 0.3
A2D	150-165	9.9 ± 0.8	51 ± 2
A2E	165-185	2.5 ± 0.2	5.9 ± 0.2
A2F	185-195	0.75 ± 0.05	0.55 ± 0.08
A2G	215-225	0.98 ± 0.04	1.6 ± 0.1
A2H	225-245	0.57 ± 0.08	0.79 ± 0.07
A3A	120-135	0.70 ± 0.03	1.1 ±0.06
A3B	135-150	0.56 ± 0.1	0.87 ± 0.07
A3C	150-165	0.52 ± 0.03	0.58 ± 0.2
A3D	165-185	0.95 ± 0.1	7.6 ± 0.5
3E	185-195	6.9 ± 0.3	33 ±2
A3F	215-225	3.6 ± 0.3	30 ± 3
A3G	225-245	0.74 ± 0.08	1.2 ± 0.3
\5A	0-15	1.1 ± 0.1	1.1 ± 0.2
A5B	15-30	1.1 ± 0.05	1.4 ± 0.03
15C	30-45	1.1 ± 0.06	1.7 ± 0.1
A5D	45-60	1.1 ±0.09	3.4 ± 0.2
15E	60-75	0.93 ± 0.03	2.5 ± 0.1
SF	75-90	0.94 ± 0.2	2.4 ± 0.2
15G	90-105	1.1 ± 0.07	3.6 ± 0.2
5H	105-120	1.1 ± 0.1	3.9 ± 0.3
5I	135-150	4.9 ± 0.3	3.7 ± 0.5 37 ± 1

į

E.

Table 3. Concentrations of radionuclides in soil at106 Columbia Lane, Lodi, New Jersey (LJ063)

Sample ^a		Radionuclide concentration (pCi/g)	
	Depth – (cm)	²²⁶ Ra ^b	²³² Th ^b
<u> </u>		Auger samples ^d	
A5J	150-165	2.2 ± 0.4	3.6 ± 0.4
A5K	165-185	1.1 ± 0.05	1.0 ± 0.03
A5L	185-195	0.6 ± 0.08	0.7 ± 0.1

Table 3 (continued)

^aLocations of soil samples are shown on Fig. 2.

^bIndicated counting error is at the 95% confidence level $(\pm 2\sigma)$.

Systematic samples are taken at locations irrespective of gamma exposure.

^dAuger samples are taken from holes drilled to further define the depth and extent of radioactive material. Holes are drilled where the surface may or may not be contaminated.

· ...

INTERNAL DISTRIBUTION

B. A. Berven
 R. F. Carrier
 W. D. Cottrell
 A. G. Croff
 J. W. Crutcher
 L. M. Floyd
 7-11. R. D. Foley
 S. V. Kaye

13. P. Y. Lu 14. P. T. Owen

- 15-17. R. E. Swaja
 - 18. J. K. Williams
 - 19. Central Research Library
 - 20. IR&A Publications Office
 - 21. Laboratory Records RC
 - 22. Y-12 Technical Library

EXTERNAL DISTRIBUTION

- 23. J. D. Berger, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831
- 24. R. W. Doane, Eberline, Inc., 800 Oak Ridge Turnpike, P.O. Box 350, Oak Ridge, Tn 37831
- 25. J. J. Fiore, U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874
- 26-28. G. K. Hovey, Bechtel National, Inc., 800 Oak Ridge Turnpike, P.O. Box 350, Oak Ridge, TN 37831
 - 29. L. R. Levis, Roy F. Weston, Inc., 20030 Century Blvd., Germantown, MD 20874
 - 30. G. P. Turi, U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874
 - 31. J. W. Wagoner, U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874
- 32-34. Andrew Wallo III, U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874
 - 35. Office of Assistant Manager, Energy Research and Development, Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 37831-8600
- 36-37. Office of Scientific and Technical Information, DOE, P.O. Box 62, Oak Ridge, TN 37831