063982-29

DOE/OR/20722-244 M-092-

Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-81OR20722

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 106 COLUMBIA LANE

Lodi, New Jersey

September 1989

Bechtel National, Inc.

0489-0620.13

حديقة فوترون وبالاعتراب أرأي

063982

Bechtel National, Inc.

Systems Engineers -- Constructors

800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Mail Address: P.O. Box 350, Oak Ridge, TN 37831-0350 Tetex: 3785873

SEP 2 9 1989

Jackson Plaza Tower

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin Technical Services Division

Subject: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of Radiological Characterization Report for seventeen residential properties, four municipal properties, and seven commercial properties in Lodi and Maywood, New Jersey Code: 7315/WBS: 138

Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerate manner. His efforts have allowed us to publish these reports or schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,

Mar

R. C. Robertson Project Manager - FUSRAP

RCR:wfs:1756x Enclosure: As stated

cc: J. D. Berger, ORAU (w/e)
N. J. Beskid, ANL (w/e)

MAS 14-

DOE/OR/20722-244

١

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 106 COLUMBIA LANE LODI, NEW JERSEY

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring, D. J. Whiting, and W. F. Stanley Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501

TABLE OF CONTENTS

			Page
List	of F	igures	iv
List	of T	ables	iv
Abbr	eviat	ions	v
1.0	Intr	oduction and Summary	1
	1.1	Introduction	1
	1.2	Purpose	3
	1.3	Summary	3
	1.4	Conclusions	5
2.0	Site	History	7
2.0		Previous Radiological Surveys	8
		Remedial Action Guidelines	9
3.0	Heal	th and Safety Plan	12
	3.1	Subcontractor Training	12
	3.2	Safety Requirements	12
4.0	Char	acterization Procedures	14
	4.1	Field Radiological Characterization	14
		4.1.1 Measurements Taken and Methods Used	14
		4.1.2 Sample Collection and Analysis	17
	4.2	Building Radiological Characterization	19
5.0	Char	acterization Results	21
	5.1	Field Radiological Characterization	21
	5.2		25
Refe	rence	S	39
Арре	ndix	A - Geologic Drill Logs for 106 Columbia Lane	A-1

iii

۰.

LIST OF FIGURES

Figure	Title	Page
1-1	Location of Lodi Vicinity Properties	2
1-2	Location of 106 Columbia Lane	4
4-1	Borehole Locations at 106 Columbia Lane	16
4-2	Surface and Subsurface Soil Sampling Locations at 106 Columbia Lane	18
4-3	Gamma Exposure Rate Measurement Locations at 106 Columbia Lane	20
5-1	Areas of Subsurface Contamination at 106 Columbia Lane	24
•	· · · · · · · · · · · · · · · · · · ·	

l

-

.

LIST OF TABLES

<u>Table</u>	Title	<u>Page</u>
2-1	Summary of Residual Contamination Guidelines for the Lodi Vicinity Properties	10
5-1	Surface and Subsurface Radionuclide Concentrations in Soil for 106 Columbia Lane	27
5-2	Downhole Gamma Logging Results for 106 Columbia Lane	31
5-3	Gamma Radiation Exposure Rates for 106 Columbia Lane	38

ABBREVIATIONS

Cm	centimeter
cm ²	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h	hour
in.	inch
km ²	s quare kilometer
L	liter
L/min	liters per minute
m	meter
m ²	square meter
MeV	million electron volts
µR/h	microroentgens per hour
mi	mile
mi ²	square mile
min	minute
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
pCi/g	picocuries per gram
pCi/L	picocuries per liter
WL	working level
yđ	yard
yd ³	cubic yard

÷----

1.0 INTRODUCTION AND SUMMARY

This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 INTRODUCTION

11

ì....

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

FIGURE 1-1 LOCATION OF LODI VICINITY PROPERTIES

1.2 <u>PURPOSE</u>

The purpose of the 1987 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.

1.3 SUMMARY

This report details the procedures and results of the radiological characterization of the property at 106 Columbia Lane (Figure 1-2) in Lodi, New Jersey, which was conducted in November and December 1987.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 106 Columbia Lane showed maximum concentrations of thorium-232 and radium-226 to be less than 2.2 and less than 1.3 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 8.5 pCi/g.

Subsurface soil sample concentrations ranged from less than 0.6 to 59.2 pCi/g for thorium-232 and from less than 0.4 to less than 1.5 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. The concentrations of uranium-238 in subsurface soil samples ranged from less than 0.6 to less than 10.6 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE believes that these

FIGURE 1-2 LOCATION OF 106 COLUMBIA LANE

guidelines are conservative for considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property did not indicate surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 2.28 m (7.5 ft).

Exterior gamma radiation exposure rates ranged from 5 to 8 μ R/h, including background. No indoor measurement was obtained because of scheduling conflicts associated with obtaining access to the residence.

No interior measurements for radon and its progeny (radon and thoron daughters) were obtained.

All data tables for this property appear at the end of this report.

1.4 <u>CONCLUSIONS</u>

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 106 Columbia Lane. This contamination is primarily subsurface contamination ranging from a depth of 1.07 m (3.5 ft) to 2.28 m (7.5 ft). In addition, the contamination appears to extend beneath the residence, and there is a high probability that the contamination extends

beneath the street in front of the residence. The total affected area is estimated to be approximately 40 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are typically found in monazite sands, which also contain

thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

January 1981--The Nuclear Regulatory Commission directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a $10.3-km^2$ ($4-mi^2$) aerial survey was conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

June 1984 -- In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its

"scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

September 1986--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

2.2 <u>REMEDIAL ACTION GUIDELINES</u>

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

TABLE 2-1 SUMMARY OF RESIDUAL CONTAMINATION GUIDELINES

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL GUIDELINES

Radionuclide

Radium-226 Radium-228 Thorium-230 Thorium-232 Soli Concentration (pCl/g) Above Background^{e,b,c}

5 pCi/g when averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over any 15-cm-thick soil layer below the surface layer.

Other Radionuclides

Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

STRUCTURE GUIDELINES

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL^d. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 µR/h.

Indoor/Outdoor Structure Surface Contamination

	Allowable Surface Residual Contamination ^e (dpm/100 cm ²)		
Radionuciide [†]	Average ^{g,h}	Maximum ^{h,i}	Removable ^{h,j}
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	100	300	, 20
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-126, I-131, I-133	1,000	3,000	200
U-Natural, U-235, U-238, and associated decay products	5,000 α	15,000 a	1,000 α
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 B - 7	15,000 8 - γ	1,000 8 - γ

0480-0650.1

TABLE 2-1 (CONTINUED)

^aThese guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").

^bThese guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.

^CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.

^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.

As used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

⁹Measurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.

^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

The maximum contamination level applies to an area of not more than 100 cm².

