Formerly Utilized Sites Remedial Action Program (FUSRAP)

Maywood Chemical Company Superfund Site

ADMINISTRATIVE RECORD

Document Number

MISS - 168

US Army Corps of Engineers® Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DACW45-98-D-0028

Final Post-Remedial Action Report for 9 Hancock Street

Lodi, New Jersey

July 2001

US Army Corps of Engineers

FINAL POST-REMEDIAL ACTION REPORT

FOR

9 HANCOCK STREET

IN

LODI, NEW JERSEY

JULY 2001

Prepared for

U.S. Army Corps of Engineers

Under Contract No. DACW45-98-D-0028

By

Bechtel National, Inc.

Oak Ridge, Tennessee

Bechtel Job No. 14501

CONTENTS

Page

FIGURESv
TABLESvi
ACRONYMSvii
UNITS OF MEASURE
1.0 INTRODUCTION 1-1 1.1 BACKGROUND 1-1 1.2 HISTORY 1-2 1.2.1 Prior Remedial Actions 1-2 1.2.2 Characterization Before Current Remedial Action 1-2
2.0 REMEDIATION CRITERIA2-12.1 EPA AGREEMENT WITH DOE2-12.2 EE/CA2-12.3 SITE-SPECIFIC TOTAL URANIUM GUIDELINE2-12.4 APPLICATION OF CRITERIA2-22.4.1 Radionuclides of Concern2-22.4.2 Background Levels2-32.4.3 Sum-of-Ratios Calculation2-42.4.4 Hot Spot Criteria2-4
3.0 REMEDIAL ACTION
4.0 POST-REMEDIAL ACTION MEASUREMENTS. 4-1 4.1 9 HANCOCK STREET 4-2 4.1.1 Post-Remedial Action Survey 4-3 4.1.2 IVC Verification 4-4 4.1.3 Summary 4-4
5.0 POST-REMEDIAL ACTION STATUS
REFERENCES

APPENDICES

Α	RADIATION AT A GLANCE	A-1
В	CONTAMINATION CONTROL DURING REMEDIAL ACTION	B- 1
С	QUALITY CONTROL DATA FOR 9 HANCOCK STREET	C-1
D	POST-REMEDIAL ACTION DATA FOR 9 HANCOCK STREET	D- 1
Ε	RADIOLOGICAL DATA FOR CLEAN OVERBURDEN SOIL	E-1
F	CHEMICAL DATA FOR CLEAN OVERBURDEN SOIL	F-1
G	RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL RECEIVED	
	FROM VENDORS	G-1

FIGURES

Figure	Title	Page
1-1	Location of the Maywood Site, Bergen County, New Jersey	1-4
1-2	Location of 9 Hancock Street	1-5
1-3	Approximate Area of Subsurface Contamination, 9 Hancock Street	1-6
2-1	Background Sampling Locations for the Maywood Interim Storage Site	2-5
4-1	Areas of Excavation and Elevation Contours, 9 Hancock Street	4-5
4-2	Areas of Excavation and Post-Remedial Action Samples, 9 Hancock Street	4-6
4-3	PIC Readings, 9 Hancock Street	4-7

TABLES

Table	Title	Page
2-1	Federal Guidelines for Residual Radioactive Contamination	2-6
4-1	Final Status Survey Results for 9 Hancock Street	. 4-8
A-1	Comparison and Description of Various Dose Levels	A-4
C-1	Quality Control Sample Results for 9 Hancock Street	C-1
D-1	Post-Remedial Action Data for 9 Hancock Street	D-1
E-1	Radiological Data for Maywood Vicinity Properties Clean Overburden Samples	E-1
E-2	Sum-of-Ratios for Radiological Data for Maywood Vicinity Properties Clean Overburden Samples	E-4
F-1	Chemical Data for Clean Overburden Samples Collected from Maywood Vicinity Properties	F-1
G-1	Radiological and Chemical Data for Backfill Material Received from Vendors	. G-1

ACRONYMS

ANL	Argonne National Laboratory
ALARA	as low as reasonably achievable
BNI	Bechtel National, Inc.
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
DCG	derived concentration guide
DOE	U.S. Department of Energy
EE/CA	engineering evaluation/cost analysis
EPA	U.S. Environmental Protection Agency
FUSRAP	Formerly Utilized Sites Remedial Action Program
IVC	independent verification contractor
MCW	Maywood Chemical Works
MISS	Maywood Interim Storage Site
MVP	Maywood Vicinity Property
ORNL	Oak Ridge National Laboratory
PIC	pressurized ionization chamber
PPE	personal protective equipment
QC	quality control
SEC	Safety and Ecology Corporation
USACE	U.S. Army Corps of Engineers

UNITS OF MEASURE

μCi	microcurie
μR	microroentgen
cm	centimeter
ft	foot
g	gram
h	hour
in.	inch
km	kilometer
L	liter
m	meter
mL	milliliter
mrem	millirem
pCi	picocurie
у	year

1.0 INTRODUCTION

1.1 BACKGROUND

This report documents the remedial action conducted under the U.S. Army Corps of Engineers (USACE) Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1998 at 9 Hancock Street in Lodi, New Jersey. The purpose of this report is to document the compliance of areas remediated on the property with applicable federal radiological guidelines and to summarize and provide the results of final remediation data. Remedial action at 9 Hancock Street was conducted under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in compliance with an engineering evaluation/cost analysis (EE/CA) (BNI 1995).

Remediation of 9 Hancock Street was found to be necessary during the remediation of 7 Hancock Street, an adjacent property. Contamination at 7 Hancock Street was found to extend beyond the boundary of that property, requiring that remediation activities be carried out at 9 Hancock, which had not been previously designated for remediation. This report documents the remediation of 9 Hancock Street.

USACE remediated properties are part of the Maywood Interim Storage Site (MISS). The Maywood site is located in Bergen County, New Jersey, approximately 20 km (12 miles) northnorthwest of New York City and 21 km (13 miles) northeast of Newark, New Jersey (Figure 1-1). It consists of MISS; the Stepan Chemical Company site; and 85 Maywood vicinity properties (MVPs) in the boroughs of Maywood and Lodi and the township of Rochelle Park. The properties are approximately 3.4 km (2.1 miles) from MISS (Figure 1-2). MISS and its vicinity properties are also included within FUSRAP.

FUSRAP was established in 1974 to identify and clean up, or otherwise control, sites where residual radioactive contamination remains from the early years of the nation's atomic energy program or where contamination remains from commercial operations that have caused conditions that Congress has authorized FUSRAP to remedy. The Maywood site was assigned to FUSRAP in 1984 after the cleanup was authorized by the U.S. Congress in the Energy and Water Appropriations Act.

The objectives of FUSRAP, as they apply to the Maywood site, are to

• remove or otherwise control contamination on sites identified as contaminated at levels exceeding current guidelines, and

• achieve and maintain compliance with applicable criteria for the protection of human health and the environment.

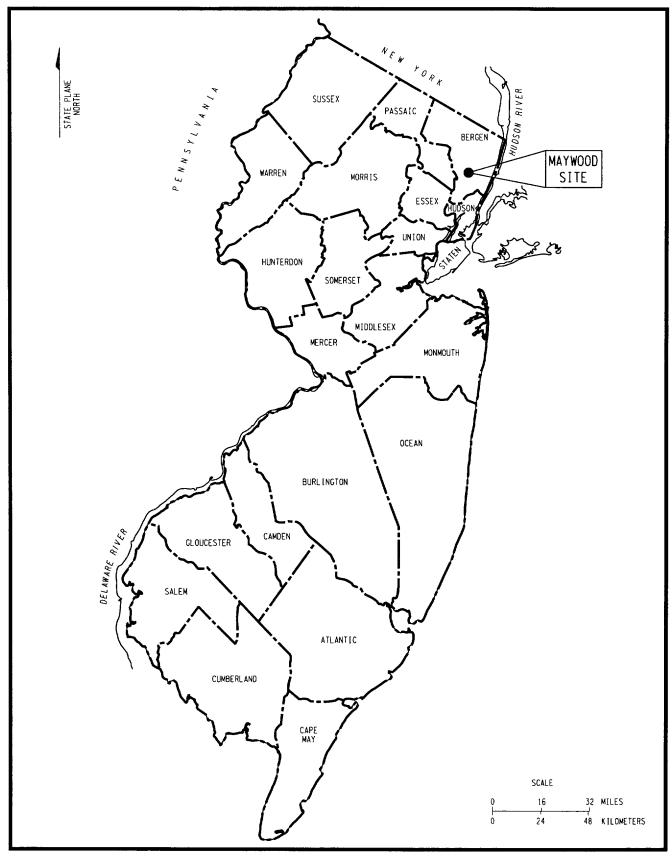
The Department of Energy (DOE) administered FUSRAP until October 1997, when management of the program was transferred to USACE. Bechtel National, Inc. (BNI), the project management contractor, assisted USACE in the planning, management, and implementation of the cleanup of 9 Hancock Street. Oak Ridge National Laboratory (ORNL) was the independent verification contractor (IVC) assigned by USACE to provide autonomous assurance that site conditions after completion of the remedial action met radiological cleanup criteria.

1.2 HISTORY

1.2.1 Prior Remedial Actions

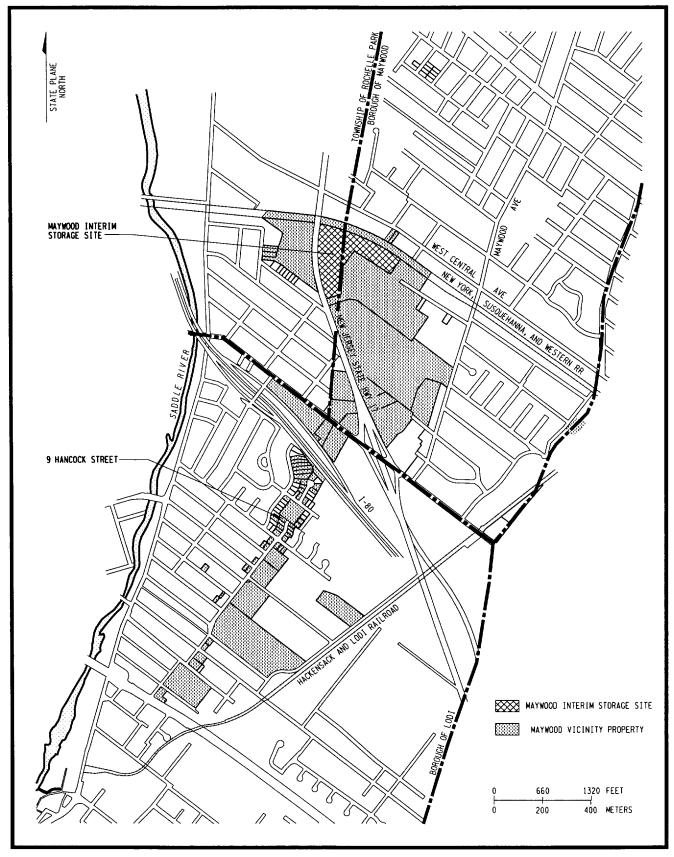
From 1916 to 1959, the former Maywood Chemical Works (MCW) extracted radioactive thorium and rare earths from monazite sand for use in manufacturing industrial products such as mantles for gas lanterns. Slurry that contained waste from the thorium-processing operations was pumped to earthen-diked areas. Nearby properties became contaminated when some process wastes, along with tea and coca leaves from other MCW operations, were removed from the MCW property and used as mulch and fill. Additional waste apparently migrated from the MCW property through natural drainage associated with the former Lodi Brook. In all, 87 commercial, governmental, and residential vicinity properties became radioactively contaminated by these transport mechanisms. A comprehensive history can be found in the CERCLA EE/CA documentation prepared for this activity (BNI 1995).

Twenty-five residential properties and the Ballod property were remediated during 1984– 85, and a property at 90 Avenue C was partially remediated during that period. Remediation of five residential properties, including 90 Avenue C, was completed during 1995. The MISS pile was removed in 1996, and material was transported to an offsite disposal facility. Additionally, eight other residential properties (7 Branca Court, 11 Redstone Lane, and 16, 18, 20, 22, 24, and 26 Long Valley Road) were remediated during 1996, and three more (5 and 7 Shady Lane, and 34 Long Valley Road) were completed in 1997. USACE remediation of 9 Hancock Street was part of the remediation of 23 MVPs and five additional properties in Lodi and Maywood during 1997 through 1999.


1.2.2 Characterization Before Current Remedial Action

Initial radiological characterization of 9 Hancock Street to determine if the property should be included in FUSRAP was performed by ORNL in 1985 and 1986 (ORNL 1989). Sample results indicated the presence of naturally occurring radionuclides in excess of background levels; however, all measurement results were well below applicable federal guidelines. Subsequent radiological testing occurred in 1986.

In 1986, testing was performed to locate the horizontal and vertical boundaries of contamination (BNI 1989). This characterization provided limited information about the area of subsurface contamination. During remediation of 7 Hancock, contamination was found to extend onto the 9 Hancock property.


Prior to remediation, additional characterization was performed to define the extent of contamination (BNI 1998a). Figure 1-3 shows borehole locations and the approximate area of subsurface contamination.

Details on post-remedial action surveys and sampling results are provided in Section 4.0.

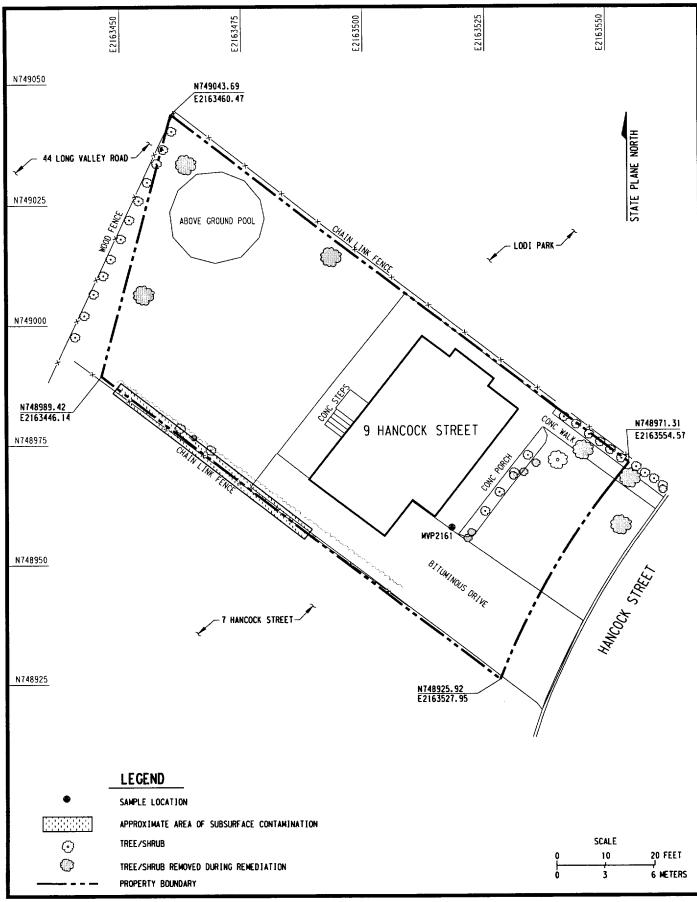

14501/138/PRAR107.DGN

Figure 1-1 Location of the Maywood Site Bergen County, New Jersey

0:14501/138/98PRAR/PRAR179.DGN

Figure 1-2 Location of 9 Hancock Street

0:\14501\138\98prar\9Hancock\prar246.dgn 07/18/2001

Figure 1-3 Approximate Area of Subsurface Contamination along Property Line 9 Hancock Street

2.0 REMEDIATION CRITERIA

Remediation activities at 9 Hancock Street were conducted in accordance with the federal cleanup criteria contained in the 1994 agreement between the U.S. Environmental Protection Agency (EPA) and DOE and in accordance with the remedy provided in the CERCLA EE/CA prepared for properties comprising Phase 1 of MVP cleanup. The cleanup criteria contained in these documents were adopted by USACE to allow for cleanup of the MVPs addressed in the EE/CA to continue under USACE management without disruption.

These documents are contained in the Administrative Record established for the Maywood site and are available for review at the USACE Information Center in the Borough of Maywood.

2.1 EPA AGREEMENT WITH DOE

The agreement between EPA and DOE reached in April 1994 establishes cleanup levels for radionuclide contamination in soil at all properties on the Maywood site (DOE 1994). Soil on Phase 1 properties, regardless of depth, is to be remediated to 5 pCi/g above background for thorium-232 and radium-226.

2.2 EE/CA

In September 1995, DOE made available for public review and comment the EE/CA announcing the preferred remedy for the cleanup of residential and other properties included in Phase 1 of cleanup activities at the Maywood site (BNI 1995). The final EE/CA adopts the criteria for radionuclides contained in the EPA/DOE agreement and other site-specific, federal criteria developed for radionuclides of concern at the MVPs.

2.3 SITE-SPECIFIC TOTAL URANIUM GUIDELINE

In the absence of promulgated federal criteria for total uranium in soil, a site-specific criterion was developed for the Maywood site by the Argonne National Laboratory (ANL), an agency of DOE. To develop the guideline for total uranium, site-specific soil data was used to determine the level of uranium that would result in the maximum public exposure limit of 100 mrem/y for all plausible uses of land. The site-specific guideline for Maywood was developed based on hypothetical but reasonable exposure pathways from the site.

Based on the ANL analysis, the uranium limit is well below the dose guideline of 100 mrem/y (910 pCi/g), which must be met under all worst case, plausible scenarios, including the assumed residential and agricultural use (BNI 1994). An as low as reasonably achievable (ALARA) analysis was conducted by DOE. The 100 pCi/g total uranium limit is considered

acceptable since no potential benefit is expected from a lower value due to the uranium being co-located with the thorium. Remediation of thorium-contaminated soils will result in residual uranium concentrations much lower than 100 pCi/g (BNI 1994). The resulting uranium-238 guideline is 50 pCi/g, assuming that uranium exists in the naturally occurring abundance of 1:1:0.046 for uranium-234, uranium-238, and uranium-235, respectively (Shleien 1992).

2.4 APPLICATION OF CRITERIA

Historical data indicate that radioactive contamination at the MVPs consisted primarily of thorium-232 but also included uranium-238 and radium-226 and their decay products. Table 2-1 lists the residual contamination guidelines for these radionuclides and release of the Phase 1 MVPs without radiological restrictions. The following sections address key principles associated with the application of radiological criteria and assessment of compliance.

Appendix A includes a brief introduction to the nature, sources, and basic units of radiation.

2.4.1 Radionuclides of Concern

Radionuclides of concern at the Maywood site are thorium-232, radium-226, and uranium-238, identified based on the following:

- Reconstruction of the process used by the MCW to extract thorium, and
- Analysis of soil samples collected during the remedial investigation for radionuclides.

The explanation below discusses the thorium-232 and uranium-238 radioactive decay series, and then the results of remedial investigation sampling.

In unprocessed, undisturbed ores, thorium-232 coexists with all of the decay products in the thorium decay series and is often found in secular equilibrium, a state in which each radionuclide in the decay series has the same decay rate (activity) as the parent (thorium-232). Substantial amounts of thorium-232 and thorium-228 would be removed in the extraction process, leaving primarily decay products. The waste component would also contain unextracted thorium-232 and thorium-228. Due to the relatively short half-lives of their decay products, these radionuclides would reestablish equilibrium in 30 to 40 years. One of these decay products is radon-220, a gas that would be released by emission from exposed surfaces and would decay elsewhere.

Uranium-238 is also present in monazite ore (at lower concentrations), and its decay products would also be in secular equilibrium. Due to low natural abundance of these radionuclides and their low concentrations in the waste material, the total activity contributed by their decay series is only a small fraction of the total activity of the waste. Thorium-230 concentrations are expected to be lower than radium-226 based on the fact that the processing would remove most of thorium-230.

To determine whether secular equilibrium existed between thorium-232 and its daughters in contaminated soils at the Maywood site, five percent of all remedial investigation soil samples analyzed for uranium-238, radium-226, and thorium-232 were also randomly selected for isotopic analysis (radium-226, radium-228, uranium-238, uranium-235, uranium-234, thorium-232, thorium-230, and thorium-228). Fifty-four samples, representative of the sampling conducted at the Maywood site, excluding MISS, were selected.

Although a small number of samples were not in equilibrium, all contained progeny of the thorium-232 and uranium-238 decay series. It was therefore concluded that because all samples were analyzed for uranium-238, radium-226, and thorium-232, all radionuclides of interest at the Maywood site were detected. The results are provided in the remedial investigation done for the Maywood FUSRAP site (BNI 1992).

2.4.2 Background Levels

Because cleanup guidelines are based on radioactivity in addition to background levels, it was important to establish the levels of naturally occurring background radioactivity in soils near the site. Background data serve as a frame of reference for evaluating analytical data from the vicinity properties because they represent conditions typical of the areas unaffected by former MCW activities. During the remedial investigation, soil samples were obtained from three background locations in the general area of the vicinity properties. The locations were selected on the basis of their proximity to the site, relative independence from potential influence of the site, and representativeness of area land uses. The background locations are shown in Figure 2-1. Samples from these background areas were analyzed for radium-226, thorium-232, and uranium-238. Background external gamma radiation exposure rates were also measured at these three background locations using a pressurized ionization chamber (PIC). The average concentration of thorium-232 in background samples was 1.0 pCi/g, with a range of 0.9 to 1.1 pCi/g.

The average background concentration of radium-226 was 0.7 pCi/g with a range of 0.5 to 0.8 pCi/g. The average background concentration of uranium-238 was 2.9 pCi/g with a range of

2.4 to 3.5 pCi/g (BNI 1992). The average background external radiation exposure rate was determined to be 9.0 μ R/h.

2.4.3 Sum-of-Ratios Calculation

Compliance with radionuclide criteria is determined by performing a sum-of-ratios calculation by first subtracting the background concentration for each isotope from the reported value for that isotope. If the net result of an isotope is negative, then the value for that isotope is reported as zero. The subtraction of background concentrations can cause the values of some isotopes to be reduced to 0, and in some cases this causes the sum of ratios to be 0 as well. Then the values are divided by the appropriate guideline number for thorium-232, uranium-238, and radium-226 (see Table 2-1 for guidelines). Finally, the three calculated values are summed. If the sum of the three calculated values is 1.0 or less, the soil is below the applicable guideline for radioactive contamination at Maywood and is thus considered clean.

2.4.4 Hot Spot Criteria

Hot spots are small areas that have levels of residual radioactive material that are considerably above the levels in the surrounding area. Residual concentrations of radioactive material in soil are defined as those in excess of background concentrations averaged over an area of 100 m². If the average concentration in any surface or below-surface area less than or equal to 25 m² exceeds the limit or guideline by a factor of $(100/A)^{1/2}$, where A is the area in square meters of the region in which concentrations are elevated, limits for "hot spots" are applicable. Procedures for calculating these hot spot limits, which depend on the extent of the elevated local concentrations, are given in "A Manual for Implementing Residual Radioactive Material Guidelines – A Supplement to U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Surplus Facilities Management Program Sites" (ANL 1989). In addition, the standard requires that every reasonable effort be made to remove any source of radionuclide that exceeds 30 times the appropriate limit for soil, irrespective of the average concentration in the soil.