¹The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

489-0650.2

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 SUBCONTRACTOR TRAINING

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 <u>SAFETY REQUIREMENTS</u>

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

4.1 FIELD RADIOLOGICAL CHARACTERIZATION

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this property.

4.1.1 Measurements Taken and Methods Used

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling 11 boreholes on the property and 4 boreholes in or near the streets (Brook Street and Columbia Lane) adjacent to the property (Figure 4-1), using either a 7.6-cm- (3-in.-) or 15.2-cm-(6-in.-) diameter auger bit, and gamma logging the boreholes. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

1

(_____ (____ (____

, ·

FIGURE 4-1 BOREHOLE LOCATIONS AT 106 COLUMBIA LANE

16

1

M38W9853.DGN

.

Gamma radiation measurements were taken at 15.2-cm (6.0-in.) vertical intervals to determine the depth and concentration of the contamination. The gamma-logging data were reviewed to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 <u>Sample Collection and Analysis</u>

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and 8), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at five locations (Figure 4-2) and analyzed for thorium-232, uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from 15 locations (Figure 4-2) using a 7.6-cm (3.0-in.) outside diameter (0.D.) split-spoon sampler mounted on a tripod or attached to a truck-mounted auger stem. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

1 -

1

(-)

FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS: AT 106 COLUMBIA LANE

18

M38W9853.DGN

4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the residence. Because of scheduling conflicts associated with obtaining access to the residence, a radon measurement could not be obtained to verify the presence of contaminated material under the residence and to estimate potential occupational exposures during future remedial actions.

Indoor measurements for radon progeny (radon and thoron daughters) could not be obtained.

Exterior gamma exposure rate measurements were made at five locations throughout the property grid system. To obtain exterior measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. A conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property.

FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 106 COLUMBIA LANE

20

ſ

1

M38W9853.DGN

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

Near-surface gamma radiation measurements on the property ranged from 5,000 cpm to approximately 9,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. No areas of surface contamination were indicated by near-surface gamma measurements.

Surface soil samples [depths from 0.0 to 15.2 cm (6.0 in.)] were taken at four locations on the property and one location in the street (Brook Street) as shown in Figure 4-2. These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from less than 5.0 to less than 8.5 pCi/g for uranium-238, from less than 1.3 to less than 2.2 pCi/g for thorium-232, and from less than 0.8 to less than 1.3 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 do not exceed DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of less than 2.2 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the

21

radionuclide was not present in concentrations that are quantitative with the instruments and techniques used. The "less than" value represents the lower bound of the quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (\pm) , which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.

Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE guideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower guideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its guideline level. Parameters selected for the thorium-232 analyses also provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below guidelines. However, because of the

relatively low gamma photon abundance of uranium-238, many of the uranium-238 concentrations were below the detection sensitivity of the analytical procedure; these concentrations are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 7,000 cpm to 171,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples indicated uranium-238 concentrations ranging from less than 0.6 to less than 10.6 pCi/g, thorium-232 concentrations ranging from less than 0.6 to 59.2 pCi/g, and radium-226 concentrations ranging from less than 0.4 to less than 1.7 pCi/g.

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist primarily of subsurface contamination at depths ranging from 1.07 m (3.5 ft) to 2.28 m (7.5 ft). The areas of subsurface contamination are shown in Figure 5-1. The subsurface contamination appears to extend beneath the residence and beneath the street in front of the property (Columbia Lane). Boreholes 1173R (E906, N1904) and 1174R (E975, N1906) were drilled in Brook Street to better define the boundary of contamination. Data collected from these boreholes did not indicate the presence of subsurface

FIGURE 5-1 AREAS OF SUBSURFACE CONTAMINATION AT 106 COLUMBIA LANE

24

M38W9853.DGN

contamination in the street on the northeast side of the residence (Brook Street).

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain. The contamination on this property is similar to contamination found on a residential property and a municipal property in close proximity to this property. It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 106 Columbia Lane. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

Indoor measurements for radon and its progeny (radon and thoron daughters) could not be obtained because of scheduling conflicts associated with obtaining access to the residence.

Exterior gamma radiation exposure rate measurements ranged from 5 to 8 μ R/h, including background. These results can be found in Table 5-3.

Assuming the average indoor exposure rate is equivalent to the average exterior exposure rate of 6 μ R/h, there would be no dose received as a result of contamination on this property because the average exposure rates do not exceed average background of 9 μ R/h (Ref. 10). For comparison, the DOE guidelines for indoor and exterior exposure rates are 20 μ R/h and 11 μ R/h, respectively.

Based on the above information, the exposure rates and doses are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the United States and are often significantly higher that average background for this area.

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

FOR 106 COLUMBIA LANE

Page 1 of 4

	<u>linates^a</u>	Depth		ntration (pCi/g ± 2	
East	North	(ft)	Uranium-238	Radium-226	Thorium-232
872	1828	0.0 - 0.5	< 5.5	< 1.2	< 2.1
872	1828	0.0 - 1.0	< 4.7	< 0.9	< 1.4
872	1828	2.0 - 3.0	< 7.9	< 1.7	< 3.2
872	1828	3.0 - 4.0	< 6.3	< 0.9	12.6 ± 0.7
872	1828	4.0 - 5.0	< 4.3	< 0.7	5.1 ± 0.3
872	1828	5.0 - 6.0	<10.0	< 1.1	11.1 ± 1.1
B72	1828	6.0 - 7.0	< 4.6	< 0.7	< 1.4
B72.	1828	7.0 - 8.0	< 4.4	< 0.7	5.5 ± 0.8
872	1828	8.0 - 9.0	< 3.1	< 0.4	< 0.8
877	1806	0.0 - 0.5	< 7.7	< 1.3	< 2.0
877	1806	0.0 - 1.0	< 4.5	< 0.6	< 1.4
877	1806	6.2 - 7.0	< 4.1	< 0.7	< 1.1
877	1806	7.0 - 8.0	< 2.9	< 0.5	< 0.8
877	1806	9.0 - 10.0	< 4.0	< 0.7	< 1.1
877	1806	10.0 - 11.0	< 3.0	< 0.6	< 1.0
877	1806	11.0 - 12.0	< 4.0	< 0.8	< 1.0
87 7	1806	12.0 - 13.0	< 2.3	< 0.5	< 0.6
898	1855	0.0 - 1.0	< 4.7	< 0.9	< 1.3
898	1855	1.0 - 2.0	< 3.2	< 0.5	< 1.0
898	1855	2.0 - 3.0	< 3.0	< 0.5	< 1.0
898	1855	3.0 - 4.0	< 4.6	< 0.7	< 1.7
898	1855	4.0 - 5.0	< 9.6	< 1.5	< 2.5
898	1855	5.0 - 6.0	< 1.3	< 1.5	59.2 ± 1.0
898	1855	7.0 - 8.0	< 0.6	< 0.8	3.4 ± 1.3
898	1855	8.0 - 9.0	< 2.9	< 0.5	< 0.7

27

~

(continued)

Page 2 of 4

Coordinates ^a		Depth	<u>Concentration (pCi/g ± 2 sigma)</u>			
East	North	(ft)	Uranium-238	Radium-226	Thorium-232	
898	1855	9.0 - 10.0	< 3.8	< 0.6	< 0.8	
898	1855	10.0 - 11.0	< 3.4	< 0.5	< 0.8	
898	1855	11.0 - 12.0	< 4.6	< 0.6	< 0.7	
898	1855	12.0 - 13.0	< 3.1	< 0.6	< 0.9	
906	1904	0.0 - 0.5	< 5.0	< 0.8	< 1.3	
906	1904	0.0 - 2.0	< 3.1	< 0.6	< 0.9	
906	1904	5.0 - 6.0	< 5.9	< 1.2	< 1.3	
906	1904	6.0 - 8.0	< 2.3	< 0.4	< 0.6	
906	1904	8.0 - 9.0	< 5.8	< 0.9	< 1.5	
906	1904	9.0 - 10.0	< 4.1	< 0.8	< 1.5	
915	1795	0.0 - 1.0	< 4.7	< 0.9	< 1.4	
915	1795	1.0 - 2.0	< 5.6	< 0.8	< 1.5	
915	1795	5.0 - 6.0	< 3.1	< 0.5	< 0.9	
915	1795	6.0 - 7.0	< 5.6	< 0.8	< 1.6	
915	1795	7.0 - 8.0	< 3.3	< 0.7	< 0.9	
915	1795	8.0 - 9.0	< 4.7	< 0.8	< 1.3	
915	1795	9.0 - 10.0	< 3.7	< 0.6	< 1.2	
915	1795	10.0 - 11.0	< 4.9	< 0.9	< 1.2	
921	1856	0.0 - 1.0	< 3.3	< 0.7	< 0.8	
921	1856	1.0 - 2.0	< 5.1	< 0.8	< 1.3	
921	1856	5.0 - 7.0	< 5.2	< 0.7	5.6 ± 0.6	
921	1856	7.0 - 8.0	< 6.2	< 0.9	< 1.4	
921	1856	9.0 - 10.0	< 2.7	< 0.5	< 0.8	
921	1856	10.0 - 11.0	< 4.3	< 0.6	< 1.0	
921	1856	11.0 - 13.0	< 3.2	< 0.6	< 1.0	

.

~

.

(·····

.

.

.

.

(continued)

Page 3 of 4

1

Coordinatesa		Depth	<u>Concentration (pCi/g ± 2 sigma)</u>		
East	North	(ft)	Uranium-238	Radium-226	Thorium-232
921	1856	13.0 - 14.0	< 3.2	< 0.8	< 0.8
921	1856	14.0 - 15.0	< 5.1	< 0.8	< 1.3
921	1856	15.0 - 16.0	< 4.3	< 0.6	< 1.0
921	1856	16.0 - 17.0	< 2.3	< 0.4	< 0.7
937	1811	0.0 - 1.0	< 3.6	< 0.6	< 0.9
937	1811	1.0 - 2.0	< 3.1	< 0.6	< 0.9
937	1811	3.0 - 5.0	< 3.6	< 0.6	< 1.0
937	1811	5.0 - 7.0	<10.6	< 1.2	35.8 ± 0.5
937	1811	7.0 - 9.0	< 6.5	< 0.8	<11.0
937	1811	9.0 - 10.0	< 5.9	< 0.8	10.0 ± 0.3
937	1811	10.0 - 11.0	< 2.9	< 0.6	< 1.0
937	1811	11.0 - 12.0	< 3.4	< 0.7	< 1.0
948	1853	0.0 - 0.5	< 8.5	< 1.3	< 2.2
948	1853	0.0 - 1.0	< 3.4	< 0.6	< 1.0
948	1853	5.0 - 6.0	< 3.6	< 0.5	< 1.1
948	1853	8.0 - 9.0	< 3.1	< 0.6	< 0.7
948	1853	9.0 - 10.0	< 2.9	< 0.6	< 0.8
948	1853	10.0 - 11.0	< 2.8	< 0.5	< 0.9

.

f - ·

(continued)

Page 4 of 4 <u>Coordinatesa</u> Concentration (pCi/g ± 2 sigma)38Radium-226The Depth Uranium-238 East North (ft) Thorium-232 975 1906 0.0 - 0.5< 7.6 < 1.3 < 2.1 975 1906 0.0 -2.0 < 4.0 < 0.7 < 1.3 975 1906 4.0 - 5.0 < 6.8 < 1.0 < 1.8 975 1906 7.0 - 8.0 < 4.2 < 0.7 < 1.2

^aSampling locations are shown in Figure 4-2.

~
DOWNHOLE GAMMA LOGGING RESULTS

FOR 106 COLUMBIA LANE

Page 1 of 7

1

Coord	linates ^a	Depth ^b	Count Rate ^C			
East	North	(ft)	(cpm)			
Borehol	<u>e 1043R</u> đ					
872	1828 .	0.5	12000			
872	1828	1.0	16000			
872	1828	1.5	· 19000			
872	1828	2.0	22000			
872	1828	2.5	22000			
<u>Borehol</u>	<u>e 1044R</u> d					
877	1806	0.5	10000			
877	1806	1.0	10000			
877	1806	1.5	9000			
877	1806	2.0	9000			
877	1806	2.5	8000			
877	1806	3.0	8000			
877	1806	3.5	8000			
877	1806	4.0	8000			
877	1806	4.5	8000			
877	1806	5.0	8000			
877	1806	5.5	8000			
877	1806	6.0	8000			
877	1806	6.5	8000			
877	1806	7.0	8000			
877	1806	7.5	8000			
Borehol	<u>e 1040R</u> d					
898	1855	0.5	12000			
898	1855	1.0	13000			
898	1855	1.5	12000			
898	1855	2.0	13000			
898	1855	2.5	23000			
898	1855	3.0	29000			
898	1855	3.5	28000			
898	1855	4.0	24000			
898	1855	4.5	49000			

i

£

.

1

1_

Ì.

)

(continued)

Page 2	of 7	······	
<u>Coord</u> East	linates ^a North	Depth ^b (ft)	Count Rate ^C (CPM)
Borehol	le 1040R (co)	ntinued) ^d	
898	1855	5.0	116000
898	1855	5.5	40000
898	1855	6.0	17000
898	1855	6.5	14000
898	1855	7.0	10000
898	1855	7.5	8000
898	1855	8.0	8000
<u>Borehol</u>	<u>e 1173R</u> d		
906	1904	0.5	6000
906	1904	1.0	7000
906	1904	1.5	7000
906	1904	2.0	8000
906	1904	2.5	8000
906	1904	3.0	8000
906	1904	3.5	7000
906	1904	4.0	7000
906	1904	4.5	7000
906	1904	5.0	9000
906	1904	5.5	10000
906	1904	6.0	11000
906	1904	6.5	11000
<u>Borehol</u>	<u>e 1045R</u> d .		
915	1795	0.5	11000
915	1795	1.0	10000
915	1795	1.5	10000
915	1795	2.0	9000
915	1795	2.5	9000
915	1795	3.0	9000
915	1795	3.5	9000
915	1795	4.0	9000
915	1795	4.5	9000
915	1795	5.0	9000
915	1795	5.5	8000

(continued)

Į.