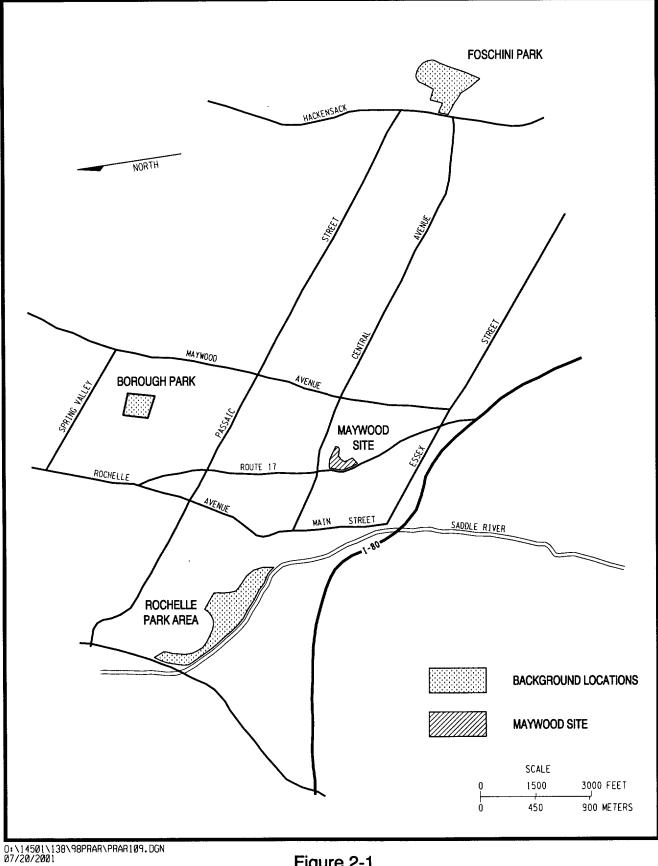


Figure 2-1 Background Sampling Locations for the Maywood Interim Storage Site

Table 2-1 Federal Guidelines for Residual Radioactive Contamination

Basic Dose Limits

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/y^a. In implementing this limit, as-low-as-reasonably-achievable (ALARA) principles are applied to set site-specific guidelines.

Soil Guidelines b,c,d,e

Radium-226
Radium-2285 pCi/g when averaged over any 15-cm (6-in.)-thick layer of soil regardless of depth.Thorium-230
Thorium-232100 pCi/g total uranium, 50 pCi/g uranium-238 (BNI 1994).

	Allowable Surface Residual Contamination ⁸ (dpm/100 cm ²)						
Radionuclide ^g	Average ^{h,i}	Maximum ^{hj}	Removable ^{h,k}				
Transuranics, Ra-226, Ra-228, Th-230, Th-228, Pa-231, Ac-227, I-124, I-129	100	300	20				
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224, U-232, I-126, I-131, I-133	1,000	3,000	200				
U-Natural, U-235, U-238. and associated decay products	5,000 ª	15,000 ª	1,000 ^a				
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission except Sr-90 and others noted above)	5,000 ^{b-g}	15,000 ^{b-g}	1,000 ^{b-g}				

^a Department of Energy, 1990, Order 5400.5, "Radiation Protection of the Public and the Environment" (February 8).

^b Soil guidelines are also used for sediment because there are no sediment guidelines. The soil guideline of 5 pCi/g regardless of depth is from DOE 1994.

^c These guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides must be reduced so that (1) the dose for the mixtures will not exceed the basic dose limit, or (2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for the radionuclide will not exceed 1 ("unity").

^d These guidelines represent allowable residual concentration exceeding background levels averaged across any 15-cm (6-in.)-thick layer to any depth and over any contiguous 100-m^2 (1,076-ft²) surface area, except as noted.

^e If the average concentration in any surface or below-surface area less than or equal to 25 m^2 (269 ft²) exceeds the authorized limit or guideline by a factor of $(100/A)^{1/2}$, where A is the area of the elevated region in square meters, limits for "hot spots" will also be applicable. Procedures for calculating these hot spot limits, which depend on the extent of the elevated local concentrations, are given in the supplement. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate limit for soil, irrespective of the average concentration in the soil.

^f Guidelines are calculated on a site-specific basis using a DOE manual developed for this use.

^g Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

^h Measurements of average contamination should not be averaged over more than 1 m^2 (10.8 ft²). For objects of less surface area, the average must be derived for each such object.

ⁱ The average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm (0.4 in.).

^j The maximum contamination level applies to an area of not more than 100 cm² (16 in.²).

^k The amount of removable radioactive material per 100 cm^2 (16 in.²) of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² (16 in.²) is determined, the activity per unit area should be based on the actual area or the entire surface should be wiped. The numbers in this column are maximum amounts.

3.0 REMEDIAL ACTION

3.1 CLEANUP ACTIVITIES

Generally, pre-remediation work activities at 9 Hancock Street consisted of documentation of existing conditions and preparation of the property for remedial action. This included the performance of inspections, the preparation of videotapes, and evaluation of building material for lead paint or asbestos content.

Prior to remediation, the results of earlier characterization investigations were used to help plan remediation activities. The property was again surveyed immediately before remediation to more accurately define the boundaries of radioactive contamination. Walkover surface scans were conducted during remediation to direct the excavation. As remediation was completed, soil samples were collected and analyzed to verify that residual radioactive material above the cleanup criteria had been removed. Additionally, exposure rate measurements were taken with a PIC to confirm that residual radiation levels were in compliance with applicable guidelines. Details are provided in Section 4.0.

The primary technique used in the remedial action was excavation of the contaminated materials. A jackhammer was used to break up concrete, asphalt, and debris before removal. Because of the limited working space available, small volumes of soil were removed with picks and shovels, while a backhoe was used to remove larger volumes. After remedial action, areas were restored to the condition agreed upon by the property owners.

After the material was excavated, direct gamma measurements were taken with an Eberline SPA-3 gamma scintillation detector. When survey results indicated that remediation was complete, post-remediation soil samples were collected from the excavated areas in accordance with the "FUSRAP Post-Remedial Action Survey Plan" (BNI 1996). The soil samples were sent to a laboratory at MISS for gamma spectral analysis to ensure that all soils contaminated above the cleanup criteria had been removed. If the analysis showed that residual radioactive material exceeding criteria remained, then additional excavation was conducted and additional post-remedial action samples were collected and analyzed. The rationale for the sampling program and the analytical results are presented in Section 4.0.

Following verification that cleanup criteria had been met, excavated areas were either backfilled with clean fill purchased from a vendor or with clean soil (i.e., overburden) removed from other properties in the vicinity being remediated. Radiological results were compared to applicable guidelines identified in Section 2.0. Chemical results were compared to applicable New Jersey soil cleanup criteria/background concentrations (NJDEP 1996, BNI 1992). The results compared to applicable guidelines for backfill and clean overburden soil are provided in Section 4.1.

During remediation, approximately 1,328 m³ (1,737 yd³) of radioactively contaminated soil was removed from the two properties at 7 and 9 Hancock Street (BNI 1999a). Volumes from these two properties were reported together because the properties were remediated concurrently. Excavated material was transported to MISS, where it was loaded into railcars and shipped to the Envirocare of Utah disposal facility in Clive, Utah.

Details on the results of post-remedial action surveys and sampling are provided in Section 4.0. Information pertaining to contamination control during remedial action is provided in Appendix B.

4.0 POST-REMEDIAL ACTION MEASUREMENTS

After each portion of the property was remediated, the area was surveyed to confirm that all radioactive contamination exceeding cleanup criteria had been removed. Safety and Ecology Corporation (SEC), a subcontractor to BNI, conducted the initial post-remediation surveys. Verification techniques included walkover gamma scans, external gamma radiation exposure rate measurements, and soil sampling. ORNL, as the IVC, performed independent verification surveys of the remediated areas using similar or identical survey techniques. The results of IVC final survey data and conclusions are to be issued as a separate report.

As excavation proceeded, walkover surface scans were conducted with an Eberline SPA-3 gamma scintillation detector to determine whether all soil that was radioactively contaminated in excess of the cleanup criteria had been removed from the remediated areas. The walkover survey provided immediate feedback so that additional excavation could be performed if residual contamination appeared to exceed remedial action guidelines. The area was scanned after each lift of soil was removed to verify that the contamination had been removed. Soil samples also were collected throughout the excavation and analyzed at the MISS laboratory as an additional verification measure on the surface scans.

In addition, external gamma radiation exposure rates were taken and measured with a PIC at 1 m (3 ft) above the ground surface in each open excavation prior to its backfilling with clean fill. PIC readings were compared with the background exposure rate (9.0 μ R/h) established for the area.

The procedure followed for performing post-remedial action sampling is provided in the "FUSRAP Post-Remedial Action Survey Plan" (BNI 1996). Upon completion of remediation, a survey grid of $100 \text{ m}^2 (1,076 \text{ ft}^2)$ was established over the excavated area to conduct radiological surveys. If there were small irregularities in the excavated area, the total area for each grid did not exceed $100 \text{ m}^2 (1,076 \text{ ft}^2)$. Composite post-remediation soil samples were collected (from a depth of 0 to 6 in.) from each remediated grid by taking individual samples [at a frequency of 25 per $100 \text{ m}^2 (1,076 \text{ ft}^2)$] from each sample grid and compositing these individual samples into one sample for that grid. A bias sample was also collected from the bottom of the excavation at an area indicating the highest gamma reading for that grid. Soil sampling, using gamma spectroscopy, was the primary method used to confirm that all radioactive contamination exceeding the cleanup criteria had been removed. External gamma exposure rates were measured in excavated areas using a PIC.

Samples for radiological parameters were analyzed at the MISS laboratory. Samples for chemical analysis were sent to Adirondack laboratory in Albany, New York, or the RECRA

laboratory in Lionsville, Pennsylvania. In addition, approximately 10 percent of all samples collected for radiological analysis were sent to the Thermo NuTech laboratory in Oak Ridge, Tennessee, for independent analysis as a quality control (QC) measure. The samples sent to the independent laboratory primarily consisted of clean overburden, in-progress excavation, and post-remedial action bias and composite samples. The QC results are provided in Appendix C.

Additionally, material purchased from a vendor was used as backfill after remediation. Before the excavated areas were backfilled, samples were tested for radiological and chemical parameters to ensure the backfill material was not contaminated.

The radiological data packages were validated as required by project procedures. The postremedial action radiological results are reported in Table D-1 (Appendix D).

4.1 9 HANCOCK STREET

The property at 9 Hancock Street is a two-story house with a basement, wooden deck, and aboveground pool in the backyard. The approximate areas of subsurface contamination are shown in Figure 1-3.

During remediation, surface scans were performed on each lift of soil removed to determine if the material was below or above the cleanup criteria. Clean soil from the excavation (i.e., overburden) was staged separately at Lodi Park. Eight samples were collected during excavation at depths from 0.3 to 0.9 m (1 to 3 ft). Results of analyses for thorium-232, radium-226, and uranium-238 were below the cleanup criteria. Data for clean overburden soil for this property, and other properties, are reported in Appendices E and F. All soil exceeding the cleanup criteria, including soils between the underpins and below the house, was excavated and transported to the MISS for later shipment to Envirocare of Utah.

Clean soil from residential property excavations in addition to material obtained from offsite vendor(s) was used to backfill the site. Soils naturally contain certain metals and organic compounds. All sources of backfill were tested for radiological and chemical parameters. USACE review of this data indicates that the levels of contamination fall within or below the CERCLA (cancer) risk range of 1×10^{-4} to 1×10^{-6} . Radiological and chemical data associated with all backfill sources potentially used on this site are contained in Appendix G.

The excavated area shown in Figure 4-1 was larger in comparison to the extrapolated area of contamination (Figure 1-3) because surface scans performed during remediation indicated that narrow lenses of contamination were present in various areas that were undetected by previous sampling activities. The results of further sampling [12 samples collected at depths of 0.9 to

1.65 m (3 to 5.5 ft)] required the removal of additional soil, so the excavated area shown in Figure 4-1 was larger than predicted.

Because the basement is deeper than the depth of excavation of 1.2 m (4 ft), contamination was not suspected to run under the basement. The depth of excavation ranged from 1.2 to 1.8 m (4 to 6 ft) across the full area of remediation activities; however, the depth of excavation near the exterior of the house was only approximately 1.2 m (4 ft) (see Fig 4-2). The depth from the existing grade to the bottom of the basement is approximately 1.14 m (3.75 ft) (BNI 1999b). The thickness of the basement slab is considered to be approximately 0.18 m (0.58 ft), so the depth of basement, including basement slab, is approximately 1.3 m (4.3 ft). A sample was not collected below the slab, but a sample, MVP2161, was collected from the excavated area at a depth of 1.8 m (6 ft) (see Fig 1-3). The sample location was from the front of the house, i.e., close to the steps and near the foundation. The results were below the cleanup criteria (BNI 1999c)

Prior to backfilling of the excavated areas, EPA region II did not perform chemical sampling because results for the samples collected earlier from Phase 1 MVPs detected no chemical contamination. The results were considered representative for this property (BNI 1998b).

4.1.1 Post-Remedial Action Survey

Figure 4-1 shows the areas of excavation and property elevation contours. The areas and depths of excavation, grid locations, and locations of post-remedial action soil samples are shown in Figure 4-2. Eight samples were collected from four locations in grids 1 through 4 (see Fig 4-10).

The net result for each radionuclide reported in Table 4-1 is obtained by subtracting the background concentration for each radionuclide from the reported value for that radionuclide. If the net result of a radionuclide is negative, then the value for that radionuclide is reported as zero. As indicated in Table 4-2, the sum-of-ratios for each sample was below 1.

In post-remedial action composite samples, net concentrations of thorium-232 ranged from non-detect to 0.42 pCi/g; radium-226 net concentrations ranged from non-detect to 0.85 pCi/g; and concentrations of uranium-238 were not detected.

In post-remedial action bias samples, net concentrations of thorium-232 ranged from 1.97 to 4.48 pCi/g; radium-226 net concentrations ranged from 0.20 to 0.48 pCi/g; and uranium-238 net concentrations ranged from non-detect to 0.87 pCi/g.

Figure 4-3 shows the locations of the four post-remedial action gamma exposure rate measurements taken with the PIC. The exposure rates ranged from 10.7 to 21 μ R/h; the background value is 9.0 μ R/h. The PIC readings were taken in excavated areas prior to backfilling as a remedial action evaluation survey. If PIC readings were elevated, the readings would have indicated potential exposure concerns thus indicating missed contamination above the release criteria and triggering additional excavation. Although the reported values are above background, they do not represent the final status of the property. The exposures from external gamma radiation would be further reduced after the excavations were backfilled with clean fill. The clean fill would cause a shielding and covering effect on the remaining soils, reducing gamma ray, dust, and radon exposures to levels below the remedial action level of 100 mrem/y.

The unaffected portion of the house was sealed off from the work area with a wood frame covered in heavy plastic to keep out dust. BNI also employed security personnel to ensure these areas were secured. Interior radiological surveys were performed after completion of the post-remedial action surveys or after the end of the interior restoration phase. Ten locations within the house were surveyed with cloth smears to determine levels of residual removable contamination. The individual smear results were below the free release criteria of 200 dpm/100 cm² for alpha or 1,000 dpm/100 cm² for beta-gamma emitting radionuclides.

4.1.2 IVC Verification

After remediation, BNI provided post-remedial action data to the IVC for review. The IVC verified excavated areas to determine if remediated areas were in compliance with the cleanup criteria. Upon completion of verification, the IVC gave verbal approval so that excavated areas could be backfilled. This was followed by e-mail confirming their approval. The final IVC report will be published separately.

4.1.3 Summary

The results of data taken at the conclusion of remediation for the open excavations were below the cleanup criteria (see Table 2-1). On verification of results, the remediated areas were restored.

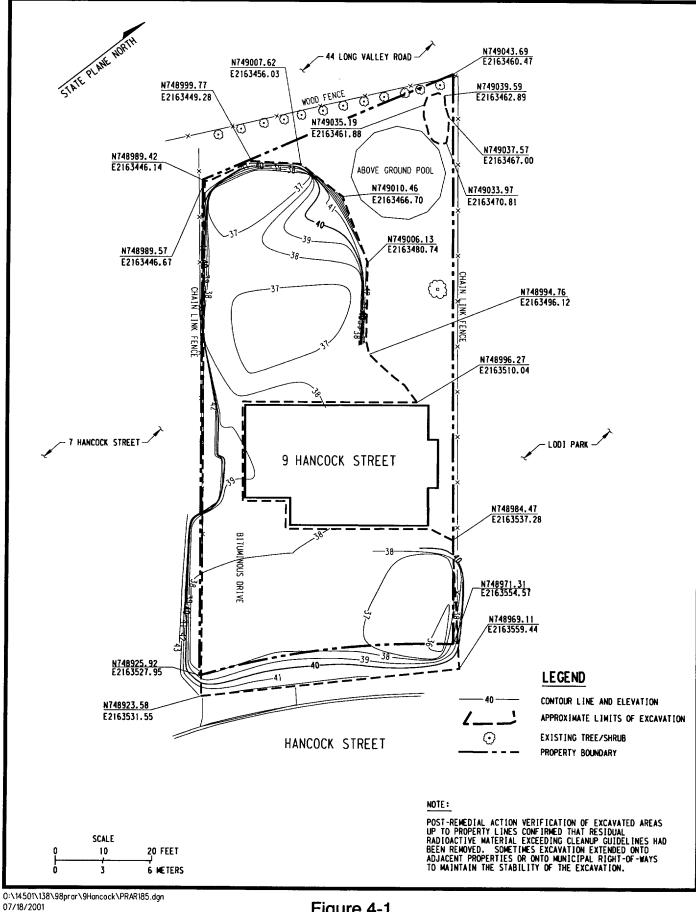
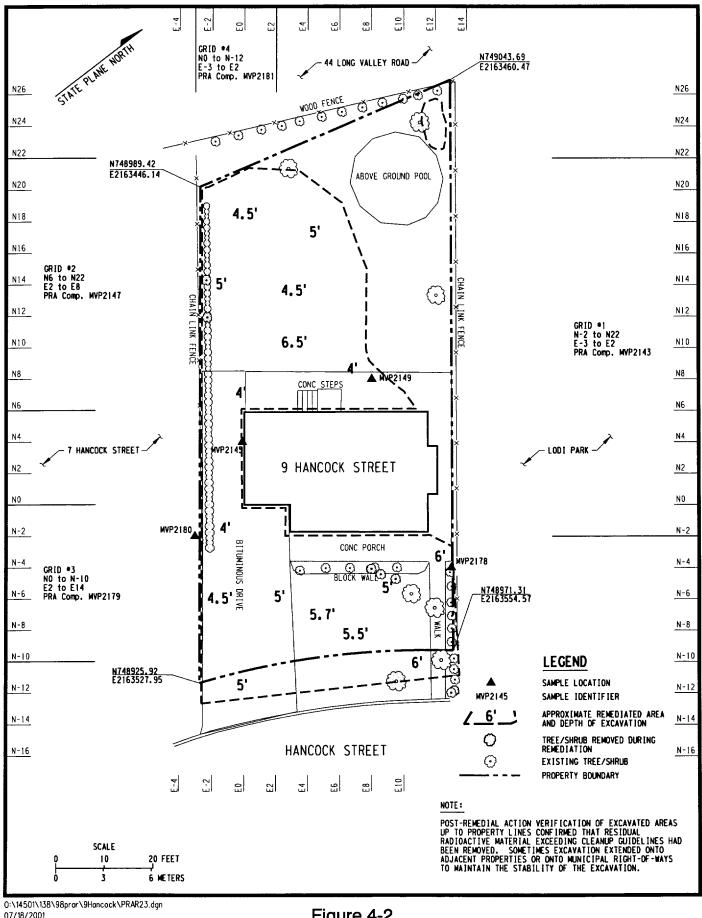
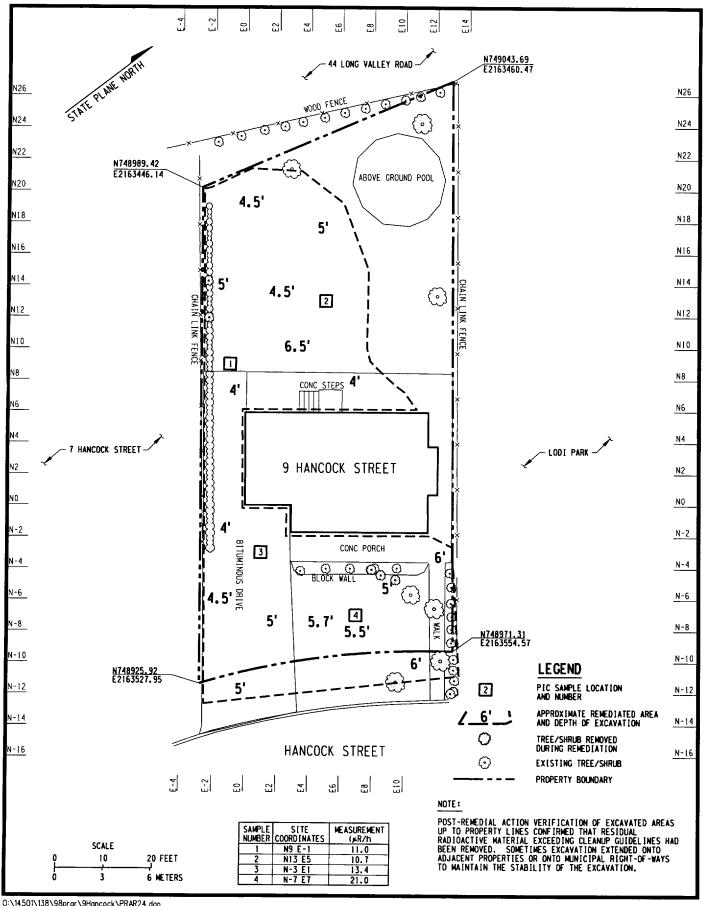




Figure 4-1 Areas of Excavation and Elevation Contours 9 Hancock Street

Figure 4-2 Areas of Excavation and Post-Remedial Action Samples 9 Hancock Street

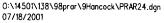


Figure 4-3 PIC Readings 9 Hancock Street

TABLE 4-1 FINAL STATUS SURVEY RESULTS FOR 9 HANCOCK STREET

Sample ID	COC #	Collection	Comments	Matrix	Coordinates	Depth	Lab	Th-232	Error	Ra-226	Error	U-238	Error	Sum
		Date				(ft)		(pCi/g)	+\-	(pCi/g)	+\-	(pCi/g)	+\-	Ratios
MVP2143	138980918	9/10/1998	Post-RA composite grid 1	sfs	N-2~22 E-3~2	0.0-0.5	MISS	0.04	0.05	0.00	0.03	0.00	0.70	0.008
MVP2147	138980918	9/10/1998	Post-RA composite grid 2	sfs	N6~22 E2~8	0.0-0.5	MISS	0.00	0.05	0.00	0.03	0.00	0.00	0.000
MVP2179	138980936	9/21/1998	Post-RA composite grid 3	sfs	N0~-10 E2~14	0.0-0.5	MISS	0.02	0.05	0.20	0.03	0.00	0.76	0.044
MVP2181	138980939	9/22/1998	Post-RA composite grid 4	sfs	N0~-12 E-3~2	0.0-0.5	MISS	0.42	0.06	0.85	0.05	0.00	0.83	0.254
MVP2145	138980918	9/10/1998	Post-RA bias grid 1	sfs	N4 E0	0.0-0.5	MISS	1.97	0.09	0.42	0.04	0.00	0.96	0.478
MVP2149	138980918	9/10/1998	Post-RA bias grid 2	sfs	N8 E8	0.0-0.5	MISS	3.62	0.12	0.48	0.05	0.00	1.10	0.820
MVP2178	138980936	9/21/1998	Post-RA bias grid 3	sfs	N-4 E13	0.0-0.5	MISS	3.33	0.11	0.28	0.04	0.00	1.25	0.722
MVP2180	138980939	9/22/1998	Post-RA bias grid 4	sfs	N-2 E-3	0.0-0.5	MISS	4.48	0.13	0.30	0.04	0.87	0.00	0.973

NOTES:

COC # - chain of custody number

RA - remedial action

sfs - surface soil

Background values: Th-232 ,1.00 pCi/g; Ra-226, 0.70 pCi/g; and U-238, 2.90 pCi/g.