(continued)

Coordinates ^a Depth ^b Count Rate ^C										
East	North	Depth ^b (ft)	Count Rate ^C (Cpm)							
<u>Boreho]</u>	le 1048R ^d ,e									
934	1892	5.0	29000							
934	1892	5.5	52000							
934	1892	6.0	146000							
934	1892	6.5	171000							
934	1892	7.0	115000							
934	1892	7.5	41000							
934	1892	8.0	23000							
<u>Borehol</u>	<u>le 1042R</u> d									
937	1811	0.5	9000							
937	1811	1.0	9000							
937	1811	1.5	11000							
937	1811	2.0	10000							
937	1811	2.5	11000							
937	1811	3.0	11000							
937	1811	3.5	11000							
<u>Borehol</u>	<u>le 1041R</u> d									
948	1853	0.5	10000							
948	1853	1.0	13000							
948	1853	1.5	11000							
948	1853	2.0	13000							
948	1853	2.5	14000							
948	1853	3.0	20000							
948	1853	3.5	24000							
948	1853	4.0	20000							
948	1853	4.5	23000							
948	1853	5.0	18000							
948	1853	5.5	10000							
948	1853	6.0	11000							
948	1853	6.5	9000							
948	1853	7.0	9000							
948	1853	7.5	10000							
948	1853	8.0	11000							
948	1853	8.5	9000							

TABLE	5-2
-------	-----

(continued)

Coord	linates ^a	Depthb	Count Rate		
East	North	(ft)	(cpm)		
Borehol	<u>e 1049R</u> d		· · · · · · · · · · · · · · · · · · ·		
954	1820	0.5	8000		
954	1820	1.0	11000		
954	1820	1.5	13000		
954	1820	2.0	13000		
954	1820	2.5	14000		
954	1820	3.0	16000		
954	1820	3.5	19000		
954	1820	4.0	29000		
954	1820	4.5	42000		
954	1820	5.0	122000		
954	1820	5.5	107000		
<u>Borehol</u>	<u>e 1205R</u>				
961	1796	0.5	9000		
961	1796	1.0	10000		
961	1796	1.5	10000		
961	1796	2.0	9000		
961	1796	2.5	9000		
961	1796	3.0	9000		
961	1796	3.5	12000		
961	1796	4.0	15000		
961	1796	4.5	15000		
961	1796	5.0	10000		
961	1796	5.5	8000		
961	1796	6.0	9000		
961	1796	6.5	11000		
961	1796	7.0	12000		
961	1796	7.5	11000		
961	1796	8.0	12000		
Borehol	<u>e 1097R</u> d				
961	1808	0.5	14000		
961	1808	1.0	14000		
961	1808	1.5	14000		

į.

1

Ì

(continued)

Coord	linates ^a	Depthb	Count Rate		
East	North	(Ît)	(cpm)		
Borehol	e 1097R (co	ntinued) ^d			
961	1808	2.0	17000		
961	1808	2.5	19000		
961	1808	3.0	23000		
961	1808	3.5	30000		
961	1808	4.0	65000		
961	1808	4.5	89000		
961	1808	5.0	62000		
961	1808	5.5	26000		
961	1808	6.0	14000		
961	1808	6.5	11000		
961	1808	7.0	9000		
961	1808	7.5	. 9000		
961	1808	8.0	10000		
Borehol	<u>e 1174R</u> d				
975	1906	0.5	5000		
975	1906	1.0	6000		
975	1906	1.5	8000		
975	1906	2.0	9000		
975	1906	2.5	9000		
975	1906	3.0	9000		
975	1906	3.5	9000		
975	1906	4.0	11000		
975	1906	4.5	12000		

(continued)

Page 7 of 7 Depthb Count Rate^C Coordinates^a North (It) (cpm) East Borehole 1174R (continued) 975 1906 5.0 12000 12000 975 5.5 1906 11000 975 1906 6.0 10000 975 1906 6.5 975 7.0 10000 1906

^aBorehole locations are shown in Figure 4-1.

^bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

^CInstrument used was 5.0- by 5.0-cm (2-in. by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

^dBottom of borehole collapsed.

^eGamma logging data for upper part of hole was lost in transmittal from field.

GAMMA RADIATION EXPOSURE RATES

FOR 106 COLUMBIA LANE

Coord	linates ^a	Rateb
East	North	(µR/h)
875	1815	6
875	1865	5
915	1865	8
925	1855	6
950	1825	6

^aMeasurement locations are shown in Figure 4-3.

^bMeasurements include background.

REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- 2. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.
- 3. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> <u>Chemical, Maywood, New Jersey</u>, November 1983.
- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area, Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 106 Columbia Lane (LJ063)</u>, Lodi, <u>New Jersey</u>, ORNL/RASA-88/56, Oak Ridge, Tenn., August 1989.

- 9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.
- 10. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

GEOLOGIC DRILL LOGS FOR 106 COLUMBIA LANE

.

i...

1

APPENDIX A

	Gt	:0		اد		KIL	LLC	-				FUSRAP		and the second se	138 1		1043R
TE 10	6	പ	umhi	•	Ln. (LOD	T)	COORDIN	ATES		N 1,	828 E 8	77	ľ	wgle fr Vert	ON HORIZ	BEARING
GUN					DRILL		-/	4,		DRILI		AND HODEL	SIZE	OVERBURDEN			TOTAL DEP
	_		-19-	_				; BNI.				d/Beaver	4"	10.6			10.6
RE RE		'ERY 6/8		/%)	CORE	BOXE	SISAMPL 10	ESEL. TO	OP CAS	ING	GROUNI	EL. DEP	TH/EL. GRO /	UND WATER	DEPTH	/EL. TOP	OF ROCK
NPLE			L WE1GI		FALL	CAS		FT IN HO	LE: D	1A./L	ENGTH	LOGGED BY:	/			$\overline{}$	
	14() It	./18	in	l.			NO						R. Mig	ues	WL	
- 51	шÇ		1	7		ATE			Ī			·····					
SAMP. ADV.	LEN COR	CORE RE(BLOUS "N" X CORE	RECOVER		ESTS SHO BUS CLA		ELEV.	DEPTH	GRAPHICS		ESCRIPTI	on and (CLASSIFIC:	NOITE	WATER CHARAC	ON: LEVELS, RETURN, CTER OF ING, ETG
S 1.0 S 1.0).9).8).2 1.0).5 1.0).8 1.0 1.0						-	5.			to coarse-gr 1.6-1.9 Ft. 1.7-1.8 Ft. 3.0-3.4 Ft. sinter-black very light gr material. 0-5.4 Ft. C (10YR7/4).	ained. Black (N1) Sand. Basalt frag and charco ray (N8) co LAY (CL).	ments and a m bal in a matrix ncrete-looking Grayish oran	six of of ge	0-10.6 F split-spi and 4.0" augers. Borehol- radiolog and gam	e advanced 't. using 3. pon sample 'solid-ster e was ically samj ima-logged berline, Co
S 1.4		1.4							10		8.] Bo	biack (N1). 5.3-5.4 Ft. Dusky yello fine- to very with fragme in.). 7.0-7.4 Ft. - 8.1 Ft. 8 (5YR4/1) fi small round - 10.6 Ft. Pale red (5F brown f0Y (5YR6/6). 10.2-10.6 Ff and brownis storm of bore	Moderate andy CLA) wish brown coarse-grints of very Brownish E AND (SP). ne- to very ed pebbles Clayer SIL (6/2) band ay (5YR6/1 R6/2), and t. Light brich gray (5Y	(10YR2/2) wi sined sand frac small pebbles black (5YR2/1) Brownish gra coarse-graine (to 0.25 in.). T (ML-CL). ed with light light brown bownish gray (5 R4/1).	4). th tion (0.25). y d, with with YR6/1		to 3.0 Ftscanned t
					* SHEI			ITE								classific soils by examina HOLE NO	visual ation.
					CHER;					106	Co	umbia	Ln. (Ľ(ווסנ		1	043R

! ~___

Ì ----

|

۱ ۲۰۰۰

.....

!____

L.

	G	EO	LOG		RIL	L LO	G	PROJE	CT		FUSRAP		JOB NO 14501	. SHE -138 1	ET NO. OF 1	HOLE NO. 1044R
ITE		_					COORDIN	ATES	•					ANGLE FR	ON HORIZ	
EGU			lumbia NPLETED			I)					BOG ES'		OVERBURDEN	Vert		
			-18-8			Engel	; BNI.	Ī			l/Beaver	SIZE	13.0	KUCI	((FT.)	TOTAL DEP
							ESEL. TO	P CAS		GROUND		TH/EL. GRO		DEPTH	/EL. TOP	
		2.1/			-	13					Ě	<u> </u>			/	
	14	10 H	: WEIGHT 5./18 i	D.	CAS	SING LE	IFT IN HO NO		A./L	ENGTH	LOGGED BY:		R. Mi	_{gues} C	XPL	
" .	با لد	<u>.</u>	<u>د الځ</u>	50	ATER						· .		. ئې			
AND DIAN.	SAMP. ADV. LEN CORE	MPLE REC	SAMPLE BLOUS "N" X CORE RECOVERY	LOSS IN G.P.M	EST		ELEV.	DEPTH	GRAPHICS		ESCRIPTI	on and i	2LASSIFIC	ATION	WATER	LEVELS, RETURN, CTER OF
	0) 1.0	0.8		- 6	<u>ā</u> a					0.0	- 0.3 ft. Sa	ndy silty C	LAY (CL-M			ING, ETC
55	1.0	1.0						· •		91	Grayish brow	wn (5YR3/ ined.	LAY (CL-M) 2), fine- to	~	0-13.0 F	e advanced ¹ t. using 3.0
SS	1.0	1.0								H 0.5	- 2.8 Ft. C	layey silty	SAND (SC-S	<u>M).</u>	split-sp and 4.0"	oon sample: solid-stem
ss	1.0	1.0				ŀ		1 ·		₿	Moderate re-	ddish brow. grained.	<u>SAND</u> (SC-S n (10R4/6), 1	inė- to f	augers.	
ss	1.0	0.5				ľ	-	1	-		1.1 Ft. Sligh Brunswick S	•	r clast of	- f	1	
<u>ss</u>	1.0	1.0						5_							Borehol	
ss	0.8	0.8						l ·		H ^{2.8}	- 3.0 Ft. S. brown (5YR coarse-grain	AND (SP). 3/4), fine-	Moderate to very		and gan	ically samp uma-logged
ŝŝ	1.0	1.0				ĺ		·		N 8					TMA-E	berline, Co
ss	1.0	1.0						·		N 1 ^{3.0}	yellowish bro	own (10YR	(CL-SC). I 4/2), fine- to	Very		
SS	1.0	1.0									coarse-grain					
ss	1.0	1.0					.	10_			black (5YR2	2/1); contai	CL). Brown ns oily sludge	ын h,	Augered	and
ss	1.0	1.0					•	1		3.7	- 10.7 ft. 5	AND (SW)	. Pale yellow	ish	7.5 Ft.	scanned to
SS	1.0	1.0								N I	Mottled with	h light brow	rn (5YR5/6).	gramed.		
							-	1			4.8-5.0 Ft.	Light brow	n (5YR5/6).	Í	1	
								1		10	7 - 11.0 Ft.	Silty SAN	D (SM). Pale grained.	:		
										1 11	• •				·	
											yellowish bro medium-gra pebbles (10 (own (10YR ined with s 0.25 in.).	V). Pale 6/2), fine- to mall white (N	(9)		
			:							Bo Bo	ttom of bore rehole backfi	hole at 13.(illed with s) Ft. poils, 11/18/0	37.		
			•											· .		
							1							•		
ļ																
						ĺ					• .					
		-						1								
								[- examina	
			POON; ST ; P = PI				ITE	 1	06		umbia		וחר		HOLE NO	044R

i.

-

-

Ì

ί...

1

1

.

١

Ĺ.