Net results are reported. The net result is obtained by subtracting the background concentration for each radionuclide from the gross reported value for that radionuclide. If the net result of a radionuclide is negative, then the value for that radionuclide is reported as zero.

5.0 POST-REMEDIAL ACTION STATUS

Final analytical results for 9 Hancock Street demonstrate that remediated areas are in compliance with applicable cleanup guidelines for radioactive contamination and that chemicals were not detected in soils exceeding the applicable chemical criteria.

The IVC is responsible for preparing a plan outlining the procedures used in conducting verification activities (ORNL 1998). In accordance with its verification plan, Type A and Type B reviews were conducted by the IVC following the completion of remediation 9 Hancock Street.

Type A verification consisted of reviewing the existing post-remedial action survey results. After review of the results, the IVC determined if there was a need to collect additional samples from the location(s) listed in the survey results. In performing Type B verification review, the IVC conducted a survey of the site that included direct radiological measurements, review of the post-remedial action survey methods and results, sampling, and laboratory analysis of separate soil samples. On publication, the IVC's verification report will become part of the CERCLA Administrative Record for the Maywood FUSRAP site.

REFERENCES

- ANL (Argonne National Laboratory) 1989. "A Manual for Implementing Residual Radioactive Material Guidelines – A Supplement to U.S. Department of Energy Guidelines for Residual Radioactive Material at Formerly Utilized Sites Remedial Action Program and Surplus Facilities Management Program Sites" DOE/CH/8901 (June).
- BNI (Bechtel National, Inc.) 1989. "Radiological Characterization Report for the Residential Property at 9 Hancock Street, Lodi, New Jersey," DOE/OR/20722-247, Oak Ridge, Tenn. (September).
- BNI 1992. "Remedial Investigation Report for the Maywood Site, Maywood, New Jersey," DOE/OR/21949-337, Oak Ridge, Tenn. (December).
- BNI 1994. "MIS Uranium Guideline (from Wagoner to Price)" CCN 115863, (April).
- BNI 1995. "Engineering Evaluation/Cost Analysis for the Cleanup of Residential and Municipal Vicinity Properties at the Maywood Site, Bergen County, New Jersey," CCN 134427, Oak Ridge, Tenn. (September).
- BNI 1996. "FUSRAP Post-Remedial Action Survey Plan," CCN 144856, Oak Ridge, Tenn. (August).
- BNI 1998a. "MIS 9 Hancock Radiological Characterization Data," 138-IOA-GEV-00160, (October).
- BNI 1998b. "EPA Discontinuance of Chemical Sampling of Phase 1 VPs," CCN 138-IOA-GEV-00226 (July).
- BNI 1999a. "MIS-Delivery Order 0004 Maywood Vicinity Property Cost Summaries," CCN 138-TOA-GAM-00189 (August).
- BNI 1999b. "Basement Elevation for 9 Hancock Street," 138-IOA-GCA-00066 (October).
- BNI 1999c. "FUSRAP Data Transmittal for 9 Hancock Street," Document # 98G1094.
- BNI 1999d. "VP Perimeter Radiological Air Sampling Summary," 138-IOA-GEV-00228 (September).
- DOE (U.S. Department of Energy), 1990. "Radiation Protection of the Public and the Environment," DOE Order 5400.5, Washington, D.C. (June).

- DOE 1994. "DOE Acceptance of EPA's Proposed Cleanup Levels," Letter from J. LaGrone to W. Muszynski, CCN 115499 (April 13).
- NJDEP (New Jersey Department of Environmental Protection) 1996. "Soil Cleanup Criteria (Residential Direct Contact Soil Cleanup Criteria)," last revised July 11.
- ORNL (Oak Ridge National Laboratory) 1989. "Results of the Radiological Survey at 9 Hancock Street, Lodi, New Jersey", ORNL/RASA-87/36, (September).
- ORNL 1998. "Draft Field Sampling Plan for the Independent Verification of a Vicinity Property of the Maywood Chemical Company Site, NJ," (November 12).
- Shleien, B., 1992. The Health Physics and Radiological Health Handbook, Revised Edition, Scinta Inc., Silver Spring, Maryland.

APPENDIX A

.

RADIATION AT A GLANCE

RADIATION AT A GLANCE

Of all activities at FUSRAP sites, those associated with radiation receive the most attention. What exactly is radiation and where does it come from? To answer these questions, it is best to start with a few basics.

All matter is made up of extremely small particles called atoms. Atoms contain even smaller particles called protons, neutrons, and electrons. When an atom has a stable mix of protons and neutrons, it is non-radioactive. However, when atoms have too many either protons or neutrons, these unstable atoms can break apart, or decay, in an attempt to become stable. As atoms decay, energy is released; this released energy is called radiation.

Sources of Radiation

Radiation originates from natural events that happen all the time, but it can also be made by man. Most of the radiation people are exposed to occurs naturally. Radiation has always been present and every person who has ever lived has been exposed to it. Although modern technology may seem to have greatly increased the exposure rate, this is not necessarily the case. Exposure to manmade radiation varies greatly based on a given individual's lifestyle choices and medical treatments.

Sources of natural, or background, radiation include internal radiation from food (we all have approximately 500,000 atoms disintegrating in our bodies every minute), cosmic radiation from the sun and from outside the solar system, and terrestrial radiation from rocks, soils, and minerals. People have no control over the amount of natural radiation around them, and the amount of natural radiation stays about the same over time. The natural radiation present in the environment today is not much different than it was hundreds of years ago. In general, over 80 percent of the radiation the average person is exposed to is from natural sources. Manmade radiation accounts for less than 20 percent of the total; most of it is from medical procedures.

Manmade sources of radiation include consumer products, medical procedures, and the nuclear industry. Some consumer products such as smoke detectors and even porcelain dentures contain radioactive elements. Probably the best-known source of manmade radiation is nuclear medicine. For example, to conduct a brain, liver, lung, or bone scan, doctors inject patients with radioactive compounds and then use radiation detectors to make a diagnosis by examining the resulting image of the organ. Manmade radioactive materials also include cesium-137 and strontium-90, present in the environment as a result of previous nuclear weapons testing.

As with background radiation, exposure to other sources of radiation varies greatly depending on individual choices, such as smoking tobacco products (which contain polonium-210) and eating certain foods (bananas contain potassium-40).

Levels of Radiation

The average dose caused by background radiation varies widely. In the United States, the average is about 300 mrem/y; some people in other parts of the world receive a dose more than four times this amount. For example, in some areas of Brazil, doses to inhabitants can be more than 2,000 mrem/y from background radiation. These wide variations are the result of several factors, most notably the types and amounts of radionuclides in the soil.

This diversity in background radiation is responsible for the large differences in doses. Because people live in areas with high levels of background radiation without proven harm, it is assumed by most in the scientific community that small variations in environmental radiation levels have an inconsequential effect, if any, on humans.

Measuring Radiation

To determine the possible effects of radiation on the health of the environment and people, these effects must be measured. More precisely, the potential for radiation to cause damage must be ascertained. Measurements of these potential effects are derived from the activity of each isotope and are expressed in terms of the absorbed dose to an individual and the effective dose or potential to cause biological damage.

Activity

When we measure the amount of radiation in the environment, what is actually being measured is the rate of radioactive decay, or radioactivity, of a given element. This radioactivity is expressed in a unit of measure known as a curie (Ci). A curie is a measure of radioactivity, not a set quantity of material. More specifically, one curie equals 37,000,000,000 (3.7×10^{10}) radioactive disintegrations per second. One gram of a radioactive substance may contain the same amount of radioactivity as several tons of another radioactive substance. For example, one gram of tritium (a radioactive form of hydrogen) emits about 10,000 Ci, while one gram of uranium emits about 0.00000333 (333×10^{-9}) Ci. Because the levels of radioactive contaminant levels. One picocurie is equal to 1×10^{-12} curies. Contaminants in water are reported in picocuries per liter (pCi/L), and contaminants in soil are reported in picocuries per gram (pCi/g).

Absorbed Dose

The total amount of absorbed energy per unit mass as a result of exposure to radiation is expressed in a unit of measure known as a rad. However, in terms of human health, it is the relative effectiveness of the absorbed energy in causing biological damage that is important, not the actual amount of energy absorbed.

Dose Equivalent

The absorbed dose needed to achieve a given level of biological damage is different for different kinds of radiation. To allow for the different biological effectiveness of different kinds of radiation, the concept of dose equivalent is used. The dose equivalent is the product of the absorbed dose and a dimensionless quality factor. The unit of dose equivalent is called the rem (roentgen-equivalent-man). A rem is a fairly large dose; therefore, the most common unit of dose equivalent is the millirem (mrem), or 1/1,000 of a rem. Table A-1 describes some potential health effects over a wide range of radiation doses.

Table A-1 Comparison and Description of Various Dose Levels

Dose	Description
1 mrem	Approximate daily dose from natural background radiation, including that from radon.
2.5 mrem	Cosmic dose to a person on a one-way airplane flight from New York to Los Angeles.
4 mrem	Annual exposure limit set by EPA for manmade radiation in drinking water.
10 mrem	Typical dose from one chest X-ray using modern equipment.
10 mrem	Annual exposure limit, set by EPA, for exposures from airborne emissions (excluding radon) from operations of nuclear fuel cycle facilities, including power plants, uranium mines, and mills.
25 mrem	Annual exposure limit set by EPA for low-level waste-related exposures.
65 mrem	Average yearly dose to people in the United States from manmade sources.
60-80 mrem	Average yearly dose from cosmic radiation to people in the Rocky Mountain States.
83 mrem	Estimate of the largest dose any offsite person could have received from the March 28, 1979, Three Mile Island nuclear accident.
100 mrem	Annual limit of dose from all DOE facilities to a member of the public who is not a radiation worker.
110 mrem	Average occupational dose received by United States commercial radiation workers in 1980.

170 mrem	Average yearly dose to an airline flight crew member from cosmic radiation.
300 mrem	Average yearly dose to people in the United States from all sources of natural background radiation.
900 mrem	Average dose from a lower-intestine diagnostic X-ray series.
1,000–5,000 mrem	EPA's Protective Action Guidelines state that public officials should take emergency action when the dose to a member of the public from a nuclear accident will likely reach this range.
5,000 mrem	Annual limit for occupational exposure of radiation workers set by the U.S. Nuclear Regulatory Commission and DOE.
8,000 mrem	Average yearly dose to the lungs from smoking 1½ packs of cigarettes per day.
10,000 mrem	The BEIR V report estimated that an acute dose at this level would result in a lifetime excess risk of death from cancer, caused by the radiation, of 0.8 percent.
25,000 mrem	EPA's guideline for voluntary maximum dose to emergency workers for non-lifesaving work during an emergency.
75,000 mrem	EPA's guideline for maximum dose to emergency workers volunteering for lifesaving work.
50,000–600,000 mrem	Doses in this range received over a short period of time will produce radiation sickness in varying degrees. At the lower end of this range, people are expected to recover completely, given proper medical attention. At the top of this range, most people will die within 60 days.

APPENDIX B

.

CONTAMINATION CONTROL DURING REMEDIAL ACTION

CONTAMINATION CONTROL DURING REMEDIAL ACTION

During the removal action, engineering and administrative controls (such as dust control, hazardous work permits, and installation of silt fences) and personal protective equipment (PPE) were used to protect remediation workers and members of the public from exposure to radiation in excess of applicable guidelines. These measures also controlled the migration of radioactive material to uncontaminated areas next to these vicinity properties.

All personnel working in contaminated areas were required to wear protective clothing, safety glasses, rubber boots, hard hat, and gloves.

Workers exiting controlled areas were checked for radioactive contamination (frisked) at the control point with a hand-held radiation detection instrument. Conducted by personnel who have received Radiological Worker II training, the frisk ensured that workers were not contaminated and prevented the potential spread of radioactive material from the work area. A frisk is simply a search for radioactive material that may have been transferred onto the skin or clothing of individuals inside the work area. The AC-3 alpha probe radiation detection instrument is hand-held approximately 0.5 cm (0.2 in.) away from the area to be frisked and moved slowly [about 5 cm (2 in.) per second] across the body or clothing by the worker. Portions of the worn PPE that were suspected or known to be contaminated were packaged and shipped to Envirocare of Utah for disposal.

The primary pathway by which persons onsite and offsite could be exposed to radioactive material during removal activities at the site was inhalation and ingestion of radioactively contaminated airborne dust generated during excavation. The spread of contamination and personnel exposure during remedial action were minimized by the following measures:

- A fine water mist was sprayed as needed to control dust during soil removal and transport.
- Trucks hauling contaminated materials were fitted with liners, and the loads were covered with tarps to prevent spillage.
- Silt fences were placed around excavated areas to prevent runoff of potentially contaminated sediment and were maintained until restoration activities were completed.

Water accumulated in the excavated area was sampled first for shipment to an offsite laboratory for radionuclides analysis. Then the water was pumped into a tanker and transported to MISS. Area air particulate sampling was also performed adjacent to areas being remediated to ensure that no member of the general public was exposed at levels exceeding the guidelines (DOE 1990). The limits expressed are derived concentration guides (DCGs); a DCG is the concentration of a particular radionuclide that would provide an effective dose equivalent of 100 mrem/yr to an individual continuously inhaling the radionuclide for an entire year. These guidelines were established by the International Commission on Radiation Protection and the National Commission on Radiation Protection to protect the environment and members of the general public. Eberline RAS-1 high-volume and SKC low-volume samplers were used, and the filters were collected daily and counted after 4 days to allow for radon decay. As an extra precaution, the area monitors were placed well within the site perimeter. The average concentration of thorium-232 measured by area air particulate monitors was $1.61 \times 10^{-14} \,\mu\text{Ci/mL}$ $(1.61 \times 10^{-5} \,p\text{Ci/L})$ (BNI 1999d).

Most results were below the DCG of 1.0×10^{-5} pCi/L for thorium-232. Even though the DCG was exceeded for a few 8-h periods, a person would need to be exposed to the thorium-232 DCG continuously for 1 year to receive a dose greater than the 100 mrem/y guideline.

B-2

APPENDIX C

QUALITY CONTROL DATA FOR 9 HANCOCK STREET

Final9HancockPRAR

Sample ID	COC #	Date	Comments	Matrix	Coordinates	Depth	Th-232 Review	Error	Ra-226 R	leview E	Error	U-238	Review	Error
						(ft)	(pCi/g) Qual.ª			Qual."	+\-			+\-
Background							1.00		0.70			2.90		
MVP2182	138981008	10/7/1998	Rad. characterization QC sample for MVP2100	sbs	Borehole # 6	2.5	0.63	0.16	0.65		0.07	2.41		0.96
MVP2183	138981008	10/7/1998	Rad. characterization QC sample for MVP2110	sbs	Borehole # 16	4.5	5.61	0.36	2.14		0.16	6.45	u	3.77
MVP2184	138981008	10/7/1998	Clean overburden QC sample for MVP2120	sbs	N2E-2	2.5	0.57	0.27	0.45		0.10	0.38	uj	1.19
MVP2185	138981008	10/7/1998	Rad. characterization QC sample for MVP2130	sfs	N1E0	6	1.98	0.30	2.14		0.13	0.35	uj	2.79
MVP2186	138981008	10/7/1998	Remedial action QC sample for MVP2140	sfs	N20E1	3	3.79	0.32	0.80		0.09	2.09		1.51
MVP2187	138981008	10/7/1998	Post-remedial action bias QC sample for MVP2149	sfs	N8E8	0.0-0.5	3.26	0.30	1.00		0.09	1.90		1.21
MVP2188	138981008	10/7/1998	Clean overburden QC QC sample for MVP2160	sfs	N-4E11	2	0.60	0.17	0.43		0.06	0.78	uj	0.92
MVP2189	138981008	10/7/1998	Post-remedial action bias QC sample for MVP2180	sfs	N-2E-3	0.0-0.5	4.08	0.33	1.18		0.10	2.88		1.34

TABLE C-1 QUALITY CONTROL RESULTS FOR 9 HANCOCK STREET

NOTES:

COC # - chain of custody number

sfs - surface soil

sbs - subsurface soil

QC - quality control

u - Undetected

uj - Undetected-estimated. The result is below the minimum detectable activity level or less than the associated error.

Samples were analyzed at the Thermo NuTech Laboratory in Oak Ridge, Tennessee.

Gross results are reported. The net result is obtained by subtracting the background concentration for each radionuclide from the gross reported value for that radionuclide. ^a Data validation - Document ID # 9810073

APPENDIX D

POST-REMEDIAL ACTION DATA FOR 9 HANCOCK STREET

Sample ID	COC #	Collection	Comments	Matrix	Coordinates	Depth	Lab	Th-232	Review	Error	Ra-226	Review	Error	U-238	Review	Error
		Date				(ft)		(pCi/g)	Qual.ª	+\-	(pCi/g)	Qual. ^a	+\-	(pCi/g)	Qual. ^a	+\-
background								1.00			0.70		_	2.90		
MVP2143	138980918	9/10/1998	Post-RA composite grid 1	sfs	N-2~22 E-3~2	0.0-0.5	MISS	1.04	j	0.05	0.64	j	0.03	0.71	uj	0.70
MVP2147	138980918	9/10/1998	Post-RA composite grid 2	sfs	N6~22 E2~8	0.0-0.5	MISS	0.92	j	0.05	0.61	j	0.03	1.98	uj	0.00
MVP2179	138980936	9/21/1998	Post-RA composite grid 3	sfs	N0~-10 E2~14	0.0-0.5	MISS	1.02	j	0.05	0.90	j	0.03	0.38	uj	0.76
MVP2181	138980939	9/22/1998	Post-RA composite grid 4	sfs	N0~-12 E-3~2	0.0-0.5	MISS	1.42	j	0.06	1.55	j	0.05	2.03	uj	0.83
MVP2145	138980918	9/10/1998	Post-RA bias grid 1	sfs	N4 E0	0.0-0.5	MISS	2.97	j	0.09	1.12	i	0.04	2.25	uj	0.96
MVP2149	138980918	9/10/1998	Post-RA bias grid 2	sfs	N8 E8	0.0-0.5	MISS	4.62	j	0.12	1.18	j	0.05	1.77	uj	1.10
MVP2178	138980936	9/21/1998	Post-RA bias grid 3	sfs	N-4 E13	0.0-0.5	MISS	4.33	j	0.11	0.98	j	0.04	2.59	uj	1.25
MVP2180	138980939	9/22/1998	Post-RA bias grid 4	sfs	N-2 E-3	0.0-0.5	MISS	5.48	j	0.13	1.00	j	0.04	3.77	uj	0.00

TABLE D-1 POST-REMEDIAL ACTION DATA FOR 9 HANCOCK STREET

NOTES:

COC # - chain of custody number

RA - remedial action

sfs - surface soil

j - Estimated, qualitatively correct but quantitatively suspect.

uj - Undetected-estimated. The result is below the minimum detectable activity level or less than the associated error.