ITE			LOG				COORDIN	TES			FUSR/	Ar		14501	ANGLE F	ROM HORIZ	1040R
			lumbia			I)				N 1,	B55 1	E 898	8		4	tical	
EGU 1		- T-	MPLETED	F		Engel	BNI.				AND MOD		SIZE	OVERBURDE		# (FT.)	TOTAL DEP
					BOXE	SISAMPL	ESEL. TO	P CAS	ING	GROUND	I/Beav EL.		4"	13.0 XUND WATER	and the second se	H/EL. TOP	OF ROCK
		1.0/				13						<u>₩ /</u>				/	1
amp			: WEIGHT b./18 i	-	CAS	ING LE	FT IN HO		A./L	ENGTH	LOGGED	BY:		R. Mi	gues	and	
Ľ					ATE				m		•	••		~		1	
10 DIA	HP. AD	IPLE RI	SAMPLE X CORE X CORE	L LOSS P.M P.M P.M	EST		ELEV.	DEPTH	GRAPHICS		escrif	PTIO	n and	CLASSIFI(CATION	WATER	ON: LEVELS, RETURN, CTER DF
ξĒ	SA L	<u> a</u>	편' °C		α Δ	FΣ			ē								ING, ETC
SS SS	1.0	0.7 0.9					-		<u> </u>		- 0.5 Ft Very du	t. <u>Clay</u> sky re	a (10R2/	SAND (SC-S 2), vary fine- nus, roots.	M). • t o	Borehol	e advanced
55 55		0.9						.		1) L_						I enlit-en	Ft. using 3. oon sample
55	_	1.0			·						reddish i	brown	(10R4/6	(SM). Mode), fine- to		and 4.0	" solid-sten
55		0.3	•		1						2.0") .	- gram	ea with I	årge pebbles	(100		
ss		1.0						\$_						clay content.		- Borehol	e 1924
SS		0.5						.		3.0	- 5.8 Ft (CL-GC	b. Peb	bly sand ayish red	y CLAY (10R4/2) wi nd dark yello	th	and gar	rically samp
s	1.0	1.0					-	.			blackish orange (red (1 10R6/	6) mottl	nd dark yello ing.	wish	TMA-E	berline, Co
s	1.0	0.7						•	1		- •	•	•	sandstone cl	nats.]	
s	1.0	1.0							-	5.8	- 7.0 Ft	. <u>San</u>	dy silty (CLAY (CL).	J		
ss	1.0	1.0						10_		\mathbf{N} :	reddish i	brown	(10R3/4	th specks of (), moderate i	dark brown		d to 9.0 Ft.
SS	1.0	1.0					_				(5YR4/4	• -		. Brownish		л 8.0 Ft.	-scanned to
SS	1.0	1.0								N	(5ŸR4/)	1) fine	- to coar	se-grained.	• • •		
										\prod	7.3-9.0]	Ft. M	edium gr	ay (N5).		Π	
	ļ										8.1-11.5 (10YR5/			lerate yellowi	ish browr		
										11.	5 - 13.0	Ft. C	LAY (C	.). Pale redd	lish		•
											brown (1						
					-						17.0-13. (10R4/6	.0 Ft. 5) with	Moderat black (N	e reddish bro (1) specks.	wn		
	-									Bot	tom of l	boreho ackfille	le at 13. d with s) Ft. poils, 11/13/:	87.		
			:														
				.				-									
																Deserie	
																classific soils by	tion and ation of visual
					-											examin	
														·			
			POON; ST				ITE	4	00	C-1			n. (L(וחר		HOLE NO	040R

Ĺ

Ĺ

Ĺ

) . .

----- }

 \rightarrow

)____

L J

)

ا لر

	_	EO	log	IC D	RIL	L LO	G	PROJE	CT		FUSRA	P		јов на 14501	-138	HEET NO. 1 OF 1	HOLE NO. 1173R
ITE		Rr	ook St.	(LOT	יוי		COORDIN	ATES		N 1	004 15	E 906			1	FROM HORI ertical	ZBEARING
EGU	N		MPLETED				1		DRIL		AND HODE		IZE	OVERBURDE		OCK (FT.)	TOTAL DEP
			1-25-8			E.D.					le B-57		6.5"	10.0			10.0
URE		5.3/(() CORE	BOXE	SISAMPL 5	ESEL. TO	P CASI	ING	GROUN	EL.	DEPTH/EL ¥ 6.0/	. GROU 11/25/	ND WATER 87	DEP	TH/EL. TO	P OF ROCK
AMP	LE M	NHE	R WEIGHT	-	CAS		FT IN HO		A./I	ENGTH	LOGGED	BY:				\sim	<u>'</u>
			<u>s./ 30</u>		HATE		NO	NE	1					David H	arnisl	h T	52
5 DIAH	IP. ADU.	PLE REC.	BLOWS "N" X CORE RECOVERY	P. H LOGS D. P. H G. P. H	ESSU TESTS	RE	ELEV.	DEPTH	GRAPHICS		escrip	TION (and Ci	Lassific	ATIO	WATER	R LEVELS, RETURN,
		M M M M M M			90 90 90 90 90 90 90 90 90 90 90 90 90 9	645			6								ACTER OF ING, ETC
35	2.0	1.4	8-17-8 6							N 0.0	- 4.0 Ft. FILL (S)	Silty S/	AND an	d Silty GR	VEL	0-8 Ft	with 6.5" o.
		_	5-8-6-5							N .		-		strong brow	Wn	1	-stem auger.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.0	1.0	0+6+0-0					-		Ŋ						surface	lacktop on radiological
s	2.0	1.7	2-5-7-7			ĺ	-	.			-			EL, black si avel.		sample	
							.	5_		N	2.9-4.0 F Ft.	't. Silty	SAND,	same as 0.0)-2.0	TMA-	Eberline, Co
s	2.0	0.0	5-7-8-7				1	¥ •) - 7.8 Ft.	SAND	(SP). B	rown ium-graine		6.0 Ft.	Groundwat
							-			N	coarse, so bedding	ome silt; defined l	subroui	nded grains ing grains si	, faint		64.
S	2.0	1.7	4-7-10 10							\mathbb{N}	silt fracti beds, sat	ions, son	ne thin f	ine-grained			
							-	10.	Ш	7.	- 10.0 F	t. <u>SILT</u>	(ML). I	Dark gray d interbeds, thick beds.		- - -	
					ł					{					,	11	
					l						7.8-8.3 F	't. Gray	ish brov	vn.]	
										B	ttom of b	orehole	at 10.0	ft.			
										B	rehole ba	ckniled 1	with spo	bils, 11/25/8	87.		
					1												
						ļ		ļ									
																ļ	
					1	ł			1								
					[l	l	ł	Į								
							ł										
																ļ	
																(1)	lication and
ļ																identi	fication and fication of es by visual
						ļ	Į	ł									nation.
							ļ										
			POON; S1 ; P = P1			/ 1	ITE	1	<u></u>	Bro	ok St	()()	(וס			HOLE	^{10.} 173R

Ì.

١

.

ITE		EU	LOG		KIL		COORD 1N/	TES		FUSRAP 14501-138 1	OF 1 1045R
			lumbis			I)				N 1,795 E 915 Ver	
EGU		1	MPLETED			F 1					((FT.) TOTAL DEP
			L-19-8				; BNI. ESEL. TO	P CAS		ripod/Beaver 4" 11.0 ROUND EL. DEPTH/EL. GROUND WATER DEPTI	/EL. TOP OF ROCK
	8	3.3/7	75 🕓			10				₹/	/
	14	40 II	R HEIGH b./18	in.	CAS	SING LE	IFT IN HO NO		A./LE	NGTH LOGGED BY: R. Migues	RJ
	า่ม	<u>.</u>	≒, >	P	HATER	२ RE			n	•	
Tolo	HP. AD	PLE RE	SAMPLE BLOUS "N" X CORE	LOSS NI NI M. 9	TEST		ELEV.	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF
		N C N	ם פ	7.0	Р. С. С. С.	3 4			g		DRILLING, ETC
63	1.0	Ų.9		1						0.0 - 1.6 Ft. <u>Silty claver SAND</u> (SM-SC). Grayish brown (SYR3/2), fine- to very coarse-grained, humus.	Borehole advanced
SS		0.9]		l	-				0-11.0 Ft. using 3. split-spoon sample
SS		0.1]			· .			0.3-0.8 Ft. Moderate brown (5YR4/4).	and 4.0" solid-sten augers.
55	2.0	0.3						Б_		1.6 - 4.9 Ft. Silty SAND (SM). Dark yellowish brown (10YR4/2), mottled with grayish black (N2). Fine- to very coarse-grained, oily.	
	1.0	1.0]		}	-				Borehole was radiologically sam
	1.0	0.9		1						4.9 - 5.5 Ft. <u>SLUDGE</u> . Brownish black (5YR2/1) with clay (?); clasts to 1.5 in.	and gamma-logged TMA-Eberline, Co
	1.0	1.0		4			-	Į.		5.5 - 7.9 Ft. <u>SAND</u> (SW). Brownish gray (5YR4/1), fine- to medium-grained.	2.2-2.9 Ft. & S.5- Ft. Exceptionally
	1.0	1.0		4		ļ	-	Į .		5.9-7.2 Ft. Dark yellowish orange (10YR6/6), mottled with light brown	easy advance; potential cavities of
	1.0	1.0		4			-	10.		(10YR5/6), mottled with light brown (5YR5/6), and clasts of Brunswick SS.	cavity with debris Augered to 8.0 Ft
										 7.2-7.9 Ft. Moderate yellowish brown (10YR5/4) mottled with light brown (5YR5/6) and light brownish gray (5YR6/1). 7.9 - 9.0 Ft. Claver SILT (ML-CL). Pale red (5YR6/2) mottled with moderate reddish brown (10R4/6). 9.0 - 10.0 Ft. SAND (SW). Dark yellowish orange (10YR6/6), very fine- to fine-grained. 10.0 - 11.0 Ft. Claver SILT (ML-CL). Light brownish gray (5YR6/1). Bottom of borehole at 11.0 Ft. Borehole backfilled with spoils, 11/19/87. 	5.5 Ft.
											Description and classification of soils by visual examination.
			1 POON; S ; P = P			,	ITE	1	.06	Columbia Ln. (LODI)	HOLE NO. 1045R

....)

Ì

, , ,____

. .

. ____

ہ . البیس

Sa. 2

: مر

1

·----

. . . .

		EO	LOG	SIC	C D	RIL	l lo		PROJE	СТ		FUSI	RAP		JOB NO 14501	-	SHEET NO 1 OF		E NO. 046R
ITE		.		. 1	r			COORDIN	ATES								FROM HO	RIZBEAR	ING
EGU			Iumbi HPLETE				<u>(1)</u>	<u> </u>		DP 11		<u>1,856</u> Ke and m	E 92	<u>I</u> ISIZE	OVERBURDEN	_	ertical		
			-20-				Engel	BNI.		-		od/Ber		4"	17.0		ROCK (FT.		AL DEP 17.0
						BOXE	SAMPL	ESEL. TO	P CAS	ING	GROL	ND EL.		/EL. GROU		PE	PTH/EL.		
		2.6/					14						¥ /					. /	
	1	40 1	x WEIGH b./18	in		CAS	SING LE	FT IN HO NO		1A./L	ENGT	H LOGGE	D BY:		R. Mis	zues	Q	P/	
٤	รุโต		SAMPLE BLOWS *N*	-		ATE		· • • •			Π	<u>محمد میں بیٹین ڈیا</u>	•		<i>c</i>				
AND DIAN.	튑뛵	RE(Į-	T	EST		ELEV.	독	BRAPHICS	SAMELE	DECO	-		LASSIFIC			ES ON	
	e z	키문		Š I	n I nz.	ун	Hzz.		DEPTH	1 te			1- I 20I		_mJJ4F4V			ER LEV Er rei	
Z	Ϋ́Ξ	E D		뷁		9 9 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 1 9 1	TIME MIN.			B	2							RACTER	
s	1.0	0.9		╉								0.0 - 0.8	Ft. San	dy silty CI	AY (CL-M	<u>ل،</u>			, בונ
is	1.0	0.8						-	1			Verv d	iusirv re	d (10R2/2) ed. Humu	. fine- to	-,.	D-17	hole adv .0 Ft. u	vanced
s	1.0	0.6		-	ļ					-		.8 - 4.7	Ft Silt	r claver S	ND (SM-S	<u>C).</u>	split	spoon 1.0" soli	ample
s	2.0	1.1									Ŋ	Moder grayis	ate brown	n (5YR4/ (5YR3/2)	() mottled v	vith	auge	FB .	
			~					-	5.		N			oderate rec	• • •		-		
5	2.0	0.7								-	N	1.9-2.(in.).	0 Ft. Bl	ack (N1) fi	ragments (<	0.25	radio	hole wa logicali	y samp
s	1.0	1.0		-				-		-		S.0 and fragme		Brunswic	k sandstone:	2	TM	-Eberli	ine, Co
s	1.0	0.8						-				1.7 - 5.0]	Ft. SAN	D (SP). 1	Dark yellowi	sh	16		
s	1.0	1.0		-						-	HI	brown yellowi	(10YR4 ish brow	72) mottle n (10YR2)	Dark yellowi d with dusk (3) and very	y Dale	ſ		
s	1.0	1.0	<u> </u>					-	10.		t ⊢i l	orange	. (10110	0/#); wisii	deoris.		Ang	red and	1
s	2.0	0.9									Ŋ	5.0 - 6.8 3 Moder mediu	Ft. <u>Silt</u> ate redd m-grain	v clayey S lish brown ed.	ND (SM-S (10R4/6), fi	C). ne-t	0 9.0 F	na-scan 't.	
s	1.0	1.0		-		:				-	Ŋŀ	5.8 - 7.4 1 (10P2	Ft. <u>CL/</u>	Y (CL).	Very dusky i bles to 2.5 i ddish brown	red			
S		1.0		+						-	Ň	mottle (10R4)	d with r /6).	noderate re	ddish brow	n., n			÷
S S		1.0 1.0						-	15.	-		7.4 - 7.8 J Brown brown	Ft. <u>Clay</u> ish gray	(5YR4/1)	(SC). , mottled wi	th	cobb	recover les and ck block	iragme
								-				7.8 - 8.2 1 (N5), 1 ETBY (1	Ft. <u>SAN</u> Ine-to SGY6/1	D (SW). medium-gr) mottled v	Medium gra ained. Gree vith specks o rate red (5R	y enish of ligh	samp	ler mou	
												5.2 - 8.4] gray (l medius	Ft. CL N4) with m-grain	Y (CL). I two thin i ed sand lay	viedium dar) line- to vers.	k			
						:	-					3.4 - 10.0 gray (8	FL SA SYR4/1	<u>ND</u> (SW). , very fine	Brownish - to fine-gra	uned.			
												Light I	brownisi	lavey SILT gray (5Y lark gray ((ML-CL). R4/1), mott N4).	led			
												with h	ght brow hedium- ayish or	vnish gray grained mo	R6/2), mot: (5YR6/1); derate red ((5YR7/2) sa	VALVE	14' 6)		
												5.0 - 17. orange depth at 15.2		AND (SP). YR7/2) co arse at 15.0	Grayish arsening wit Ft. to peb	h bles		ription (and
									1			16.2-1	6.3 Ft. 🗉	Clayey silt	•		class	ription i fication	of
												pebbly	sand wi	Fine- to co ith occasion asts (to 1.5	arse-graine nal basalt/d in.).	d iabas	exatt	by visus instion	
	_											Bottom of Borehole	f boreho backfille	le at 17.0 I d with spo	°t. ils. 11/20/8	7			
			DON; S P = P					ITE	1	06	Co	lumb	oia Lr	n. (LO	DI)		HOLE	ND. 1046	5R