Gross results are reported. The net result is obtained by subtracting the background concentration for each radionuclide from the gross reported value for that radionuclide. ^a Data validation - Document ID # 98G1088, 98G1089, 98G1095 **APPENDIX E**

/

RADIOLOGICAL DATA FOR CLEAN OVERBURDEN SOIL

TABLE E-1
RADIOLOGICAL DATA FOR MAYWOOD VICINITY PROPERTIES CLEAN OVERBURDEN SAMPLES

Property	Document	COC #	Collection	Sample ID	Matrix	Coordinates	Depth	Th-232	Review	Error	Ra-226	Review	Error	U-238	Review	Error
	ID		Date				(ft)	(pCi/g)	Qual.	+\-	(pCi/g)	Qual.	+\-	(pCi/g)	Qual.	+\-
Background								1.00			0.70			2.90		
4 HANCOCK STREET	98G1030	138980506	5/4/1998	MVP1100	sbs	N1 E5	1	0.67	i	0.04	0.69	i	0.03	1.60	uj	0.00
4 HANCOCK STREET	98G1030	138980506	5/4/1998	MVP1101	sbs	N1 E3	1	0.95	í	0.04	0.90	í	0.03	1.73	uj	0.00
4 HANCOCK STREET	98G1030	138980506	5/4/1998	MVP1102	sbs	N1 E4	2	0.81	í	0.04	0.75	i	0.03	1.57	uj	0.00
4 HANCOCK STREET	98G1031	138980506	5/4/1998	MVP1103	sbs	N1 E2	2	0.83	,	0.04	0.84	,	0.03	1.68	uj	0.00
4 HANCOCK STREET	98G1031	138980506	5/4/1998	MVP1104	sbs	N-1 E0	1	0.60		0.04	0.51		0.02	1.59		0.00
4 HANCOCK STREET	98G1031	138980506	5/4/1998	MVP1105	sbs	N1 E0	2	0.54		0.04	0.38		0.02	1.41		0.00
4 HANCOCK STREET	98G1031	138980508	5/5/1998	MVP1106	sbs	N1 E4	3	0.43		0.03	0.42		0.02	1.34		0.00
4 HANCOCK STREET	98G1031	138980508	5/5/1998	MVP1107	sbs	N1 E0	3	0.50		0.03	0.41		0.02	1.42		0.00
4 HANCOCK STREET	98G1031	138980508	5/5/1998	MVP1108	sbs	N-3 E0	1	0.72		0.04	0.72		0.02	1.61		0.00
4 HANCOCK STREET	98G1031	138980508	5/5/1998	MVP1109	sbs	N-2 E-2	2	0.83		0.04	0.66		0.03	1.65		0.00
4 HANCOCK STREET	98G1031	138980508	5/5/1998	MVP1110	sbs	N2 E-4	1	0.84		0.04	0.00		0.03	1.05		0.00
4 HANCOCK STREET	98G1031	138980508	5/5/1998	MVP1111	sbs	N2 E-6	1	0.74		0.04	0.80		0.03	1.65		0.00
4 HANCOCK STREET	98G1032	138980508	5/5/1998	MVP1112	sbs	N-7 E-11	1	0.87	:	0.04	0.88		0.03			
4 HANCOCK STREET	98G1032	138980508	5/5/1998	MVP1112	sbs	N-7 E-11	2		ļ			ļ		0.51	Uj	0.49
	98G1032	138980508		MVP1113 MVP1114			2 1	1.00	ļ	0.04	0.91	ļ	0.03	1.80	uj	0.00
4 HANCOCK STREET	98G1032 98G1032	138980508	5/5/1998 5/5/1998	MVP1114 MVP1115	sbs	N-8 E-11	•	0.90	1	0.05	0.77	ļ	0.03	1.83	uj	0.00
4 HANCOCK STREET					sbs	N-5 E-11	2	0.87	i	0.04	0.76	J	0.03	1.82	uj	0.00
4 HANCOCK STREET	98G1032	138980508	5/5/1998	MVP1116	sbs	N-7 E-3	1	0.56	1	0.03	0.44	ļ	0.02	1.55	uj	0.00
4 HANCOCK STREET	98G1032	138980508	5/5/1998	MVP1117	sfs	N-7 E-4	0.0-0.5	0.51	J	0.04	0.43	j	0.02	1.51	uj	0.00
4 HANCOCK STREET	98G1032	138980508	5/5/1998	MVP1118	sbs	N-10 E0	1	0.99	J.	0.05	0.86	j	0.03	1.80	uj	0.00
4 HANCOCK STREET	98G1032	138980508	5/5/1998	MVP1119	sbs	N-10 E-2	2	1.00	j	0.04	0.97	j	0.03	1.87	uj	0.00
4 HANCOCK STREET	98G1032	138980508	5/5/1998	MVP1120	sbs	N-4 E-16	1	0.61	j	0.04	0.55	j	0.03	0.23	uj	0.37
4 HANCOCK STREET	98G1032	138980508	5/5/1998	MVP1121	sbs	N-5 E-6	2	0.63	j	0.04	0.52	j	0.02	1.56	uj	0.00
6 HANCOCK STREET	98G1019	138980423	4/16/1998	MVP0600	sbs	N-7 E-2	2	0.44	j	0.04	0.46	j	0.03	1.79	uj	0.00
6 HANCOCK STREET	98G1019	138980423	4/16/1998	MVP0601	sbs	N-10 E-3	3	0.54	j	0.04	0.61	j	0.03	1.76	uj	0.00
6 HANCOCK STREET	98G1019	138980423	4/16/1998	MVP0602	sbs	N-8 E-7	2	0.58	j	0.04	0.51	j	0.03	1.67	uj	0.00
6 HANCOCK STREET	98G1020	138980426	4/20/1998	MVP0603	sbs	N-2 E-4	2-2.5	0.47	j	0.04	0.41	j	0.02	1.71	uj	0.00
6 HANCOCK STREET	98G1020	138980426	4/20/1998	MVP0604	sbs	N-2 E-6	2-2.5	0.74	j	0.04	0.65	j	0.03	1.89	uj	0.00
6 HANCOCK STREET	98G1020	138980426	4/20/1998	MVP0605	sbs	N-10 E-1	3	0.81	j	0.04	0.61	j	0.02	1.87	uj	0.00
6 HANCOCK STREET	98G1020	138980426	4/20/1998	MVP0606	sbs	N0 E-7	3.5	1.44		0.08	1.85		0.06	3.11	uj	0.00
6 HANCOCK STREET	98G1020	138980427	4/21/1998	MVP0607	sbs	N0 E-8	0.5-1	1.35	j	0.07	1.61	j	0.05	2.46	uj	0.00
6 HANCOCK STREET	98G1020	138980427	4/21/1998	MVP0608	sbs	N-2 E-6	2.5-3	1.31	j	0.07	1.60	j	0.05	2.30	uj	0.00
6 HANCOCK STREET	98G1020	138980427	4/21/1998	MVP0609	sbs	N-6 E-6	2.5-3	1.69	j	0.06	1.44	j	0.05	0.83	uj	0.61
6 HANCOCK STREET	98G1030	138980505	5/4/1998	MVP0610	sbs	N-12 E6	1	0.86	j	0.04	0.88	j	0.03	0.67	ui	0.62
6 HANCOCK STREET	98G1031	138980505	5/4/1998	MVP0611	sbs	N-12 E4	1	0.85	-	0.04	0.99	-	0.03	1.73	•	0.00
6 HANCOCK STREET	98G1031	138980505	5/4/1998	MVP0612	sbs	N-12 E5	2	0.92		0.04	0.94		0.03	1.79		0.00
6 HANCOCK STREET	98G1031	138980505	5/4/1998	MVP0613	sbs	N-12 E3	2	1.17		0.05	1.37		0.04	1.84		0.00
6 HANCOCK STREET	98G1031	138980505	5/4/1998	MVP0614	sbs	N-12 E1	1	0.51		0.03	0.40		0.02	1.45		0.00
6 HANCOCK STREET	98G1031	138980505	5/4/1998	MVP0615	sbs	N-12 E0	2	0.55		0.03	0.40		0.02	0.06		0.50
7 HANCOCK STREET	98G1023	138980440	4/28/1998	MVP0802	sbs	N1 E-15	1	0.84	i	0.05	0.52	i	0.03	2.04	uj	0.00
7 HANCOCK STREET	98G1024	138980440	4/28/1998	MVP0803	sbs	N11 E-18	1	0.87	i	0.05	0.60	i	0.03	2.03	uj	0.00
7 HANCOCK STREET	98G1024	138980440	4/28/1998	MVP0804	sbs	N11 E-15	1	0.76	i	0.04	0.45	i	0.03	1.82	uj	0.00
7 HANCOCK STREET	98G1026	138980440	4/28/1998	MVP0805	sbs	N6 E-15	1	0.74	i	0.04	0.59	i	0.03	1.78	uj	0.00
7 HANCOCK STREET	98G1026	138980440	4/28/1998	MVP0806	sbs	N9 E-17	2	0.75	i	0.04	0.00	i	0.02	1.70	uj	0.00
7 HANCOCK STREET	98G1026	138980440	4/28/1998	MVP0807	sbs	N9 E-14	2	0.70	i	0.04	0.58	j	0.02	1.60	uj	0.00
7 HANCOCK STREET	98G1026	138980440	4/28/1998	MVP0808	sbs	N7 E-19	2	0.78	i	0.04	0.57	i	0.03	0.82		0.00
7 HANCOCK STREET	98G1030	138980440	4/28/1998	MVP0809	sbs	N12 E-20	2	0.76	i	0.05	0.65	i	0.03	1.80	uj	0.00
· · · · · · · · · · · · · · · · · · ·							-		,		0.00	,	0.00	1.00	J	0.00

TABLE E-1
RADIOLOGICAL DATA FOR MAYWOOD VICINITY PROPERTIES CLEAN OVERBURDEN SAMPLES

Property	Document	COC #	Collection	Sample ID	Matrix	Coordinate	s Depth	Th-232	Review	Error	Ra-226	Review	Error	U-238	Review	Error
	ID	<u> </u>	Date				(ft)	(pCi/g)	Qual.	+\-	(pCi/g)	Qual.	+\-	(pCi/g)	Qual.	+\-
Background								1.00			0.70			2.90		
7 HANCOCK STREET	98G1029	138980446	4/29/1998	MVP0810	sbs	N3 E-15	2	0.70	j	0.04	0.54	j	0.03	1.68	uj	0.00
7 HANCOCK STREET	98G1026	138980446	4/29/1998	MVP0811	sbs	N0 E-14	2	0.89	j	0.04	0.59	j	0.03	1.73	uj	0.00
7 HANCOCK STREET	98G1030	138980446	4/29/1998	MVP0812	sbs	N-1 E-9	1	2.74	j	0.08	1.28	j	0.04	2.74	uj	0.00
7 HANCOCK STREET	98G1030	138980446	4/29/1998	MVP0813	sbs	N-1 E-12	1	1.08	j	0.05	0.74	j	0.04	2.13	uj	0.00
7 HANCOCK STREET	98G1030	138980446	4/29/1998	MVP0814	sbs	N10 E-12	1	0.95	j	0.04	0.73	j	0.03	1.76	uj	0.00
7 HANCOCK STREET	98G1029	138980446	4/29/1998	MVP0815	sbs	N11 E-12	2	0.83	j	0.05	0.75	j	0.03	1.71	ui	0.00
7 HANCOCK STREET	98G1030	138980446	4/29/1998	MVP0816	sbs	N7 E-10	1	1.31	i	0.06	0.96	i	0.04	0.10	uj	0.50
7 HANCOCK STREET	98G1030	138980446	4/29/1998	MVP0817	sbs	N7 E-10	2	1.01	i	0.06	0.94	i	0.04	0.13	ui	0.72
8 HANCOCK STREET	98G1013	138980305	3/27/1998	MVP0305	sbs	N-10 E1	2-2.5	0.44	i	0.03	0.37	i	0.02	1.32	uj	0.00
8 HANCOCK STREET	98G1013	138980305	3/27/1998	MVP0306	sbs	N-10 E3	4	0.77	i	0.04	0.82	i	0.03	1.44	uj	0.80
8 HANCOCK STREET	98G1013	138980305	3/27/1998	MVP0307	sbs	N-10 E1	4	1.03	í	0.05	1.13	í	0.03	1.99	uj	0.00
8 HANCOCK STREET	98G1013	138980305	3/27/1998	MVP0308	sbs	N-10 E6	3.5-4	0.61	í	0.04	0.61	i	0.03	0.92	uj	0.80
8 HANCOCK STREET	98G1013	138980306	3/30/1998	MVP0309	sbs	N-10 E7	3-3.5	1.72	í	0.07	1.95	i	0.05	2.50	uj	0.00
8 HANCOCK STREET	98G1013	138980306	3/30/1998	MVP0310	sbs	N-10 E7	3-3.5	1.53	í	0.06	1.77	i	0.05	1.61	uj	0.87
8 HANCOCK STREET	98G1013	138980306	3/30/1998	MVP0311	sbs	N-7 E-2	4-4.5	1.61	i	0.06	1.77	i	0.05	2.35	uj	0.00
8 HANCOCK STREET	98G1013	138980306	3/30/1998	MVP0312	sbs	N-6 E-9	4-4.5	1.56	i	0.06	1.83	i	0.05	1.32	uj	0.90
8 HANCOCK STREET	98G1013	138980306	3/30/1998	MVP0313	sbs	N-4 E-12	4-4.5	1.64	i	0.06	1.46	J i	0.03	2.40	uj	0.00
8 HANCOCK STREET	98G1013	138980306	3/30/1998	MVP0314	sbs	N-2 E-13	3-3.5	1.28	i	0.06	0.90	J i	0.04	0.21	uj	0.00
8 HANCOCK STREET	98G1013	138980307	3/31/1998	MVP0315	sbs	N-3 E-3	4-4.5	1.67	i	0.06	1.84	, I	0.05	2.35	uj	0.73
8 HANCOCK STREET	98G1013	138980307	3/31/1998	MVP0316	sbs	N-10 E8	4-4.5	1.54	J i	0.06	1.75	J	0.05	0.53	uj	0.00
8 HANCOCK STREET	98G1014	138980401	4/1/1998	MVP0319	sbs	N-1 E9	5	1.31	i i	0.00	1.67	ļ	0.05	0.55	•	0.79
8 HANCOCK STREET	98G1019	138980422	4/16/1998	MVP0381	sbs	N-8 E-6	4.5-5	2.27	j	0.07	1.85	J	0.05	2.60	uj	
8 HANCOCK STREET	98G1019	138980422	4/16/1998	MVP0382	sbs	N-4 E-8	4.5-5	2.23	j i	0.07	1.70	1 i	0.05	2.55	uj Uj	0.00 0.00
9 HANCOCK STREET	98G1086	138980911	9/3/1998	MVP2120	sbs	N2 E-2	2.5	0.76		0.04	0.48		0.03	1.65	<u> </u>	
9 HANCOCK STREET	98G1086	138980911	9/3/1998	MVP2125	sbs	N11 E-1	1	0.75	3	0.04	0.40	1	0.03	1.05	uj	0.00
9 HANCOCK STREET	98G1088	138980915	9/9/1998	MVP2141	sbs	N16 E2	1.5	1.27	j i	0.05	0.78	J	0.03	2.17	uj	0.00 0.00
9 HANCOCK STREET	98G1088	138980915	9/9/1998	MVP2142	sbs	N15 E4	2	1.30	j	0.06	0.64	1	0.03	0.74	uj	
9 HANCOCK STREET	98G1091	138980924	9/15/1998	MVP2154	sbs	N-6 E7	3	0.48	i	0.00	0.37	J	0.03	1.50	uj	0.79
9 HANCOCK STREET	98G1091	138980924	9/15/1998	MVP2155	sbs	N-5 E3	1.5	1.43	i	0.04	1.16	I i	0.02	1.50	uj	0.00
9 HANCOCK STREET	98G1093	138980925	9/16/1998	MVP2156	sbs	N-6 E11	3	0.81	i	0.05	0.56	J	0.04	1.92	uj	0.83
9 HANCOCK STREET	98G1094	138980925	9/16/1998	MVP2160	sbs	N-4 E11	2	0.59	i	0.03	0.50	J	0.03	1.92	uj	0.00
10 HANCOCK STREET	98G1014	138980309	3/31/1998	MVP0405	sbs	N-3 E15	4-4.5	1.56		0.04	1.68		0.05		uj	0.00
10 HANCOCK STREET	98G1014	138980402	4/1/1998	MVP0406	sbs	N4 E6	4	0.81	ļ	0.05	0.77	J		2.32	uj	0.00
10 HANCOCK STREET	98G1014	138980402	4/1/1998	MVP0407	sbs	N4 E0	4	0.79	1	0.03	0.90	ļ	0.03 0.03	1.78	uj	0.00
10 HANCOCK STREET	98G1014	138980403	4/2/1998	MVP0408	sbs	N2 E6	4	1.26	J	0.04	1.26	ļ		0.42	uj	0.83
10 HANCOCK STREET	98G1015	138980408	4/7/1998	MVP0409	sbs	N-3 E-10	4	1.43	ļ	0.00		ļ	0.04	2.20	uj	0.00
10 HANCOCK STREET	98G1020	138980425	4/20/1998	MVP0413	sbs	N-10 E2			ļ		1.09	ļ	0.04	2.26	uj	0.00
10 HANCOCK STREET	98G1034	138980521	5/12/1998	MVP0413	sbs	N-3.5 E-5	3-3.5 5	0.81 2.55	ļ	0.05	0.54	ļ	0.03	2.05	uj	0.00
10 HANCOCK STREET	98G1034	138980521	5/12/1998	MVP0486	sbs		5 4		ļ	0.08	1.25	ļ	0.04	2.59	uj	0.00
6 BRANCA COURT	98G1032	138980510	5/5/1998	MVP1200		N-1 E-4	-	1.58		0.06	1.76		0.05	2.37	uj	0.00
6 BRANCA COURT	98G1032	138980510	5/5/1998		sbs	N16 E0	2	0.99	ļ	0.05	0.67	j	0.03	1.90	uj	0.00
6 BRANCA COURT	98G1032	138980510	5/5/1998 5/5/1998	MVP1201	sbs	N18 E6	1.5-2	0.74	ļ	0.04	0.62	j	0.03	1.97	uj	0.00
6 BRANCA COURT	98G1032 98G1034	138980510		MVP1202	sbs	N4 E1	1.5	0.79	1	0.05	0.60	ļ	0.03	1.94	uj	0.00
6 BRANCA COURT	98G1034 98G1040	138980510	5/6/1998	MVP1203	sbs	N2 E2	2-2.5	0.72	1	0.04	0.49	j	0.02	1.64	uj	0.00
6 BRANCA COURT	98G1040 98G1040		6/2/1998	MVP1245	sbs	N0 E-17	2.5	0.70	i	0.05	0.46	j	0.03	1.87	uj	0.00
	3001040	138980608	6/2/1998	MVP1247	sbs	N2 E-14	3	0.90		0.05	0.64	<u>i</u>	0.03	1.99	uj	0.00

Property	Document	COC #	Collection	Sample ID	Matrix	Coordinates	Depth	Th-232	Review	Error	Ra-226	Review	Error	11.000	Deview	
	ID		Date		··,		(ft)	(pCi/g)	Qual.	+\-	(pCi/q)	Qual.	+\-		Review	
Background								1.00	diddi.		0.70	Gual.	-+-	(pCi/g) 2.90	Qual.	+\-
1-80 ROW	98G1023	138980438	4/27/1998	MVP0706	sfs	N7 E19	0.0-0.5	2.09		0.07	0.55		0.00		<u> </u>	
I-80 ROW	98G1023	138980438	4/27/1998	MVP0707	sfs	N8 E10	0.0-0.5	1.06	j	0.05	0.55	1	0.03	2.40	uj	0.00
I-80 ROW	98G1023	138980438	4/27/1998	MVP0708	sbs	N6 E8	0.5-1.5	1.31	i	0.05	0.46	1	0.03	1.94	uj	0.00
I-80 ROW	98G1023	138980438	4/27/1998	MVP0709	sfs	N6 E10	0.0-0.5	0.96	j i	0.05	0.38	J	0.03	2.09	uj	0.00
1-80 ROW	98G1023	138980438	4/27/1998	MVP0710	sbs	N8 E33	3.5-4	2.29	ł	0.08	0.58	1	0.02 0.03	1.86	uj	0.00
LODI PARK	98G1037	138980534	5/19/1998	MVP1602	sbs	N12 E60	2	0.66		0.05	0.55			0.91	uj	0.97
LODI PARK	98G1037	138980534	5/19/1998	MVP1604	sbs	N16 E62	4	0.82	i i	0.05	0.55	;	0.04	2.19	uj	0.00
200 BROOKDALE ST.	S98-035	138980101	1/8/1998	MVP0180	sfs	N9 E9	0-0.5	0.84		0.05	0.49		0.03	2.18	uj	0.00
200 BROOKDALE ST.	S98-035	138980101	1/8/1998	MVP0181	sbs	N6 E9	1.0-2	0.94		0.05	0.69		0.04	2.25	uj	0.00
200 BROOKDALE ST.	S98-035	138980101	1/8/1998	MVP0182	sbs	N7 E6	1-1.5	0.64		0.05	0.49		0.03	2.03	uj	0.00
200 BROOKDALE ST.	S98-034	138980102	1/9/1998	MVP0183	sbs	N2 E2	2.5-3	0.78		0.00	0.44		0.04	2.25	uj	0.00
200 BROOKDALE ST.	S98-034	138980102	1/9/1998	MVP0184	sbs	N10 E10	0.5-1	0.90		0.07	0.65		0.04	2.37	uj	0.00
200 BROOKDALE ST.	S98-034	138980102	1/9/1998	MVP0185	sbs	N5 E1	1-1.5	0.76		0.00	0.66		0.04	2.15	uj	0.00
200 BROOKDALE ST.	S98-034	138980102	1/9/1998	MVP0186	sbs	N4 E3	0.5-1	0.81	÷	0.00	0.51		0.03	2.04	uj	0.00
200 BROOKDALE ST.	S98-034	138980102	1/9/1998	MVP0187	sbs	N12 E4	1.5-2	0.92	1	0.07	-	1	0.03	2.06	uj	0.00
200 BROOKDALE ST.	S98-034	138980102	1/9/1998	MVP0188	sbs	N5 E6	0.5-1	0.65	t	0.05	0.53		0.04	2.23	uj	0.00
200 BROOKDALE ST.	98G1024	138980444	4/29/1998	MVP0268		South pile	NA	0.00	1	0.05	0.57	ļ	0.03	1.83	uj	0.00
200 BROOKDALE ST.	98G1024	138980444	4/29/1998	MVP0269	-	North pile	NA	0.67	1	0.05	0.69	1	0.04	1.52	uj	0.86
200 BROOKDALE ST.	98G1025	138980444	4/29/1998	MVP0260		North pile	NA	0.60	J	0.05	0.50	ļ	0.03	1.89	uj	0.00
200 BROOKDALE ST.	98G1025	138980444	4/29/1998	MVP0261		North pile	NA	0.94	1	0.04	0.48 0.82	ļ	0.03	1.89	uj	0.00
200 BROOKDALE ST.	98G1025	138980444	4/29/1998	MVP0262		North pile	NA	0.73		0.06	0.62	ļ	0.05	4.37	j	0.87
200 BROOKDALE ST.	98G1025	138980444	4/29/1998	MVP0263		North pile	NA	0.95		0.06		ļ	0.06	4.84	j	1.31
200 BROOKDALE ST.	98G1025	138980444	4/29/1998	MVP0264		South pile	NA	0.95	i	0.00	0.54	ļ	0.03	3.05	uj	1.09
200 BROOKDALE ST.	98G1025	138980444	4/29/1998	MVP0265	-	South pile	NA	0.93	1	0.07	0.72	ļ	0.07	1.76	uj	1.07
200 BROOKDALE ST.	98G1025	138980444	4/29/1998	MVP0266		South pile	NA	0.84			0.65	j	0.04	2.87	uj	0.00
200 BROOKDALE ST.	98G1025	138980444	4/29/1998	MVP0267		South pile	NA	0.79		0.05 0.07	0.57 0.68	ļ	0.03	4.22	uj	0.95
								0.00		0.07	0.68		0.04	2.78	uj	1.09

TABLE E-1 RADIOLOGICAL DATA FOR MAYWOOD VICINITY PROPERTIES CLEAN OVERBURDEN SAMPLES

NOTES:

sfs - surface soil

sbs - subsurface soil

j - Estimated, qualitatively correct but quantitatively suspect.

uj - Undetected - estimated. The result is below the MDA or less than the associated error.

Gross values are reported. The net result is obtained by subtracting the background concentration for each radionuclide from the gross reported value for that radionuclide. Samples were analyzed at the MISS laboratory.

TABLE E-2 SUM-OF-RATIOS FOR RADIOLOGICAL DATA FOR MAYWOOD VICINITY PROPERTIES CLEAN OVERBURDEN SAMPLES

Property	COC #	Collection	Sample ID	Matrix	Coordinates	Depth	Th-232	Error	Ra-226	Error	U-238	Error	Sum
	<u>.</u>	Date				(ft)	(pCi/g)	+\-	(pCi/g)	+\-	(pCi/g)	+\-	Ratios
4 HANCOCK STREET	138980506	5/4/1998	MVP1100	sbs	N1 E5	1	0.00	0.04	0.00	0.03	0.00	0.00	0.000
4 HANCOCK STREET	138980506	5/4/1998	MVP1101	sbs	N1 E3	1	0.00	0.04	0.20	0.03	0.00	0.00	0.040
4 HANCOCK STREET	138980506	5/4/1998	MVP1102	sbs	N1 E4	2	0.00	0.04	0.05	0.03	0.00	0.00	0.010
4 HANCOCK STREET	138980506	5/4/1998	MVP1103	sbs	N1 E2	2	0.00	0.04	0.14	0.03	0.00	0.00	0.028
4 HANCOCK STREET	138980506	5/4/1998	MVP1104	sbs	N-1 E0	1	0.00	0.04	0.00	0.02	0.00	0.00	0.000
4 HANCOCK STREET	138980506	5/4/1998	MVP1105	sbs	N1 E0	2	0.00	0.04	0.00	0.02	0.00	0.00	0.000
4 HANCOCK STREET	138980508	5/5/1998	MVP1106	sbs	N1 E4	3	0.00	0.03	0.00	0.02	0.00	0.00	0.000
4 HANCOCK STREET	138980508	5/5/1998	MVP1107	sbs	N1 E0	3	0.00	0.03	0.00	0.02	0.00	0.00	0.000
4 HANCOCK STREET	138980508	5/5/1998	MVP1108	sbs	N-3 E0	1	0.00	0.04	0.02	0.03	0.00	0.00	0.004
4 HANCOCK STREET	138980508	5/5/1998	MVP1109	sbs	N-2 E-2	2	0.00	0.04	0.00	0.03	0.00	0.00	0.000
4 HANCOCK STREET	138980508	5/5/1998	MVP1110	sbs	N2 E-4	1	0.00	0.04	0.10	0.03	0.00	0.00	0.020
4 HANCOCK STREET	138980508	5/5/1998	MVP1111	sbs	N2 E-6	1	0.00	0.04	0.18	0.03	0.00	0.00	0.036
4 HANCOCK STREET	138980508	5/5/1998	MVP1112	sbs	N-7 E-11	1	0.00	0.04	0.00	0.03	0.00	0.49	0.000
4 HANCOCK STREET	138980508	5/5/1998	MVP1113	sbs	N-5 E-11	2	0.00	0.04	0.21	0.03	0.00	0.00	0.042
4 HANCOCK STREET	138980508	5/5/1998	MVP1114	sbs	N-8 E-11	1	0.00	0.05	0.07	0.03	0.00	0.00	0.014
4 HANCOCK STREET	138980508	5/5/1998	MVP1115	sbs	N-5 E-11	2	0.00	0.04	0.06	0.03	0.00	0.00	0.012
4 HANCOCK STREET	138980508	5/5/1998	MVP1116	sbs	N-7 E-3	1	0.00	0.03	0.00	0.02	0.00	0.00	0.000
4 HANCOCK STREET	138980508	5/5/1998	MVP1117	sfs	N-7 E-4	0.0-0.5	0.00	0.04	0.00	0.02	0.00	0.00	0.000
4 HANCOCK STREET	138980508	5/5/1998	MVP1118	sbs	N-10 E0	1	0.00	0.05	0.16	0.03	0.00	0.00	0.032
4 HANCOCK STREET	138980508	5/5/1998	MVP1119	sbs	N-10 E-2	2	0.00	0.04	0.27	0.03	0.00	0.00	0.054
4 HANCOCK STREET	138980508	5/5/1998	MVP1120	sbs	N-4 E-16	1	0.00	0.04	0.00	0.03	0.00	0.37	0.000
4 HANCOCK STREET	138980508	5/5/1998	MVP1121	sbs	N-5 E-6	2	0.00	0.04	0.00	0.02	0.00	0.00	0.000
6 HANCOCK STREET	138980423	4/16/1998	MVP0600	sbs	N-7 E-2	2	0.00	0.04	0.00	0.03	0.00	0.00	0.000
6 HANCOCK STREET	138980423	4/16/1998	MVP0601	sbs	N-10 E-3	3	0.00	0.04	0.00	0.03	0.00	0.00	0.000
6 HANCOCK STREET	138980423	4/16/1998	MVP0602	sbs	N-8 E-7	2	0.00	0.04	0.00	0.03	0.00	0.00	0.000
6 HANCOCK STREET	138980426	4/20/1998	MVP0603	sbs	N-2 E-4	2-2.5	0.00	0.04	0.00	0.02	0.00	0.00	0.000
6 HANCOCK STREET	138980426	4/20/1998	MVP0604	sbs	N-2 E-6	2-2.5	0.00	0.04	0.00	0.03	0.00	0.00	0.000
6 HANCOCK STREET	138980426	4/20/1998	MVP0605	sbs	N-10 E-1	3	0.00	0.04	0.00	0.02	0.00	0.00	0.000
6 HANCOCK STREET	138980426	4/20/1998	MVP0606	sbs	N0 E-7	3.5	0.44	0.08	1.15	0.06	0.21	0.00	0.322
6 HANCOCK STREET	138980427	4/21/1998	MVP0607	sbs	N0 E-8	0.5-1	0.35	0.07	0.91	0.05	0.00	0.00	0.252
6 HANCOCK STREET	138980427	4/21/1998	MVP0608	sbs	N-2 E-6	2.5-3	0.31	0.07	0.90	0.05	0.00	0.00	0.242
6 HANCOCK STREET	138980427	4/21/1998	MVP0609	sbs	N-6 E-6	2.5-3	0.69	0.06	0.74	0.05	0.00	0.61	0.286
6 HANCOCK STREET	138980505	5/4/1998	MVP0610	sbs	N-12 E6	1	0.00	0.04	0.18	0.03	0.00	0.62	0.036
6 HANCOCK STREET	138980505	5/4/1998	MVP0611	sbs	N-12 E4	1	0.00	0.04	0.29	0.03	0.00	0.00	0.058
6 HANCOCK STREET	138980505	5/4/1998	MVP0612	sbs	N-12 E5	2	0.00	0.04	0.24	0.03	0.00	0.00	0.048
6 HANCOCK STREET	138980505	5/4/1998	MVP0613	sbs	N-12 E3	2	0.17	0.05	0.67	0.04	0.00	0.00	0.168
6 HANCOCK STREET	138980505	5/4/1998	MVP0614	sbs	N-12 E1	1	0.00	0.03	0.00	0.02	0.00	0.00	0.000
6 HANCOCK STREET	138980505	5/4/1998	MVP0615	sbs	N-12 E0	2	0.00	0.03	0.00	0.02	0.00	0.50	0.000
7 HANCOCK STREET	138980440	4/28/1998	MVP0802	sbs	N1 E-15	1	0.00	0.05	0.00	0.03	0.00	0.00	0.000
7 HANCOCK STREET	138980440	4/28/1998	MVP0803	sbs	N11 E-18	1	0.00	0.05	0.00	0.03	0.00	0.00	0.000
7 HANCOCK STREET	138980440	4/28/1998	MVP0804	sbs	N11 E-15	1	0.00	0.04	0.00	0.03	0.00	0.00	0.000
7 HANCOCK STREET	138980440	4/28/1998	MVP0805	sbs	N6 E-15	1	0.00	0.04	0.00	0.03	0.00	0.00	0.000

TABLE E-2 SUM-OF-RATIOS FOR RADIOLOGICAL DATA FOR MAYWOOD VICINITY PROPERTIES CLEAN OVERBURDEN SAMPLES

Property	COC #	Collection	Sample ID	Matri	x Coordinate	s Depth	Th-232	Error	Ra-226	Error	U-238	Error	Sum
		Date				(ft)	(pCi/g)	+\-	(pCi/g)	+\-	(pCi/g)	+\-	Ratios
7 HANCOCK STREET	138980440	4/28/1998	MVP0806	sbs	N9 E-17	2	0.00	0.04	0.00	0.02	0.00	0.00	0.000
7 HANCOCK STREET	138980440	4/28/1998	MVP0807	sbs	N9 E-14	2	0.00	0.04	0.00	0.03	0.00	0.00	0.000
7 HANCOCK STREET	138980440		MVP0808	sbs	N7 E-19	2	0.00	0.04	0.00	0.03	0.00	0.74	0.000
7 HANCOCK STREET	138980440	4/28/1998	MVP0809	sbs	N12 E-20	2	0.00	0.05	0.00	0.03	0.00	0.00	0.000
7 HANCOCK STREET	138980446	4/29/1998	MVP0810	sbs	N3 E-15	2	0.00	0.04	0.00	0.03	0.00	0.00	0.000
7 HANCOCK STREET	138980446	4/29/1998	MVP0811	sbs	N0 E-14	2	0.00	0.04	0.00	0.03	0.00	0.00	0.000
7 HANCOCK STREET	138980446	4/29/1998	MVP0812	sbs	N-1 E-9	1	1.74	0.08	0.58	0.04	0.00	0.00	0.464
7 HANCOCK STREET	138980446	4/29/1998	MVP0813	sbs	N-1 E-12	1	0.08	0.05	0.04	0.04	0.00	0.00	0.024
7 HANCOCK STREET	138980446	4/29/1998	MVP0814	sbs	N10 E-12	1	0.00	0.04	0.03	0.03	0.00	0.00	0.006
7 HANCOCK STREET	138980446	4/29/1998	MVP0815	sbs	N11 E-12	2	0.00	0.05	0.05	0.03	0.00	0.00	0.000
7 HANCOCK STREET	138980446	4/29/1998	MVP0816	sbs	N7 E-10	1	0.31	0.06	0.26	0.04	0.00	0.50	0.010
7 HANCOCK STREET	138980446	4/29/1998	MVP0817	sbs	N7 E-10	2	0.01	0.06	0.24	0.04	0.00	0.72	0.050
8 HANCOCK STREET	138980305	3/27/1998	MVP0305	sbs	N-10 E1	2-2.5	0.00	0.03	0.00	0.02	0.00	0.00	0.000
8 HANCOCK STREET	138980305	3/27/1998	MVP0306	sbs	N-10 E3	4	0.00	0.04	0.12	0.03	0.00	0.80	0.000
8 HANCOCK STREET	138980305	3/27/1998	MVP0307	sbs	N-10 E1	4	0.03	0.05	0.43	0.03	0.00	0.00	0.024
8 HANCOCK STREET	138980305	3/27/1998	MVP0308	sbs	N-10 E6	3.5-4	0.00	0.04	0.00	0.03	0.00	0.80	0.092
8 HANCOCK STREET	138980306	3/30/1998	MVP0309	sbs	N-10 E7	3-3.5	0.72	0.07	1.25	0.05	0.00	0.00	0.394
8 HANCOCK STREET	138980306	3/30/1998	MVP0310	sbs	N-10 E7	3-3.5	0.53	0.06	1.07	0.05	0.00	0.87	0.394
8 HANCOCK STREET	138980306	3/30/1998	MVP0311	sbs	N-7 E-2	4-4.5	0.61	0.06	1.07	0.05	0.00	0.00	0.320
8 HANCOCK STREET	138980306	3/30/1998	MVP0312	sbs	N-6 E-9	4-4.5	0.56	0.06	1.13	0.05	0.00	0.00	0.338
8 HANCOCK STREET	138980306	3/30/1998	MVP0313	sbs	N-4 E-12	4-4.5	0.64	0.06	0.76	0.04	0.00	0.00	0.338
8 HANCOCK STREET	138980306	3/30/1998	MVP0314	sbs	N-2 E-13	3-3.5	0.28	0.06	0.20	0.04	0.00	0.73	0.280
8 HANCOCK STREET	138980307	3/31/1998	MVP0315	sbs	N-3 E-3	4-4.5	0.67	0.06	1.14	0.05	0.00	0.00	0.362
8 HANCOCK STREET	138980307	3/31/1998	MVP0316	sbs	N-10 E8	4-4.5	0.54	0.06	1.05	0.05	0.00	0.79	0.302
8 HANCOCK STREET	138980401	4/1/1998	MVP0319	sbs	N-1 E9	5	0.31	0.05	0.97	0.05	0.00	0.89	0.256
8 HANCOCK STREET	138980422	4/16/1998	MVP0381	sbs	N-8 E-6	4.5-5	1.27	0.07	1.15	0.05	0.00	0.05	0.256
8 HANCOCK STREET	138980422	4/16/1998	MVP0382	sbs	N-4 E-8	4.5-5	1.23	0.07	1.00	0.05	0.00	0.00	0.464
9 HANCOCK STREET	138980911	9/3/1998	MVP2120	sbs	N2 E-2	2.5	0.00	0.04	0.00	0.03	0.00	0.00	0.000
9 HANCOCK STREET	138980911	9/3/1998	MVP2125	sbs	N11 E-1	1	0.00	0.04	0.00	0.03	0.00	0.00	0.000
9 HANCOCK STREET	138980915	9/9/1998	MVP2141	sbs	N16 E2	1.5	0.27	0.05	0.08	0.03	0.00	0.00	0.070
9 HANCOCK STREET	138980915	9/9/1998	MVP2142	sbs	N15 E4	2	0.30	0.06	0.00	0.03	0.00	0.79	0.060
9 HANCOCK STREET	138980924	9/15/1998	MVP2154	sbs	N-6 E7	3	0.00	0.04	0.00	0.02	0.00	0.00	0.000
9 HANCOCK STREET	138980924	9/15/1998	MVP2155	sbs	N-5 E3	1.5	0.43	0.06	0.46	0.04	0.00	0.83	0.178
9 HANCOCK STREET	138980925	9/16/1998	MVP2156	sbs	N-6 E11	3	0.00	0.05	0.00	0.03	0.00	0.00	0.000
9 HANCOCK STREET	138980925	9/16/1998	MVP2160	sbs	N-4 E11	2	0.00	0.04	0.00	0.03	0.00	0.00	0.000
10 HANCOCK STREET	138980309	3/31/1998	MVP0405	sbs	N-3 E15	4-4.5	0.56	0.06	0.98	0.05	0.00	0.00	0.308
10 HANCOCK STREET	138980402	4/1/1998	MVP0406	sbs	N4 E6	4	0.00	0.05	0.07	0.03	0.00	0.00	0.308
10 HANCOCK STREET	138980402	4/1/1998	MVP0407	sbs	N4 E0	4	0.00	0.04	0.20	0.03	0.00	0.83	0.014
10 HANCOCK STREET	138980403	4/2/1998	MVP0408	sbs	N2 E6	4	0.26	0.04	0.56	0.03	0.00	0.00	0.040
10 HANCOCK STREET	138980408	4/7/1998	MVP0409	sbs	N-3 E-10	4	0.43	0.07	0.39	0.04	0.00	0.00	0.164
10 HANCOCK STREET	138980425	4/20/1998	MVP0413	sbs	N-10 E2	3-3.5	0.00	0.05	0.00	0.04	0.00	0.00	0.104
10 HANCOCK STREET	138980521	5/12/1998	MVP0484	sbs	N-3.5 E-5	5	1.55	0.08	0.55	0.04	0.00	0.00	0.000
											0.00	0.00	0.420

TABLE E-2 SUM-OF-RATIOS FOR RADIOLOGICAL DATA FOR MAYWOOD VICINITY PROPERTIES CLEAN OVERBURDEN SAMPLES

Property	COC #	Collection	Sample ID	Matrix	Coordinates	Depth	Th-232	Error	Ra-226	Error	U-238	Error	<u> </u>
		Date				(ft)	(pCi/g)	+\-	(pCi/g)	+\-	(pCi/g)	+\-	Sum Ratios
10 HANCOCK STREET	138980521	5/12/1998	MVP0486	sbs	N-1 E-4	4	0.58	0.06	1.06	0.05	0.00	0.00	
6 BRANCA COURT	138980510	5/5/1998	MVP1200	sbs	N16 E0	2	0.00	0.00	0.00	0.03			0.328
6 BRANCA COURT	138980510	5/5/1998	MVP1201	sbs	N18 E6	1.5-2	0.00	0.03	0.00	0.03	0.00	0.00	0.000
6 BRANCA COURT	138980510	5/5/1998	MVP1202	sbs	N4 E1	1.5	0.00	0.05	0.00		0.00	0.00	0.000
6 BRANCA COURT	138980510	5/6/1998	MVP1203	sbs	N2 E2	2-2.5	0.00	0.03	0.00	0.03 0.02	0.00	0.00	0.000
6 BRANCA COURT	138980608	6/2/1998	MVP1245	sbs	N0 E-17	2.5	0.00	0.04	0.00	0.02	0.00	0.00	0.000
6 BRANCA COURT	138980608	6/2/1998	MVP1247	sbs	N2 E-14	3	0.00	0.05	0.00	0.03	0.00	0.00	0.000
I-80 ROW	138980438	4/27/1998	MVP0706	sfs	N7 E19	0.0-0.5	1.09	0.07	0.00	0.03	0.00	0.00	0.000
I-80 ROW	138980438	4/27/1998	MVP0707	sfs	N8 E10	0.0-0.5	0.06	0.05	0.00	0.03	0.00	0.00	0.218
I-80 ROW	138980438	4/27/1998	MVP0708	sbs	N6 E8	0.5-1.5	0.31	0.05			0.00	0.00	0.012
1-80 ROW	138980438	4/27/1998	MVP0709	sfs	N6 E10	0.0-0.5	0.00	0.05	0.00	0.03	0.00	0.00	0.062
I-80 ROW	138980438	4/27/1998	MVP0710	sbs	N8 E33	3.5-4	1.29	0.05	0.00	0.02	0.00	0.00	0.000
LODI PARK	138980534	5/19/1998	MVP1602	sbs	N12 E60	2	0.00		0.00	0.03	0.00	0.97	0.258
LODI PARK	138980534	5/19/1998	MVP1604	sbs	N16 E62	4	0.00	0.05	0.00	0.04	0.00	0.00	0.000
200 BROOKDALE ST.	138980101	1/8/1998	MVP0180	sfs	N9 E9	0-0.5		0.05	0.00	0.03	0.00	0.00	0.000
200 BROOKDALE ST.	138980101	1/8/1998	MVP0181	sbs	N6 E9	0-0.5 1.0-2	0.00	0.05	0.00	0.04	0.00	0.00	0.000
200 BROOKDALE ST.	138980101	1/8/1998	MVP0182	sbs	N7 E6	1-1.5	0.00	0.05	0.00	0.03	0.00	0.00	0.000
200 BROOKDALE ST.	138980102	1/9/1998	MVP0183	sbs	N2 E2	2.5-3	0.00	0.06	0.00	0.04	0.00	0.00	0.000
200 BROOKDALE ST.	138980102	1/9/1998	MVP0184	sbs	N10 E10	2.5-3 0.5-1	0.00 0.00	0.07	0.00	0.04	0.00	0.00	0.000
200 BROOKDALE ST.	138980102	1/9/1998	MVP0185	sbs	N5 E1	1-1.5	0.00	0.06 0.06	0.00	0.04	0.00	0.00	0.000
200 BROOKDALE ST.	138980102	1/9/1998	MVP0186	sbs	N4 E3	0.5-1	0.00	0.06	0.00	0.03	0.00	0.00	0.000
200 BROOKDALE ST.	138980102	1/9/1998	MVP0187	sbs	N12 E4	1.5-2	0.00	0.07	0.00	0.03	0.00	0.00	0.000
200 BROOKDALE ST.	138980102	1/9/1998	MVP0188	sbs	N5 E6	0.5-1	0.00	0.05	0.00	0.04	0.00	0.00	0.000
200 BROOKDALE ST.	138980444	4/29/1998	MVP0268	sfs	South pile	NA	0.00	0.05	0.00	0.03	0.00	0.00	0.000
200 BROOKDALE ST.	138980444	4/29/1998	MVP0269	sfs	North pile	NA	0.00	0.05	0.00	0.04	0.00	0.86	0.000
200 BROOKDALE ST.	138980444	4/29/1998	MVP0260	sfs	•	NA	0.00	0.05	0.00	0.03	0.00	0.00	0.000
200 BROOKDALE ST.	138980444	4/29/1998	MVP0261			NA	0.00	0.04	0.00	0.03	0.00	0.00	0.000
200 BROOKDALE ST.	138980444	4/29/1998	MVP0262			NA	0.00	0.06	0.12	0.05	1.47	0.87	0.053
200 BROOKDALE ST.	138980444	4/29/1998	MVP0263			NA	0.00	0.06	0.02	0.06	1.94	1.31	0.043
200 BROOKDALE ST.	138980444	4/29/1998	MVP0264		- '	NA	0.00	0.08	0.00	0.03	0.15	1.09	0.003
200 BROOKDALE ST.	138980444	4/29/1998	MVP0265		_ ·	NA	0.00	0.07	0.02	0.07	0.00	1.07	0.004
200 BROOKDALE ST.	138980444	4/29/1998	MVP0266		• · · · · · ·	NA	0.00		0.00	0.04	0.00	0.00	0.000
200 BROOKDALE ST.	138980444	4/29/1998	MVP0267		- · ·	NA	0.00	0.05 0.07	0.00	0.03	1.32	0.95	0.026
					estan pilo		0.00	0.07	0.00	0.04	0.00	1.09	0.000

NOTES:

sfs - surface soil

sbs - subsurface soil

Samples were analyzed at the MISS laboratory.

Background values: Th-232 1.00 pCi/g, Ra-226 0.70 pCi/g, and U-238 2.90 pCi/g.

Net values are reported. The net result is obtained by subtracting the background concentration for each radionuclide from the gross reported value for that radionuclide. If the net result of a radionuclide is negative, then the value for that radionuclide is reported as zero.

APPENDIX F

CHEMICAL DATA FOR CLEAN OVERBURDEN SOIL

Sample ID	Document I	D COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
Overburden	Soil from Lo	di Park Pile sta	aged at Lodi F	Park			
MVP1806	9809L578	138980905	9/2/98	Chloromethane	11	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Bromomethane	11	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Vinyl chloride	11	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Chloroethane	11	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Methylene chloride	15	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Acetone	8	UJ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Carbon disulfide	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,1-Dichloroethene	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,1-Dichloroethane	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,2-Dichloroethene (total)	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Chloroform	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,2-Dichloroethane	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	2-Butanone	11	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,1,1-Trichloroethane	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Carbon tetrachloride	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Bromodichloromethane	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,2-Dichloropropane	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	cis-1,3-Dichloropropene	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	trans-1,3-Dichloropropene	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Trichloroethene	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Dibromochloromethane	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,1,2-Trichloroethane	6 6	ม บ	UG/KG UG/KG
MVP1806	9809L578	138980905	9/2/98	Benzene	6	U	UG/KG
MVP1806 MVP1806	9809L578 9809L578	138980905 138980905	9/2/98 9/2/98	Bromoform	ь 11	U	UG/KG
MVP1806	9809L578 9809L578	138980905	9/2/98	4-methyl-2-pentanone 2-Hexanone	11	U	UG/KG
MVP1806	9809L578 9809L578	138980905	9/2/98	Tetrachloroethene	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,1,2,2-Tetrachloroethane	6	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Toluene	6	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Chlorobenzene	6	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Ethylbenzene	6	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Styrene	6	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Xylene (total)	6	Ū	UG/KG
MVP1806	9809L578	138980905	9/2/98	Vinyl acetate	11	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Phenol	330	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	bis (2-chloroethyl) ether	330	Ū	UG/KG
MVP1806	9809L578	138980905	9/2/98	2-Chlorophenol	330	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,3-Dichlorobenzene	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,4-Dichlorobenzene	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,2-Dichlorobenzene	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	2-Methyl phenol	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	4- Methyl phenol	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	N-Nitroso-di-n-propylamine	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Hexachloroethane	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Nitrobenzene	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Isophorone	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	2-Nitrophenol	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	2,4-Dimethyl phenol	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Cabazole	64	J	UG/KG
MVP1806	9809L578	138980905	9/2/98	bis (2-Chloroethoxy) methane	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	2,4-Dichlorophenol	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	1,2,4-Trichlorobenzene	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Naphthalene	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	4-Chloroaniline	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Hexachlorobutadiene	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	4-Chloro-3-methyl phenol	330	U	UG/KG

Sample ID	Document	ID COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
MVP1806	9809L578	138980905	5 9/2/98	2-Methylnaphthalene	34	J	UG/KG
MVP1806	9809L578	138980905	5 9/2/98	Hexachlorocyclopentadiene	330	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	2,4,6-Trichlorophenol	330	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	2,4,5-Trichlorophenol	840	Ŭ	UG/KG
MVP1806	9809L578	138980905		2-Chloronaphthalene	330	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	2-Nitroaniline	840	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Dimethylphthalate	330	Ŭ	UG/KG
MVP1806	9809L578	138980905		Acenaphthylene	32	J	UG/KG
MVP1806	9809L578	138980905		2,6-Dinitrotoluene	330	Ŭ	UG/KG
MVP1806	9809L578	138980905		3-Nitroaniline	840	Ũ	UG/KG
MVP1806	9809L578	138980905		Acenaphthene	66	Ĵ	UG/KG
MVP1806	9809L578	138980905	9/2/98	2,4-Dinitrophenol	840	Ŭ	UG/KG
MVP1806	9809L578	138980905	9/2/98	4-Nitrophenol	840	Ū	UG/KG
MVP1806	9809L578	138980905		Dibenzofuran	43	J	UG/KG
MVP1806	9809L578	138980905		2,4-Dinitrotoluene	330	U	UG/KG
MVP1806	9809L578	138980905		Diethylphthalate	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	4-Chlorophenyl-phenylether	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Fluorene	100	J	UG/KG
MVP1806	9809L578	138980905	9/2/98	4-Nitroaniline	840	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	4,6-Dinitro-2-methylphenol	840	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	N-Nitrosodiphenylamine	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	4-Bromophenyl-phenylether	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Hexachlorobenzene	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Pentachlorophenol	840	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Phenanthrene	710		UG/KG
MVP1806	9809L578	138980905	9/2/98	Anthracene	200	J	UG/KG
	9809L578	138980905	9/2/98	Di-n-butylphthalate	1700	U	UG/KG
	9809L578	138980905	9/2/98	Fluoranthene	990		UG/KG
MVP1806 MVP1806	9809L578	138980905	9/2/98	2,2'-oxybis(1-cloropropane)	330	U	UG/KG
MVP1806	9809L578	138980905	9/2/98	Pyrene	960		UG/KG
MVP1806	9809L578	138980905	9/2/98	Butylbenzylphthalate	17	J	UG/KG
MVP1806	9809L578	138980905	9/2/98	3,3'-Dichlorobenzidine	330	υ	UG/KG
MVP1806	9809L578 9809L578	138980905	9/2/98	Benzo (a) anthracene	440		UG/KG
MVP1806	9809L578 9809L578	138980905	9/2/98	Chrysene	460		UG/KG
WVP1806		138980905	9/2/98	bis (2-ethylhexyl) phthalate	58	J	UG/KG
MVP1806	9809L578 9809L578	138980905 138980905	9/2/98	Di-n-octyl phthalate	330	U	UG/KG
VVP1806	9809L578		9/2/98	Benzo (b) fluoranthene	320	J	UG/KG
VP1806	9809L578	138980905	9/2/98	Benzo (k) fluoranthene	360		UG/KG
MVP1806	9809L578	138980905 138980905	9/2/98	Benzo (a) pyrene	370		UG/KG
/VP1806	9809L578		9/2/98	Indeno (1,2,3-cd) pyrene	210	J	UG/KG
/VP1806	9809L578	138980905 138980905	9/2/98	Dibenzo (a,h) anthracene	82	J	UG/KG
/VP1806	9809L578	138980905	9/2/98	Benzo (g,h,i) perylene	230	J	UG/KG
/VP1806	9809L578	138980905	9/2/98	Aluminum	7720		MG/KG
/VP1806	9809L578	138980905	9/2/98 9/2/98	Antimony	0.42	UJ	MG/KG
/VP1806	9809L578	138980905	9/2/98 9/2/98	Arsenic	5		MG/KG
/VP1806	9809L578	138980905		Barium	77.2		MG/KG
/VP1806	9809L578	138980905	9/2/98	Beryllium	0.48		MG/KG
1VP1806	9809L578	138980905	9/2/98 0/2/08	Cadmium	0.26		MG/KG
IVP1806	9809L578	138980905	9/2/98 9/2/98	Calcium	4980		MG/KG
IVP1806	9809L578		9/2/98	Chromium	23.8		MG/KG
IVP1806	9809L578	138980905	9/2/98	Cobalt	5.9		MG/KG
IVP1806	9809L578 9809L578	138980905	9/2/98	Copper	20.9		MG/KG
1VP1806	9809L578 9809L578	138980905	9/2/98	Iron	15200		MG/KG
IVP1806	9809L578 9809L578	138980905	9/2/98	Lead	41.2		MG/KG
IVP1806		138980905	9/2/98	Magnesium	3790		MG/KG
IVP1806	9809L578	138980905	9/2/98	Manganese	428		MG/KG
141 1000	9809L578	138980905	9/2/98	Mercury	0.11	J	MG/KG

MVP1806	9809L578					Qualifier	
		138980905	9/2/98	Nickel	11.5		MG/KG
MVP1806	9809L578	138980905	9/2/98	Potassium	726		MG/KG
MVP1806	9809L578	138980905	9/2/98	Selenium	0.73		MG/KG
MVP1806	9809L578	138980905	9/2/98	Silver	0.12	U	MG/KG
MVP1806	9809L578	138980905	9/2/98	Sodium	135	•	MG/KG
MVP1806	9809L578	138980905	9/2/98	Thallium	1.4		MG/KG
MVP1806	9809L578	138980905	9/2/98	Vanadium	21.9		MG/KG
MVP1806	9809L578	138980905	9/2/98	Zinc	60.8		MG/KG
MVP1806	9809L578	138980905	9/2/98	Arochlor-1016	190	UJ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Arochlor-1221	380	UJ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Arochlor-1232	190	UJ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Arochlor-1242	190	UJ	UG/KG
MVP1806	9809L578	138980905	9/2/98	Arochlor-1248	270	J	UG/KG
MVP1806	9809L578	138980905	9/2/98	Arochlor-1254	190	บ้า	UG/KG
MVP1806	9809L578	138980905	9/2/98	Arochlor-1260	190	UJ	UG/KG
VP1806	9809L578	138980905	9/2/98	Aldrin	1	R	UG/KG
VP1806	9809L578	138980905	9/2/98	alpha-BHC	9.6	ŬĴ	UG/KG
NVP1806	9809L578	138980905	9/2/98	beta-BHC	9.6	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	delta-BHC	17	NJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	gamma-BHC (lindane)	19	NJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	alpha-chlordane	20	J	UG/KG
AVP1806	9809L578	138980905	9/2/98	gamma-chlordane	27	Ĵ	UG/KG
<i>I</i> VP1806	9809L578	138980905	9/2/98	4,4'-DDD	19	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	4,4'-DDE	19	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	4,4'-DDT	26	J	UG/KG
/VP1806	9809L578	138980905	9/2/98	Dieldrin	19	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	Endosulfan I	9.6	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	Endosulfan II	19	UJ	UG/KG
AVP1806	9809L578	138980905	9/2/98	Endosulfan sulfate	19	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	Endrin	19	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	Endrin aldehyde	1 9	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	Endrin ketone	19	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	Heptachlor	9.6	UJ	UG/KG
// VP1806	9809L578	138980905	9/2/98	Heptachlor epoxide	9.6	UJ	UG/KG
<i>I</i> VP1806	9809L578	138980905	9/2/98	Methoxychlor	96	IJ	UG/KG
<i>I</i> VP1806	9809L578	138980905	9/2/98	Toxaphene	960	UJ	UG/KG
/IVP1806	9809L578	138980905	9/2/98	2,4-D	38	UJ	UG/KG
/VP1806	9809L578	138980905	9/2/98	2,4,5-T	19	U	UG/KG
/VP1806	9809L578	138980905	9/2/98	2,4,5-TP (silvex)	19	U	UG/KG
		li Park Pile sta			44		
AVP1809	9812L717	138981237	12/17/98	Chloromethane	11	U	UG/KG
/VP1809	9812L717	138981237	12/17/98	Bromomethane	11	U	UG/KG
/VP1809 /VP1809	9812L717	138981237	12/17/98	Vinyl chloride	11	U	UG/KG
	9812L717 9812L717	138981237	12/17/98	Chloroethane Mathylana ahlarida	11	U	UG/KG
/VP1809		138981237	12/17/98	Methylene chloride	8	UJ	UG/KG
AVP1809	9812L717	138981237	12/17/98	Acetone	10	UJ	UG/KG
	9812L717	138981237	12/17/98	Carbon disulfide	6	U	UG/KG
	9812L717	138981237	12/17/98	1,1-Dichloroethene	6	UJ	UG/KG
	9812L717	138981237	12/17/98	1,1-Dichloroethane	6	U	UG/KG
	9812L717	138981237	12/17/98	1,2-Dichloroethene (total)	6	U	UG/KG
	9812L717	138981237	12/17/98	Chloroform	6	U	UG/KG
	9812L717	138981237	12/17/98	1,2-Dichloroethane	6	U	UG/KG
	9812L717	138981237	12/17/98	2-Butanone	11	U	UG/KG
	9812L717	138981237	12/17/98	1,1,1-Trichloroethane	6	U	UG/KG
	9812L717	138981237	12/17/98	Carbon tetrachloride	6	U	UG/KG
/VP1809	9812L717	138981237	12/17/98	Bromodichloromethane	6	U	UG/KG

Sample ID	Document	ID COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
MVP1809	9812L717	138981237	12/17/98	1,2-Dichloropropane	6	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	cis-1,3-Dichloropropene	6	υ	UG/KG UG/KG
MVP1809	9812L717	138981237	12/17/98	trans-1,3-Dichloropropene	6	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Trichloroethene	6	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Dibromochloromethane	6	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	1,1,2-Trichloroethane	6	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Benzene	6	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Bromoform	6	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	4-methyl-2-pentanone	11	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	2-Hexanone	11	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Tetrachloroethene	6	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	1,1,2,2-Tetrachloroethane	6	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Toluene	6	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Chlorobenzene	6	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Ethylbenzene	6	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	Styrene	6	Ũ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Xylene (total)	6	Ũ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Phenol	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	bis (2-chloroethyl) ether	380	Ũ	UG/KG
MVP1809	9812L717	138981237	12/17/98	2-Chlorophenol	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	1,3-Dichlorobenzene	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	1,4-Dichlorobenzene	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	1,2-Dichlorobenzene	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	2-Methyl phenol	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	4- Methyl phenol	380	Ű	UG/KG
MVP1809	9812L717	138981237	12/17/98	N-Nitroso-di-n-propylamine	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	Hexachloroethane	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Nitrobenzene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Isophorone	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2-Nitrophenol	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2,4-Dimethyl phenol	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2,2'-oxybis(1-chloropropane)	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	bis (2-Chloroethoxy) methane	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2,4-Dichlorophenol	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	1,2,4-Trichlorobenzene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Naphthalene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	4-Chloroaniline	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Hexachlorobutadiene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	4-Chloro-3-methyl phenol	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2-Methylnaphthalene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Hexachlorocyclopentadiene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2,4,6-Trichlorophenol	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2,4,5-Trichlorophenol	940	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2-Chloronaphthalene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2-Nitroaniline	940	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Dimethylphthalate	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Acenaphthylene	28	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	2,6-Dinitrotoluene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	3-Nitroaniline	940	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Acenaphthene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2,4-Dinitrophenol	940	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	4-Nitrophenol	940	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Dibenzofuran	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	2,4-Dinitrotoluene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Diethylphthalate	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	4-Chlorophenyl-phenylether	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Fluorene	33	J	UG/KG

Sample ID	Document	ID COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
MVP1809	9812L717	138981237	12/17/98	4-Nitroaniline	940	υ	UG/KG
MVP1809	9812L717	138981237	12/17/98	4,6-Dinitro-2-methylphenol	940	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	N-Nitrosodiphenylamine	380	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	4-Bromophenyl-phenylether	380	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Hexachlorobenzene	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	Pentachlorophenol	940	Ŭ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Phenanthrene	280	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Anthracene	45	Ĵ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Di-n-butylphthalate	380	Ū	UG/KG
MVP1809	9812L717	138981237	12/17/98	Fluoranthene	240	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Carbazole	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Pyrene	330	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Butylbenzylphthalate	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	3,3'-Dichlorobenzidine	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Benzo (a) anthracene	120	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Chrysene	180	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	bis (2-ethylhexyl) phthalate	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Di-n-octyl phthalate	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Benzo (b) fluoranthene	82	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Benzo (k) fluoranthene	88	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Benzo (a) pyrene	110	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Indeno (1,2,3-cd) pyrene	52	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Dibenzo (a,h) anthracene	380	U	UG/KG
MVP1809	9812L717	138981237	12/17/98	Benzo (g,h,i) perylene	68	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	Aluminum	8600		MG/KG
MVP1809	9812L717	138981237	12/17/98	Antimony	0.39	UJ	MG/KG
MVP1809	9812L717	138981237	12/17/98	Arsenic	3.3		MG/KG
MVP1809	9812L717	138981237	12/17/98	Barium	48		MG/KG
MVP1809	9812L717	138981237	12/17/98	Beryllium	0.39		MG/KG
MVP1809	9812L717	138981237	12/17/98	Cadmium	0.24		MG/KG
MVP1809	9812L717	138981237	12/17/98	Calcium	4230		MG/KG
MVP1809	9812L717	138981237	12/17/98	Chromium	16.8		MG/KG
MVP1809	9812L717	138981237	12/17/98	Cobalt	6.2		MG/KG
MVP1809	9812L717	138981237	12/17/98	Copper	22.7		MG/KG
MVP1809	9812L717	138981237	12/17/98	Iron	14100		MG/KG
MVP1809	9812L717	138981237	12/17/98	Lead	27.7		MG/KG
MVP1809	9812L717	138981237	12/17/98	Magnesium	3290		MG/KG
MVP1809	9812L717	138981237	12/17/98	Manganese	242		MG/KG
MVP1809	9812L717	138981237	12/17/98	Mercury	0.04		MG/KG
MVP1809	9812L717	138981237	12/17/98	Nickel	12.4		MG/KG
MVP1809	9812L717	138981237	12/17/98	Potassium	501		MG/KG
MVP1809 MVP1809	9812L717 9812L717	138981237	12/17/98	Selenium	0.4	U	MG/KG
		138981237	12/17/98	Silver	0.06	U	MG/KG
MVP1809 MVP1809	9812L717 9812L717	138981237 138981237	12/17/98	Sodium	148		MG/KG
MVP1809			12/17/98	Thallium	0.46		MG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Vanadium Zin -	31.6		MG/KG
MVP1809	9812L717 9812L717	138981237 138981237	12/17/98 12/17/98	Zinc	48.5		MG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Arochlor-1016	380	UJ	UG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Arochlor-1221	750	UJ	UG/KG
MVP1809	9812L717 9812L717			Arochlor-1232	380	UJ	UG/KG
MVP1809 MVP1809	9812L717 9812L717	138981237 138981237	12/17/98	Arochlor-1242	380	UJ	UG/KG
MVP1809			12/17/98	Arochlor-1248	380	UJ	UG/KG
MVP1809 MVP1809	9812L717	138981237	12/17/98	Arochlor-1254	380	UJ	UG/KG
MVP1809 MVP1809	9812L717	138981237	12/17/98	Arochlor-1260	380	IJ	UG/KG
MVP1809 MVP1809	9812L717 9812L717	138981237	12/17/98	Aldrin	30	J	UG/KG
MVP1809 MVP1809	9812L717 9812L717	138981237	12/17/98	alpha-BHC	19	UJ	UG/KG
1003	JU12L/11	138981237	12/17/98	beta-BHC	19	UJ	UG/KG

Sample ID	Document	ID COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
MVP1809	9812L717	138981237	40/47/00	1.1			
MVP1809	9812L717	138981237	12/17/98	delta-BHC	19	UJ	UG/KG
MVP1809	9812L717	138981237	12/17/98	gamma-BHC (lindane)	19	UJ	UG/KG
MVP1809	9812L717	138981237	12/17/98	alpha-chlordane	62	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	gamma-chlordane	58	J	UG/KG
MVP1809	9812L717	138981237	12/17/98	4,4'-DDD	38	UJ	UG/KG
MVP1809	9812L717		12/17/98	4,4'-DDE	38	UJ	UG/KG
MVP1809	9812L717	138981237	12/17/98	4,4'-DDT	38	UJ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Dieldrin	38	UJ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Endosulfan I	19	UJ	UG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Endosulfan II	38	UJ	UG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Endosulfan sulfate	38	UJ	UG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Endrin	38	UJ	UG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Endrin aldehyde	38	UJ	UG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Endrin ketone	38	UJ	UG/KG
MVP1809	9812L717 9812L717	138981237	12/17/98	Heptachlor	19	UJ	UG/KG
MVP1809		138981237	12/17/98	Heptachlor epoxide	19	UJ	UG/KG
MVP1809	9812L717	138981237	12/17/98	Methoxychlor	190	ŬĴ	UG/KG
VVP1809	9812L717	138981237	12/17/98	Toxaphene	1900	UJ	UG/KG
VP1809	9812L717	138981237	12/17/98	2,4-D	38	U	UG/KG
/VP1809	9812L717 9812L717	138981237	12/17/98	2,4,5-T	19	Ū	UG/KG
/VP1809		138981237	12/17/98	2,4,5-TP (silvex)	19	Ū	UG/KG
/VP1809	9812L717	138981237	12/17/98	Dalapon	190	Ū	UG/KG
/VP1809	9812L717	138981237	12/17/98	Dicamba	75	Ũ	UG/KG
IVP1809	9812L717	138981237	12/17/98	Dichloroprop	190	Ŭ	UG/KG
IVP1809	9812L717	138981237	12/17/98	2,4-DB	190	Ŭ	UG/KG
1009	9812L717	138981237	12/17/98	Dinoseb	19	ŬĴ	UG/KG

NOTES:

U - Analyte was analyzed for, but not detected.

J - Estimated value

UJ - Analyte was analyzed for but not detected, but must be estimated due to quality control considerations.

NJ - This is an estimated value. The analyte is presumed to be present although the peaks in the retention time window showed poor comparison and could not be dismissed.

R - Rejected

I - Interference

APPENDIX G

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL RECEIVED FROM VENDORS

Final9HancockPRAR

TABLE G-1 RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Docu	ment ID COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
Fili Material	from Pa	arsippany Constru	ction				
44148	a	na	2/11/98	Chloromethane	nd		UG/KG
44148	а	na	2/11/98	Bromomethane	nd		UG/KG
44148	а	na	2/11/98	Vinyl chloride	nd		UG/KG
44148	а	na	2/11/98	Chloroethane	nd		UG/KG
44148	а	na	2/11/98	Methylene chloride	1.2	b	UG/KG
44148	а	na	2/11/98	Acetone	nd	5	UG/KG
44148	а	na	2/11/98	Carbon disulfide	nd		UG/KG
44148	а	na	2/11/98	1,1-Dichloroethene	nd		UG/KG
44148	а	na	2/11/98	1,1-Dichloroethane	nd		UG/KG
44148	a	na	2/11/98	1,2-Dichloroethene (cis)	nd		UG/KG
44148	а	na	2/11/98	1,2-Dichloroethene (trans)	nd		UG/KG
44148	а	na	2/11/98	Chloroform	nd		UG/KG
44148	а	na	2/11/98	1,2-Dichloroethane	nd		UG/KG
44148	а	na	2/11/98	2-Butanone	nd		UG/KG
44148	а	na	2/11/98	1,1,1-Trichloroethane	nd		UG/KG
44148	а	na	2/11/98	Carbon tetrachloride	nd		UG/KG
44148	a	na	2/11/98	Bromodichloromethane	nd		UG/KG
44148	а	na	2/11/98	1,2-Dichloropropane	nd		UG/KG
44148	a	na	2/11/98	cis-1,3-Dichloropropene	nd		UG/KG
44148	а	na	2/11/98	trans-1,3-Dichloropropene	nd		UG/KG
44148	а	na	2/11/98	Trichloroethene	nd		UG/KG
44148	a	na	2/11/98	Dibromochloromethane	nđ		UG/KG
44148	а	na	2/11/98	1,1,2-Trichloroethane	nd		UG/KG
44148	а	na	2/11/98	Benzene	nd		UG/KG UG/KG
44148	а	na	2/11/98	Bromoform	nd		
44148	а	na	2/11/98	4-methyl-2-pentanone	nd		UG/KG
44148	а	na	2/11/98	2-Hexanone	nd		UG/KG
44148	а	na	2/11/98	Tetrachloroethene	nd		UG/KG
44148	a	na	2/11/98	1,1,2,2-Tetrachloroethane	nd		UG/KG
44148	а	na	2/11/98	Toluene	nd		UG/KG
14148	а	na	2/11/98	Chlorobenzene			UG/KG
44148	a	na	2/11/98	Ethylbenzene	nd nd		UG/KG
44148	а	na	2/11/98	Styrene			UG/KG
44148	а	na	2/11/98	Xylene (total)	nd		UG/KG
44148	а	na	2/11/98	N-Nitrosodimethylamine	nd		UG/KG
4148	а	na	2/11/98	Phenol	nd nd		UG/KG
4148	а	na	2/11/98	bis (2-chloroethyl) ether			UG/KG
4148	а	na	2/11/98	2-Chlorophenol	nd		UG/KG
4148	a	na	2/11/98	1,3-Dichlorobenzene	nd		UG/KG
4148	a	na	2/11/98	1,4-Dichlorobenzene	nd		UG/KG
4148	а	na	2/11/98	1,2-Dichlorobenzene	nd		UG/KG
4148	а	na	2/11/98	bis (2-chloroisopropyl) ether	nd		UG/KG
4148	а	na	2/11/98		nd		UG/KG
4148	а	na	2/11/98	N-Nitroso-di-n-propylamine Hexachloroethane	nd		UG/KG
4148	a		2/11/98		nd		UG/KG
4148	а	na		Nitrobenzene	nd		UG/KG
4148	а	na	2/11/98	Isophorone	nd		UG/KG
4148	а	na	2/11/98	2-Nitrophenol	nd		UG/KG
4148	а	na	2/11/98	2,4-Dimethyl phenol	nd		UG/KG
	а	na	2/11/98	bis (2-Chloroethoxy) methane	nd		UG/KG
4148	a	na	2/11/98	2,4-Dichlorophenol	nd		UG/KG
4148		na	2/11/98	1,2,4-Trichlorobenzene	nd		UG/KG

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Document	ID COC#	Collection Date	Analyte	Concentration Review Qualifier	Unit
44148	а	na	2/11/98	Naphthalene	41	UG/KG
44148	а	na	2/11/98	Hexachlorobutadiene	nd	UG/KG
44148	а	na	2/11/98	4-Chloro-3-methyl phenol	nd	UG/KG
44148	а	na	2/11/98	Hexachlorocyclopentadiene	nd	UG/KG
44148	а	na	2/11/98	2,4,6-Trichlorophenol	nd	UG/KG
44148	а	na	2/11/98	2-Chloronaphthalene	nd	UG/KG
44148	а	na	2/11/98	Dimethylphthalate	nd	UG/KG
44148	а	na	2/11/98	Acenaphthylene	120	UG/KG
44148	а	na	2/11/98	2,6-Dinitrotoluene	nd	UG/KG
44148	а	na	2/11/98	Acenaphthene	150	UG/KG
44148	а	na	2/11/98	2,4-Dinitrophenol	nd	UG/KG
44148	а	na	2/11/98	4-Nitrophenol	nd	UG/KG
44148	а	na	2/11/98	2,4-Dinitrotoluene	nd	UG/KG
44148	а	na	2/11/98	Diethylphthalate	nd	UG/KG
44148	a	na	2/11/98	4-Chlorophenyl-phenylether	nd	UG/KG
44148	а	na	2/11/98	Fluorene	160	UG/KG
44148	а	na	2/11/98	4,6-Dinitro-2-methylphenol	nd	UG/KG
44148	а	na	2/11/98	N-Nitrosodiphenylamine	nd	UG/KG
44148	а	na	2/11/98	4-Bromophenyl-phenylether	nd	UG/KG
44148	а	na	2/11/98	Hexachlorobenzene	nd	UG/KG
44148 44148	а		2/11/98	Pentachlorophenol	nd	UG/KG
44148	а	na na	2/11/98	Phenanthrene	1500	UG/KG
44148	а	na	2/11/98	Anthracene	370	UG/KG
44148	а		2/11/98	Di-n-butylphthalate	nd	UG/KG
44148 44148	а	na	2/11/98	Fluoranthene	2600	UG/KG
44148	а	na	2/11/98	Benzidine	nd	UG/KG
44148 44148	а	na	2/11/98	Pyrene	2500	UG/KG
44148	a	na	2/11/98	Butylbenzylphthalate	nd	UG/KG
	а	na	2/11/98	3,3'-Dichlorobenzidine	nd	UG/KG
44148 44148	a	na	2/11/98	Benzo (a) anthracene	1200	UG/KG
	а	na	2/11/98		1300	UG/KG
44148	a	na	2/11/98	Chrysene		UG/KG
44148	a	na	2/11/98	bis (2-ethylhexyl) phthalate	140 j nd	UG/KG
44148	а	na	2/11/98	Di-n-octyl phthalate Benzo (b) fluoranthene	1400	UG/KG
44148	a	na	2/11/98		560	UG/KG
44148	а	na	2/11/98	Benzo (k) fluoranthene	1100	UG/KG
44148	а	na		Benzo (a) pyrene	680	UG/KG
44148	а	na	2/11/98	Indeno (1,2,3-cd) pyrene		
44148	a	na	2/11/98	Dibenzo (a,h) anthracene	160 580	UG/KG
44148	a	na	2/11/98	Benzo (g,h,i) perylene		UG/KG
44148	a	na	2/11/98	Aluminum	5740	MG/KG
44148	a	na	2/11/98	Antimony	nd	MG/KG
44148	a	na	2/11/98	Arsenic	2.2	MG/KG
44148	a	na	2/11/98	Barium	56.5	MG/KG
44148	a	na	2/11/98	Beryllium	0.28	MG/KG
44148	a	na	2/11/98	Cadmium	nd	MG/KG
44148		na	2/11/98	Calcium	3940	MG/KG
44148	a	na	2/11/98	Chromium	14.4	MG/KG
44148	a	na	2/11/98	Cobalt	5.7	MG/KG
44148	a	na	2/11/98	Copper	21.5	MG/KG
44148	a	na	2/11/98	Iron	11000	MG/KG
44148	а	na	2/11/98	Lead	76.5	MG/KG
44148	а	na	2/11/98	Magnesium	3450	MG/KG

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Docum	ent ID COC #	Collection Date	Analyte		view Unit alifier
44148	а	na	2/11/98	Manganese	220	MG/KG
44148	а	na	2/11/98	Mercury	0.18	MG/KG
44148	a	na	2/11/98	Nickel	27	MG/KG
44148	a	na	2/11/98	Potassium	481	MG/KG
44148	а	na	2/11/98	Selenium	nd	MG/KG
44148	а	na	2/11/98	Silver	nd	MG/KG
44148	а	na	2/11/98	Sodium	254	MG/KG
44148	а	na	2/11/98	Thallium	nd	MG/KG
44148	а	na	2/11/98	Vanadium	19.9	MG/KG
44148	а	na	2/11/98	Zinc	80.1	MG/KG
44148	а	na	2/11/98	Arochlor-1016	nd	UG/KG
44148	а	na	2/11/98	Arochlor-1221	nd	UG/KG
44148	а	na	2/11/98	Arochlor-1232	nd	UG/KG
44148	а	na	2/11/98	Arochlor-1242	nd	UG/KG
44148	а	na	2/11/98	Arochlor-1248	nd	
44148	а	na	2/11/98	Arochlor-1254	nd	UG/KG
44148	а	na	2/11/98	Arochlor-1260	nd	UG/KG
44148	a	na	2/11/98	Aldrin	5.9	UG/KG
44148	а	na	2/11/98	alpha-BHC		UG/KG
44148	a	na	2/11/98	beta-BHC	nd	UG/KG
44148	а	na	2/11/98	delta-BHC	nd	UG/KG
14148	a	na	2/11/98		nd	UG/KG
4148	а	na	2/11/98	gamma-BHC (lindane)	nd	UG/KG
14148	а	na	2/11/98	alpha-chlordane	340	UG/KG
4148	а	na	2/11/98	4,4'-DDD	nd	UG/KG
4148	а		2/11/98	4,4'-DDE	5.9	UG/KG
4148	а	na	2/11/98	4,4'-DDT	nd	UG/KG
4148	а	na		Dieldrin Endermlfen I	17	UG/KG
4148	а	na	2/11/98	Endosulfan I	nd	UG/KG
4148	а	na	2/11/98 2/11/98	Endosulfan II	nd	UG/KG
4148	а	na		Endosulfan sulfate	nd	UG/KG
4148	а	na	2/11/98	Endrin	nd	UG/KG
	a	na	2/11/98	Endrin aldehyde	nd	UG/KG
4148	а	na	2/11/98	Heptachlor	nd	UG/KG
4148	a	na	2/11/98	Heptachlor epoxide	nđ	UG/KG
4148		na	2/11/98	Toxaphene	nd	UG/KG
ill Material f	rom Parsi	ppany Construc	tion			
0339	b	na	5/12/98	Chloromethane	nd	UG/KG
0339	Ь	na	5/12/98	Bromomethane	nd	UG/KG
0339	b	na	5/12/98	Vinyl chloride	nd	UG/KG
0339	b	na	5/12/98	Chloroethane	nd	UG/KG
0339	ь		5/12/98	Methylene chloride	114	00/00

							00/100
60339	b	na	5/12/98	Methylene chloride	2.6	b	UG/KG
60339	b	na	5/12/98	Acetone	nd		UG/KG
60339	Ь	na	5/12/98	Carbon disulfide	1	j	UG/KG
60339	b	na	5/12/98	1,1-Dichloroethene	nd	-	UG/KG
60339	b	na	5/12/98	1,1-Dichloroethane	nd		UG/KG
60339	Ь	na	5/12/98	1,2-Dichloroethene (cis)	nd		UG/KG
60339	b	na	5/12/98	1,2-Dichloroethene (trans)	nd		UG/KG
60339	b	na	5/12/98	Chloroform	nd		UG/KG
60339	b	na	5/12/98	1,2-Dichloroethane	nd		UG/KG
60339	b	na	5/12/98	2-Butanone	nd		UG/KG

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Docu	ment ID COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
60339	b	na	5/12/98	1,1,1-Trichloroethane	nd		UG/KG
60339	b	na	5/12/98	Carbon tetrachloride	nd		UG/KG
60339	b	na	5/12/98	Bromodichloromethane	nd		UG/KG
60339	ь	na	5/12/98	1,2-Dichloropropane	nd		
60339	ь	na	5/12/98	cis-1,3-Dichloropropene	nd		UG/KG UG/KG
60339	b	na	5/12/98	trans-1,3-Dichloropropene	nd		
60339	b	na	5/12/98	Trichloroethene			UG/KG
60339	ь	na	5/12/98	Dibromochloromethane	nd		UG/KG
60339	b	na	5/12/98	1,1,2-Trichloroethane	nd		UG/KG
60339	b	na	5/12/98	Benzene	nd		UG/KG
60339	b	na	5/12/98	Bromoform	0.6	j	UG/KG
60339	b	na	5/12/98		nd		UG/KG
60339	b	na	5/12/98	4-methyl-2-pentanone 2-Hexanone	nd		UG/KG
60339	Ь	na	5/12/98		nd		UG/KG
60339	b	na	5/12/98	Tetrachloroethene	nd		UG/KG
60339	ь	na	5/12/98	1,1,2,2-Tetrachloroethane	nd		UG/KG
60339	b	na	5/12/98	Toluene	nd		UG/KG
60339	b	na	5/12/98	Chlorobenzene Ethethermann	nd		UG/KG
60339	ь		5/12/98	Ethylbenzene	nd		UG/KG
60339	ь	na	5/12/98	Styrene	nd		UG/KG
60339	ь	na	5/12/98	Xylene (total)	nd		UG/KG
60339	ь	na	5/12/98	4-Methy phenol	nd		UG/KG
6033 9	b	na		Phenol	nd		UG/KG
50339 50339	b	na	5/12/98	bis (2-chloroethyl) ether	nd		UG/KG
50339 50339	ь	na	5/12/98	2-Chlorophenol	nd		UG/KG
50339 50339	Ь	na	5/12/98	1,3-Dichlorobenzene	nd		UG/KG
50339 50339	b	na	5/12/98	1,4-Dichlorobenzene	nd		UG/KG
50339 50339	ь	na	5/12/98	1,2-Dichlorobenzene	nd		UG/KG
50339 50339	ь	na	5/12/98	2-Methyl phenol	nd		UG/KG
60339 60339	ь	na	5/12/98	bis (2-chloroisopropyl) ether	nd		UG/KG
60339 60339	Ь	na	5/12/98	N-Nitroso-di-n-propylamine	nd		UG/KG
50339 50339	b	na	5/12/98	Hexachloroethane	nd		UG/KG
50339 50339	ь	na	5/12/98	Nitrobenzene	nd		UG/KG
	b	na	5/12/98	Isophorone	nd		UG/KG
60339 60330	b	na	5/12/98	2-Nitrophenol	nd		UG/KG
50339 50330	ъ	na	5/12/98	2,4-Dimethyl phenol	nd		UG/KG
50339 50330	Ь	na	5/12/98	bis (2-Chloroethoxy) methane	nď		UG/KG
60339 60330	ь	na	5/12/98	2,4-Dichlorophenol	nđ		UG/KG
60339	b	na	5/12/98	1,2,4-Trichlorobenzene	nd		UG/KG
0339	ь	na	5/12/98	Naphthalene	28	j	UG/KG
0339	ь	na	5/12/98	4-Chloroaniline	nd		UG/KG
0339	b	na	5/12/98	Hexachlorobutadiene	nd		UG/KG
0339	ь	na	5/12/98	4-Chloro-3-methyl phenol	nd		UG/KG
0339	- b	na	5/12/98	2-Methylnaphthalene	14	j	UG/KG
0339	b	na	5/12/98	Hexachlorocyclopentadiene	nd		UG/KG
0339	Ь	na	5/12/98	2,4,6-Trichlorophenol	nd		UG/KG
0339	ь	na	5/12/98	2,4,5-Trichlorophenol	nd		UG/KG
0339	ь	na	5/12/98	2-Chloronaphthalene	nd		UG/KG
0339		na	5/12/98	2-Nitroaniline	nd		UG/KG
0339	b b	na	5/12/98	Dimethylphthalate	nd		UG/KG
0339	b	na	5/12/98	Acenaphthylene	71	j	UG/KG
0339	b	na	5/12/98	2,6-Dinitrotoluene	nd	-	UG/KG
0339	Ь	na	5/12/98	3-Nitroaniline	nd		UG/KG

TABLE G-1 RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Docume	nt ID COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
60339	Ь	na	5/12/98	Acenaphthene	37	j	UG/KG
60339	b	na	5/12/98	2,4-Dinitrophenol	nd		UG/KG
60339	b	na	5/12/98	4-Nitrophenol	nd		UG/KG
60339	b	na	5/12/98	Dibenzofuran	22	j	UG/KG
60339	b	na	5/12/98	2,4-Dinitrotoluene	nd		UG/KG
60339	b	na	5/12/98	Diethylphthalate	nd		UG/KG
60339	b	na	5/12/98	4-Chlorophenyl-phenylether	nd		UG/KG
60339	b	na	5/12/98	Fluorene	51	j	UG/KG
60339	b	na	5/12/98	4-Nitroaniline	nd		UG/KG
60339	b	na	5/12/98	4,6-Dinitro-2-methylphenol	nd		UG/KG
60339	b	na	5/12/98	N-Nitrosodiphenylamine	nd		UG/KG
60339	ь	na	5/12/98	4-Bromophenyl-phenylether	nd		UG/KG
60339	b	na	5/12/98	Hexachlorobenzene	nđ		UG/KG
60339	b	na	5/12/98	Pentachlorophenol	nd		UG/KG
60339	b	na	5/12/98	Phenanthrene	420	j	UG/KG
60339	b	na	5/12/98	Anthracene	120	j	UG/KG
60339	ъ	na	5/12/98	Di-n-butylphthalate	nd		UG/KG
60339	b	na	5/12/98	Fluoranthene	750	j	UG/KG
60339	b	na	5/12/98	Pyrene	790		UG/KG
60339	b	na	5/12/98	Butylbenzylphthalate	nd		UG/KG
60339	b	na	5/12/98	3,3'-Dichlorobenzidine	nd		UG/KG
60339	b	na	5/12/98	Benzo (a) anthracene	420		UG/KG
60339	b	na	5/12/98	Chrysene	410	j	UG/KG
60339	b	na	5/12/98	bis (2-ethylhexyl) phthalate	nd		UG/KG
60339	b	na	5/12/98	Di-n-octyl phthalate	nd		UG/KG
60339	b	na	5/12/98	Benzo (b) fluoranthene	580		UG/KG
60339	b	na	5/12/98	Benzo (k) fluoranthene	250		UG/KG
60339	b	na	5/12/98	Benzo (a) pyrene	470		UG/KG
60339	b	na	5/12/98	Indeno (1,2,3-cd) pyrene	280		UG/KG
60339	b	na	5/12/98	Dibenzo (a,h) anthracene	62		UG/KG
60339	Ь	na	5/12/98	Benzo (g,h,i) perylene	310	j	UG/KG
60339	Ь	na	5/12/98	Carbazole	47	j	UG/KG
60339	b	na	5/12/98	Aluminum	5410		MG/KG
60339	b	na	5/12/98	Antimony	nd		MG/KG
6033 9	b	na	5/12/98	Arsenic	1.7		MG/KG
60339	b	na	5/12/98	Barium	41		MG/KG
60339	b	na	5/12/98	Beryllium	0.28		MG/KG
60339	b	na	5/12/98	Cadmium	nd		MG/KG
60339	b	na	5/12/98	Calcium	2440		MG/KG
60339	b	na	5/12/98	Chromium	9.1		MG/KG
60339	b	na	5/12/98	Cobalt	3.7		MG/KG
60339	b	na	5/12/98	Copper	14.2		MG/KG
60339	b	na	5/12/98	Iron	8400		MG/KG
60339	b	na	5/12/98	Lead	32.9		MG/KG
60339	b	na	5/12/98	Magnesium	1790		MG/KG
60339	b	na	5/12/98	Manganese	197		MG/KG
60339	b	na	5/12/98	Mercury	0.05		MG/KG
60339	b	na	5/12/98	Nickel	7.6		MG/KG
60339	b	na	5/12/98	Potassium	352		MG/KG
60339	b	na	5/12/98	Selenium	nd		MG/KG
60339	b	na	5/12/98	Silver	nd		MG/KG
60339	b	na	5/12/98	Sodium	263		MG/KG

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Docum	ent ID COC #	Collection Date	Analyte	Concentration Review Qualifie	
60339	Ь	ла	5/12/98	Thallium	nd	MG/KG
60339	b	na	5/12/98	Vanadium	12.5	MG/KG
60339	b	na	5/12/98	Zinc	37.6	MG/KG
60339	b	na	5/12/98	Arochlor-1016	nd	UG/KG
50339	b	na	5/12/98	Arochlor-1221	nd	UG/KG
60339	b	na	5/12/98	Arochlor-1232	nd	UG/KG
60339	Ь	na	5/12/98	Arochlor-1242	nd	UG/KG
50339	b	na	5/12/98	Arochlor-1248	nd	UG/KG
60339	Ь	na	5/12/98	Arochlor-1254	nd	UG/KG
60339	Ь	na	5/12/98	Arochlor-1260	nd	UG/KG
6033 9	Ь	na	5/12/98	Aldrin	nd	UG/KG
60339	Ь	na	5/12/98	alpha-BHC	nd	
60339	b	na	5/12/98	beta-BHC	nd	UG/KG
60339	Ь	na	5/12/98	delta-BHC	nd	UG/KG
50339	b	na	5/12/98	gamma-BHC (lindane)		UG/KG
60339	b	na	5/12/98	alpha-chlordane	nd	UG/KG
60339 60339	b	na	5/12/98	4,4'-DDD	nd F 2	UG/KG
60339	Ь		5/12/98		5.3	UG/KG
i0339	b	na	5/12/98	4,4'-DDE	nd	UG/KG
0339	b	na		4,4'-DDT	7.3	UG/KG
0339	Ь	na	5/12/98	Dieldrin	nd	UG/KG
0339	Ь	na	5/12/98	Endosulfan I	nd	UG/KG
0339	b	na	5/12/98	Endosulfan II	nd	UG/KG
	ь	па	5/12/98	Endosulfan sulfate	nd	UG/KG
0339	Ь	na	5/12/98	Endrin	nd	UG/KG
0339	b	na	5/12/98	Endrin aldehyde	nd	UG/KG
0339	b	na	5/12/98	Endrin ketone	nd	UG/KG
0339	~ b	na	5/12/98	Heptachlor	nd	UG/KG
0339	b	na	5/12/98	Heptachlor epoxide	nd	UG/KG
0339	b	na	5/12/98	Methoxychlor	nd	UG/KG
0339		na	5/12/98	Toxaphene	nd	UG/KG
	from RACI	E Excavation	0//0/00			
	c	na	6/10/98	Chloromethane	nd	UG/KG
IVP1800	c	na	6/10/98	Bromomethane	nd	UG/KG
IVP1800	c	na	6/10/98	Vinyl chloride	nd	UG/KG
IVP1800	c	na	6/10/98	Chloroethane	nd	UG/KG
IVP1800	c	na	6/10/98	Methylene chloride	nd	UG/KG
IVP1800	c	na	6/10/98	Acetone	nd	UG/KG
IVP1800		na	6/10/98	Carbon disulfide	nd	UG/KG
IVP1800	c	na	6/10/98	1,1-Dichloroethene	nd	UG/KG
VP1800	c	na	6/10/98	1,1-Dichloroethane	nd	UG/KG
VP1800	C	na	6/10/98	1,2-Dichloroethene (cis)	nd	UG/KG
VP1800	C	na	6/10/98	1,2-Dichloroethene (trans)	nd	UG/KG
VP1800	с -	na	6/10/98	Chloroform	nd	UG/KG
IVP1800	C	na	6/10/98	1,2-Dichloroethane	nd	UG/KG
VP1800	c	na	6/10/98	2-Butanone	nđ	UG/KG
VP1800	c	na	6/10/98	1,1,1-Trichloroethane	nd	UG/KG
VP1800	с	na	6/10/98	Carbon tetrachloride	nd	UG/KG
VP1800	с	na	6/10/98	Bromodichloromethane	nd	UG/KG
IVP1800	C	na	6/10/98	1,2-Dichloropropane	nd	UG/KG
101 1000				1,2 Diemoropropune	na	U Ginta

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Document II	COC #	Collection Date	Analyte	Concentration Review Qualifier	Unit
MVP1800	c	na	6/10/98	trans-1,3-Dichloropropene	nd	UG/KG
MVP1800	c	na	6/10/98	Trichloroethene	nd	UG/KG
MVP1800	c	na	6/10/98	Dibromochloromethane	nd	UG/KG
MVP1800	c	na	6/10/98	1,1,2-Trichloroethane	nd	UG/KG
VP1800	с	na	6/10/98	Benzene	nd	UG/KG
MVP1800	c	na	6/10/98	Bromoform	nd	UG/KG
MVP1800	c	na	6/10/98	4-methyl-2-pentanone	nd	UG/KG
MVP1800	c	na	6/10/98	2-Hexanone	nd	UG/KG
MVP1800	c	na	6/10/98	Tetrachloroethene	nd	UG/KG
MVP1800	c	na	6/10/98	1,1,2,2-Tetrachloroethane	nd	UG/KG
MVP1800	с	na	6/10/98	Toluene	nd	UG/KG
VVP1800	c	na	6/10/98	Chlorobenzene	nd	UG/KG
VVP1800	C	na	6/10/98	Ethylbenzene	nd	UG/KG
VVP1800	с	na	6/10/98	Styrene	nd	UG/KG
MVP1800	C	na	6/10/98	Xylene (total)	nd	UG/KG
MVP1800	C		6/10/98	Vinyl acetate	nd	UG/KG
MVP1800	c	na	6/10/98	2-chloroethylvinylether	nd	UG/KG
	C	na	6/10/98	Phenol	nd	UG/KG
MVP1800	С	na	6/10/98	bis (2-chloroethyl) ether	nd	UG/KG
	с	na	6/10/98	2-Chlorophenol	nd	UG/KG
AVP1800	c	na	6/10/98	1,3-Dichlorobenzene	nd	UG/KG
AVP1800	с	na	6/10/98	1,4-Dichlorobenzene	nd	UG/KG
/VP1800	c	na	6/10/98	Benzyl alcohol	nd	UG/KG
//VP1800	c	na	6/10/98	1,2-Dichlorobenzene	nd	UG/KG
	с	na	6/10/98	2-Methyl phenol	nd	UG/KG
	с	na	6/10/98		nd	UG/KG
	c	na	6/10/98	bis (2-chloroisopropyl) ether	nd	UG/KG
	c	na	6/10/98	4- Methyl phenol	nd	UG/KG
	c	na		N-Nitroso-di-n-propylamine Hexachloroethane	nd	UG/KG
	с	na	6/10/98 6/10/98	Nitrobenzene	nd	UG/KG
	c	na				UG/KG
	c	na	6/10/98	Isophorone	nd	UG/KG
MVP1800	c	na	6/10/98	2-Nitrophenol	nd	
MVP1800	c	na	6/10/98	2,4-Dimethyl phenol	nd	UG/KG
MVP1800	c	na	6/10/98	Benzoic acid	nd	UG/KG
//VP1800	c	na	6/10/98	bis (2-Chloroethoxy) methane	nd	UG/KG UG/KG
MVP1800	c	na	6/10/98	2,4-Dichlorophenol	nd	UG/KG
AVP1800	c	na	6/10/98	1,2,4-Trichlorobenzene	nd	
/VP1800	c	na	6/10/98	Naphthalene	nd	UG/KG
AVP1800	c	na	6/10/98	4-Chloroaniline	nd	UG/KG
/VP1800	c	na	6/10/98	Hexachlorobutadiene	nd	UG/KG
/VP1800	c	na	6/10/98	4-Chloro-3-methyl phenol	nd	UG/KG
/VP1800	c	na	6/10/98	2-Methylnaphthalene	nd	UG/KG
/VP1800		na	6/10/98	2,4,6-Trichlorophenol	nd	UG/KG
/VP1800	c	na	6/10/98	2,4,5-Trichlorophenol	nd	UG/KG
/VP1800	c	na	6/10/98	2-Chloronaphthalene	nd	UG/KG
/VP1800	c	na	6/10/98	2-Nitroaniline	nd	UG/KG
MVP1800	c	na	6/10/98	Dimethylphthalate	nd	UG/KG
MVP1800	c	na	6/10/98	Acenaphthylene	nd	UG/KG
/VP1800	с	na	6/10/98	2,6-Dinitrotoluene	nd	UG/KG
/VP1800	c	na	6/10/98	3-Nitroaniline	nd	UG/KG
MVP1800	c	na	6/10/98	Acenaphthene	nd	UG/KG
MVP1800	С	na	6/10/98	2,4-Dinitrophenol	nd	UG/KG

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Doc	cument ID COC #	Collection Date	Analyte	Concentration	Review Unit Qualifier
MVP1800	с	na	6/10/98	4-Nitrophenol	nd	UG/KG
MVP1800	C	na	6/10/98	2,4-Dinitrotoluene	nd	UG/KG
MVP1800	С	na	6/10/98	Diethylphthalate	nd	UG/KG
MVP1800	c	na	6/10/98	4-Chlorophenyl-phenylether	nd	UG/KG
MVP1800	C	na	6/10/98	Fluorene	nd	UG/KG
MVP1800	С	na	6/10/98	4-Nitroaniline	nd	UG/KG
MVP1800	с	na	6/10/98	4,6-Dinitro-2-methylphenol	nd	UG/KG
MVP1800	C	na	6/10/98	N-Nitrosodiphenylamine	nd	UG/KG
MVP1800	C	na	6/10/98	4-Bromophenyl-phenylether	nd	UG/KG
MVP1800	c	na	6/10/98	Hexachlorobenzene	nd	UG/KG
MVP1800	c	па	6/10/98	Pentachlorophenol	nd	UG/KG
MVP1800	C	na	6/10/98	Phenanthrene	nd	UG/KG
MVP1800	c	na	6/10/98	Anthracene	nd	UG/KG
MVP1800	С	na	6/10/98	Di-n-butylphthalate	nd	UG/KG
MVP1800	C	na	6/10/98	Fluoranthene	nd	UG/KG
MVP1800	c	na	6/10/98	Pyrene	nd	UG/KG
MVP1800	с	na	6/10/98	Butylbenzylphthalate	nd	UG/KG
MVP1800	c	na	6/10/98	3,3'-Dichlorobenzidine	nd	UG/KG
MVP1800	C	na	6/10/98	Benzo (a) anthracene	nd	
MVP1800	с	na	6/10/98	Chrysene	nd	UG/KG
/VP1800	с	na	6/10/98	bis (2-ethylhexyl) phthalate	nd	UG/KG
/VP1800	C	na	6/10/98	Di-n-octyl phthalate	nd	UG/KG
/VP1800	C	na	6/10/98	Benzo (b) fluoranthene	nd	UG/KG
/VP1800	C	na	6/10/98	Benzo (k) fluoranthene	nd	UG/KG
/VP1800	c	na	6/10/98	Benzo (a) pyrene	nd	UG/KG
/VP1800	c	na	6/10/98	Indeno (1,2,3-cd) pyrene	nd	UG/KG
/VP1800	C	na	6/10/98	Dibenzo (a,h) anthracene	nd	UG/KG
/VP1800	c	na	6/10/98	Benzo (g,h,i) perylene	nd	UG/KG
/VP1800	с	na	6/10/98	Aluminum	10100	UG/KG
1VP1800	C	na	6/10/98	Antimony	nd	MG/KG
1VP1800	c	na	6/10/98	Arsenic	nd	MG/KG
1VP1800	C	na	6/10/98	Barium	36	MG/KG
1VP1800	c	na	6/10/98	Beryllium	0.45	MG/KG
1VP1800	C	na	6/10/98	Cadmium		MG/KG
IVP1800	c	na	6/10/98	Calcium	nd 1350	MG/KG
IVP1800	c	na	6/10/98	Chromium	20	MG/KG
IVP1800	c	na	6/10/98	Cobalt	20 7.7	MG/KG
VP1800	c	na	6/10/98	Copper	25	MG/KG
IVP1800	c	na	6/10/98	Iron	25 11700	MG/KG
VP1800	c	na	6/10/98	Lead		MG/KG
	c	na	6/10/98	Magnesium	58	MG/KG
	c	na	6/10/98	Manganese	3040	MG/KG
	c	na	6/10/98	Manganese	88	MG/KG
	c	na	6/10/98	Nickel	nd	MG/KG
	c	na	6/10/98	Potassium	15	MG/KG
	с	na	6/10/98	Selenium	259	MG/KG
	с	na	6/10/98		nd	MG/KG
	с			Silver	nd	MG/KG
	с	na	6/10/98	Sodium	186	MG/KG
VF 1000	с	na	6/10/98	Thallium	nd	MG/KG
vr 1000	c	na	6/10/98	Vanadium	42	MG/KG
VF 1000	c	na	6/10/98	Zinc	38	MG/KG
VP1800		na	6/10/98	Arochlor-1016	nd	UG/KG

Final9HancockPRAR

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Document	ID COC #	Collection Date	Analyte	Concentration Review Qualifie	
MVP1800	с	na	6/10/98	Arochlor-1221	nd	UG/KG
MVP1800	c	na	6/10/98	Arochlor-1232	nd	UG/KG
MVP1800	c	па	6/10/98	Arochlor-1242	nd	UG/KG
MVP1800	c	na	6/10/98	Arochlor-1248	nd	UG/KG
MVP1800	c	na	6/10/98	Arochlor-1254	nd	UG/KG
MVP1800	c	na	6/10/98	Arochlor-1260	nd	UG/KG
MVP1800	c	na	6/10/98	Aldrin	nd	UG/KG
MVP1800	с	na	6/10/98	alpha-BHC	nd	UG/KG
MVP1800	C	na	6/10/98	beta-BHC	nd	UG/KG
MVP1800	С	na	6/10/98	delta-BHC	nd	UG/KG
VP1800	с	na	6/10/98	gamma-BHC (lindane)	nd	UG/KG
/VP1800	С	na	6/10/98	alpha-chlordane	nd	UG/KG
/VP1800	c	na	6/10/98	4,4'-DDD	nd	UG/KG
VP1800	c	na	6/10/98	4,4'-DDE	nd	UG/KG
/VP1800	c	na	6/10/98	4,4'-DDT	nd	UG/KG
VP1800	с	na	6/10/98	Dieldrin	nd	UG/KG
/VP1800	с	na	6/10/98	Endosulfan I	nd	UG/KG
/VP1800	с	na	6/10/98	Endosulfan II	nd	UG/KG
/VP1800	c	na	6/10/98	Endosulfan sulfate		
/VP1800	c	na	6/10/98	Endosultan sultate	nd	UG/KG
/VP1800	c	na	6/10/98	Endrin ketone	nd	UG/KG
IVP1800	с		6/10/98		nd	UG/KG
/VP1800	с	na	6/10/98	Heptachlor	nd	UG/KG
/VP1800	с	na		Heptachlor epoxide	nd	UG/KG
/VP1800	с	na	6/10/98	Methoxychlor	nd	UG/KG
	с	na	6/10/98	Toxaphene	nd	UG/KG
/VP1800	c	na	6/10/98	2,4-D	nd	UG/KG
/VP1800 /VP1800	c	na	6/10/98	2,4,5-T	nd	UG/KG
AVF 1000		na	6/10/98	2,4,5-TP (silvex)	nd	UG/KG
-			0/10/00		_	
/VP1801	c	na	6/10/98	Chloromethane	nd	UG/KG
NVP1801	c	na	6/10/98	Bromomethane	nđ	UG/KG
IVP1801	c	na	6/10/98	Vinyl chloride	nd	UG/KG
IVP1801	c	na	6/10/98	Chloroethane	nd	UG/KG
IVP1801	c	na	6/10/98	Methylene chloride	nd	UG/KG
IVP1801	c	na	6/10/98	Acetone	nd	UG/KG
IVP1801		na	6/10/98	Carbon disulfide	nd	UG/KG
IVP1801	c c	na	6/10/98	1,1-Dichloroethene	nd	UG/KG
IVP1801		na	6/10/98	1,1-Dichloroethane	nd	UG/KG
IVP1801	c	na	6/10/98	1,2-Dichloroethene (cis)	nd	UG/KG
IVP1801	c	na	6/10/98	1,2-Dichloroethene (trans)	nd	UG/KG
VP1801	C	na	6/10/98	Chloroform	nd	UG/KG
VP1801	C	na	6/10/98	1,2-Dichloroethane	nd	UG/KG
VP1801	c	na	6/10/98	2-Butanone	nđ	UG/KG
IVP1801	C	na	6/10/98	1,1,1-Trichloroethane	nd	UG/KG
IVP1801	с	na	6/10/98	Carbon tetrachloride	nd	UG/KG
IVP1801	с	na	6/10/98	Bromodichloromethane	nd	UG/KG
IVP1801	с	na	6/10/98	1,2-Dichloropropane	nd	UG/KG
VP1801	c	na	6/10/98	cis-1,3-Dichloropropene	nd	UG/KG
VP1801	c	na	6/10/98	trans-1,3-Dichloropropene	nd	UG/KG

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Document II	D COC #	Collection Date	Analyte	Concentration Review Qualifier	Unit
MVP1801	с	na	6/10/98	Dibromochloromethane	nd	UG/KG
MVP1801	c	na	6/10/98	1,1,2-Trichloroethane	nd	UG/KG
MVP1801	C	na	6/10/98	Benzene	nd	UG/KG
MVP1801	c	na	6/10/98	Bromoform	nd	UG/KG
MVP1801	c	na	6/10/98	4-methyl-2-pentanone	nd	UG/KG
MVP1801	c	na	6/10/98	2-Hexanone	nd	UG/KG
MVP1801	c	na	6/10/98	Tetrachloroethene	nd	UG/KG
MVP1801	c	na	6/10/98	1,1,2,2-Tetrachloroethane	nd	UG/KG
MVP1801	c	na	6/10/98	Toluene	nd	UG/KG
MVP1801	c	na	6/10/98	Chlorobenzene	nd	UG/KG
MVP1801	c	na	6/10/98	Ethylbenzene	nd	UG/KG
MVP1801	c	na	6/10/98	Styrene	nd	UG/KG
MVP1801	с	na	6/10/98	Xylene (total)	nd	UG/KG
MVP1801	c	na	6/10/98	Vinyl acetate	nd	UG/KG
MVP1801	с	na	6/10/98	2-chloroethylvinylether	nd	UG/KG
MVP1801	с	na	6/10/98	Phenol	nd	UG/KG
MVP1801	с	na	6/10/98	bis (2-chloroethyl) ether	nd	UG/KG
MVP1801	c	na	6/10/98	2-Chlorophenol	nd	UG/KG
MVP1801	c	na	6/10/98	1,3-Dichlorobenzene	nd	UG/KG
MVP1801	с	na	6/10/98	1,4-Dichlorobenzene	nd	UG/KG
MVP1801	c	na	6/10/98	Benzyl alcohol	nd	UG/KG
MVP1801	с	na	6/10/98	1,2-Dichlorobenzene	nd	UG/KG
MVP1801	с	na	6/10/98	2-Methyl phenol	nd	UG/KG
MVP1801	с	na	6/10/98	bis (2-chloroisopropyl) ether	nd	UG/KG
MVP1801	с	na	6/10/98	4- Methyl phenol	nd	UG/KG
MVP1801	с	na	6/10/98	N-Nitroso-di-n-propylamine	nd	UG/KG
MVP1801	с	na	6/10/98	Hexachloroethane	nd	UG/KG
MVP1801	с	na	6/10/98	Nitrobenzene	nd	UG/KG
MVP1801	с	na	6/10/98	Isophorone	nd	UG/KG
MVP1801	с	na	6/10/98	2-Nitrophenol	nd	UG/KG
MVP1801	с	na	6/10/98	2,4-Dimethyl phenol	nd	UG/KG
MVP1801	c	na	6/10/98	Benzoic acid	nd	UG/KG
MVP1801	c	na	6/10/98	bis (2-Chloroethoxy) methane	nđ	UG/KG
MVP1801	c	na	6/10/98	2,4-Dichlorophenol	nd	UG/KG
MVP1801	с	na	6/10/98	1,2,4-Trichlorobenzene	nd	UG/KG
MVP1801	с	na	6/10/98	Naphthalene	nd	UG/KG
MVP1801	c	na	6/10/98	4-Chloroaniline	nd	UG/KG
MVP1801	c	na	6/10/98	Hexachlorobutadiene	nd	UG/KG
MVP1801	с	na	6/10/98	4-Chloro-3-methyl phenol	nd	UG/KG
MVP1801	с	na	6/10/98	2-Methylnaphthalene	nd	UG/KG
MVP1801	с	na	6/10/98	Hexachlorocyclopentadiene	nd	UG/KG
MVP1801	c	na	6/10/98	2,4,6-Trichlorophenol	nd	UG/KG
MVP1801	с		6/10/98	2,4,5-Trichlorophenol	nd	UG/KG
MVP1801	с	na	6/10/98	2-Chloronaphthalene	nd	UG/KG
	с	na		2-Nitroaniline		UG/KG
MVP1801	с	na	6/10/98 6/10/98	Dimethylphthalate	nd nd	UG/KG
MVP1801	с	na				UG/KG UG/KG
MVP1801	c	na	6/10/98	Acenaphthylene	nd	UG/KG UG/KG
MVP1801	c	na	6/10/98	2,6-Dinitrotoluene	nd	
MVP1801	c	na	6/10/98	Acenaphthene	nd	UG/KG
MVP1801	c	na	6/10/98	2,4-Dinitrophenol	nd	UG/KG
MVP1801	c	na	6/10/98	4-Nitrophenol	nd	UG/KG
MVP1801	-	na	6/10/98	2,4-Dinitrotoluene	nd	UG/KG

TABLE G-1 RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID	Document ID	COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
MVP1801	c	na	6/10/98	Diethylphthalate	nd		UG/KG
MVP1801	c	na	6/10/98	4-Chlorophenyl-phenylether	nd		UG/KG
MVP1801	c	na	6/10/98	Fluorene	nd		UG/KG
MVP1801	c	na	6/10/98	4-Nitroaniline	nd		UG/KG
MVP1801	c	na	6/10/98	4,6-Dinitro-2-methylphenol	nd		UG/KC
MVP1801	C	na	6/10/98	N-Nitrosodiphenylamine	nd		UG/KC
//VP1801	С	na	6/10/98	4-Bromophenyl-phenylether	nd		UG/KC
MVP1801	с	na	6/10/98	Hexachlorobenzene	nd		UG/KC
//VP1801	c	na	6/10/98	Pentachlorophenol	nd		UG/KC
//VP1801	c	na	6/10/98	Phenanthrene	nd		UG/KC
//VP1801	c	na	6/10/98	Anthracene	nd		UG/KG
/VP1801	с	na	6/10/98	Di-n-butylphthalate	nd		UG/KG
/VP1801	с	na	6/10/98	Fluoranthene	400		UG/KG
//VP1801	c	na	6/10/98	Pyrene	370		UG/KC
AVP1801	c	na	6/10/98	Butylbenzylphthalate	nd		UG/KC
/VP1801	c	na	6/10/98	3,3'-Dichlorobenzidine	nd		UG/KG
/VP1801	c	na	6/10/98	Benzo (a) anthracene	nd		UG/KG
/VP1801	с	na	6/10/98	Chrysene	nd		UG/KG
/VP1801	c	na	6/10/98	bis (2-ethylhexyl) phthalate	nd		UG/KG
/VP1801	c	na	6/10/98	Di-n-octyl phthalate	nd		UG/KG
/VP1801	c	na	6/10/98	Benzo (b) fluoranthene	nd		UG/KG
/VP1801	c	na	6/10/98	Benzo (k) fluoranthene	nd		UG/KG
IVP1801	c		6/10/98	Benzo (a) pyrene	nd		UG/KG
IVP1801	c	na na	6/10/98	Indeno (1,2,3-cd) pyrene	nd		UG/KG
IVP1801	c		6/10/98	Dibenzo (a,h) anthracene	nd		UG/KG
1VP1801	c	na	6/10/98	Benzo (g,h,i) perylene	nd		UG/KG
1VP1801	с	na na	6/10/98	Aluminum	5400		MG/KC
AVP1801	с	na	6/10/98	Antimony	nd		MG/KG
/VP1801	c		6/10/98	Arsenic	nd		MG/KG
/VP1801	с	na	6/10/98	Barium	28		MG/KG
/VP1801	с	na	6/10/98	Beryllium	nd		MG/KC
1VP1801	c	na	6/10/98	Cadmium	nd		MG/KG
	c	na	6/10/98	Calcium	1100		MG/KG
1VP1801	c	na	6/10/98	Chromium	10		MG/KC
/VP1801	c	na	6/10/98	Cobalt	nd		MG/KC
/VP1801 /VP1801	c	na	6/10/98	Copper	9.4		MG/KG
	c	na	6/10/98	Iron	3120		MG/KG
1VP1801	c	na		Lead	15		MG/KG
/VP1801	с	na	6/10/98		700		MG/KG
/VP1801	c	na	6/10/98	Magnesium	30		MG/KG
/VP1801	c	na	6/10/98	Manganese			
IVP1801	c	na	6/10/98	Mercury	0.02		MG/KG
1VP1801	c	na	6/10/98	Nickel	6.1		MG/KG
IVP1801	c	na	6/10/98	Potassium	147		MG/KG
IVP1801	c	na	6/10/98	Selenium	nd		MG/KG
1VP1801	c	na	6/10/98	Silver	nd 174		MG/KG
1VP1801	c	na	6/10/98	Sodium	174		MG/KG
1VP1801	c	na	6/10/98	Thallium	nd		MG/KG
/VP1801		na	6/10/98	Vanadium	18		MG/KG
1VP1801	c	na	6/10/98	Zinc	18		MG/KG
IVP1801	c	na	6/10/98	Arochlor-1016	nd		UG/KG
/VP1801	c	na	6/10/98	Arochlor-1221	nd		UG/KG
/VP1801	C	na	6/10/98	Arochlor-1232	nd	l l	UG/KG

RADIOLOGICAL AND CHEMICAL DATA FOR BACKFILL MATERIAL RECEIVED FROM VENDORS

Sample ID		nt ID COC #	Collection Date	Analyte	Concentration	Review Qualifier	Unit
MVP1801	c	na	0/40/00				
MVP1801	с		6/10/98	Arochlor-1242	nd		UG/K
MVP1801	c	na	6/10/98	Arochlor-1248	nd		UG/KC
MVP1801	с	na	6/10/98	Arochlor-1254	nd		UG/KC
MVP1801	с	na	6/10/98	Arochlor-1260	nď		UG/KC
MVP1801	с	na	6/10/98	Aldrin	nd		UG/KG
MVP1801	с	na	6/10/98	alpha-BHC	nd		UG/KC
MVP1801	c	na	6/10/98	beta-BHC	nd		UG/KG
	c	na	6/10/98	delta-BHC	nd		UG/KG
MVP1801	c	na	6/10/98	gamma-BHC (lindane)	nd		
MVP1801	c	na	6/10/98	alpha-chlordane	nd		UG/KG
MVP1801	c	na	6/10/98	4,4'-DDD	nd		UG/KG
MVP1801	c	na	6/10/98	4,4'-DDE	nd		UG/KG
MVP1801	c	na	6/10/98	4,4'-DDT	nd		UG/KG
VP1801		na	6/10/98	Dieldrin	nd		UG/KG
/VP1801	c	na	6/10/98	Endosulfan I	nd		UG/KG
VP1801	c	na	6/10/98	Endosulfan II			UG/KG
/VP1801	c	na	6/10/98	Endosulfan sulfate	nd		UG/KG
/VP1801	c	na	6/10/98	Endrin	nd		UG/KG
/VP1801	C	na	6/10/98	Endrin ketone	nd		UG/KG
1VP1801	C	na	6/10/98	Heptachlor	nd		UG/KG
IVP1801	c	na	6/10/98	Heptachlor epoxide	nd		UG/KG
IVP1801	c	na	6/10/98	Methoxychlor	nd		UG/KG
IVP1801	C	na	6/10/98	Toxaphene	nd		UG/KG
VP1801	c	na	6/10/98	2,4-D	nd		UG/KG
VP1801	C	na	6/10/98	2,4,5-T	nd		UG/KG
VP1801	c	na	6/10/98	_2,4,5-TP (silvex)	nd		UG/KG
					nd		UG/KG
Dp Soil from		avation, Inc., Fr	anklin Lakes, N	IJ			
VP1803 VP1803	98G1045 98G1045	138980637	6/10/98	Thorium-232	0.43	uj	PCI/G
VP1803	98G1045 98G1045	138980637	6/10/98	Radium-226	0.26		PCI/G
11003	9001045	138980637	6/10/98	Uranium-238	3.1		PCI/G
l Material fr	om RACE E	xcavation, inc.	Franklin Lakes	. NJ			
1004	9861045	138980637	6/10/98	Thorium-232	0.56		
	98G1045	138980637		Radium-226	0.38		PCI/G
VP1804	98G1045	138980637		Uranium-238	1.82] uj	PCI/G

NOTES:

nd - not detected.

na - not applicable.

j - estimated value.

uj - Analyte was analyzed for but not detected, but must be estimated due to quality control considerations.

b - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination.

^a BNI 1998. FUSRAP Subcontractor Submittal Status Sheet Analytical Test Results, BPO-5996-1.1-003-1 (March 19).

^b BNI 1998. FUSRAP Subcontractor Submittal Status Sheet Analytical Test Results, BPO-5996-1.1-004-1 (October 19).

^c BNI 1998. MIS - Radiological and Chemical Data for Top Soil and Fill Material, CCN # 138-IOA-GEV-00117 (June).