. -

2

: ____

`____

·---

......

]____

\ ___

: L--

: . .

. L

.

. L___

~

	_	SE	:0	L	00	Gl	<u>C</u>	D	RII	L	LC				ROJE	CT			FUSRAP					-13	8 1		HOLE NO. 1206R
ITE	100	5 1	Col		nhi		Ъл	. (LO	DI	n i	ſ	DORD	INA:	TES			N	1,826 E 93	c.				4	le fr Vert		BEARING
EGU								ILL	ER							DR			KE AND HODEL	SIZE	1	OVERB				(FT.)	TOTAL DEPT
	3-8							ODE			Dge					2 14			ttle Beaver UND EL. DEPTH	4" /EL. G			<u>6.0</u>) FPTH	/FI TOP	OF ROCK
жe	KEL	10	/ EK 1		F i e ,	(~)	ſ	URE	00/	123	0			107	UN3 .	1 46 1	ן ו						51	_[/	/
ANP.	LE	W		₹ Ы ₹/.		HT/	/FA	LL	C	ASI	ING L	EFT		HOL		ΙΑ.	/11	NG	TH LOGGED BY:		-	R.	. Mi	gue	\$	991	
	ADV.			ш. Ш.		ERY		PR	IAT.	iUR	RE .	Τ		Τ			8	u	•			ć	•			NOTES	N :
.Ö	BAMP. ADV.		RE R	SAMPLE 2450	20	RECOVE	1033	G.P.H	PRESS.		TINE MIN,		LEV	•	DEPTH		graphics		DESCRIPTIO	1 AND		_ass;	IFIC	AT!	ION	WATER	LEVELS, RETURN, CTER OF
	6.0	WVa			_	ž	7.	a.	and a		<u>-</u> Ξ				5.	socionistic and the second	_		0.0 - 6.0 Pt. NC Borehole aug only. See log	SAMP red for 1049R	LES gan for (TAK ma-s geologi	EN. canni ical d	ng, ata.		DRILL Boreho 0-6.0 F in. aug Boreho radiolo	ING, ETC. le advanced t. using 4.0 ers.
											-								Bottom of boreh Borehole backfil	le at 6. Id with	i.0 F	t. jils, 12	/3/8	7.	·	TMA-	mma-logged Eberline, Cor
																										classif soils b	scription and ication of y visual nation.
											JBE; DTHER	SIT	TE .			1(06	(Columbia l	.n. (LC	DI)				HOLE	^{10.} 1206R

· ·--

1

~~~

\_\_\_\_]

. `````

.

- . \_ **)** 

: \_\_\_\_

; |\_\_\_

; \_

|               |       | <b>GEC</b> | DLC             | )GI                                                                                         | CD                  | RIL                   | <u> </u>     | G                  | PROJEC   |          | JOB NO. SHEET NO. HOLE<br>FUSRAP 14501-138 1 OF 1 10                                                         |
|---------------|-------|------------|-----------------|---------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------|--------------------|----------|----------|--------------------------------------------------------------------------------------------------------------|
| SITI          |       | 5 Ca       | lum             | bia                                                                                         | Ln. (               | LOD                   | I)           | COORDIN            | ATES     |          | ANGLE FRON NORIZBEARIN<br>N 1,892 E 934 Vertical                                                             |
| BEG           | JN    | C          | OMPLI           | ETED                                                                                        | DRILL               | ER                    |              |                    | 1        |          | NAKE AND NODEL SIZE OVERBURDEN ROCK (FT.) TOTAL                                                              |
|               | 20-   |            |                 |                                                                                             |                     | BOXE                  | SAMPL        | ; BNI.<br>ESEL. TO | P CASI   | NG       | Little Beaver 4" 9.0 9<br>ROUND EL. DEPTH/EL. GROUND WATER DEPTH/EL. TOP OF ROU                              |
| SAM           |       |            | R LIF           | IGHT                                                                                        | /FALL               | CAS                   | O            | FT IN HO           |          |          |                                                                                                              |
|               |       |            | N/A             |                                                                                             | -                   |                       |              | NO                 |          |          | R. Migues                                                                                                    |
| E.H           | 김삝    | REC.       | uz.             | lm⊱                                                                                         | PR                  | IATEF<br>ESSU<br>ESTS | RE           |                    | -        | 8        | NOTES ON:                                                                                                    |
| Helo          | COR S |            | L ST            | S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |                     |                       |              | ELEV.              | OEPTH    | BRAPHICS | DESCRIPTION AND CLASSIFICATION WATER LEVE                                                                    |
|               | SAMP. | BAMPLE     | SAMP<br>BIL OUS | X CORE                                                                                      | LOSS<br>IN<br>G.P.M | PRESS.<br>P. S. I.    | TIME<br>MIN. |                    | δ        | AR0      | CHARACTER<br>DRILLING,                                                                                       |
| AU            | 9.0   | lini -     |                 |                                                                                             |                     | <u> </u>              |              |                    | <u> </u> |          | 0.0 - 9.0 Ft. NOT GEOLOGICALLY                                                                               |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          | 1041R. This hole was Beaver-augered only,<br>for use as a gamma-scan hole. Solid-stem aug<br>only.           |
|               |       |            |                 |                                                                                             |                     |                       |              |                    | .        |          | omy.                                                                                                         |
|               |       |            |                 |                                                                                             |                     | 1                     |              |                    |          |          |                                                                                                              |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          | Borehole was<br>gamma-logged                                                                                 |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          | gamma-logged<br>TMA-Eberline<br>to 8.0 Ft.                                                                   |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               |       | <u> </u>   |                 |                                                                                             |                     |                       |              | -                  | - ·      |          | Bottom of borehole at 9.0 Ft.<br>Borehole backfilled with spoils, 11/20/87. Borehole was a                   |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          | Borehole backfilled with spoils, 11/20/87.<br>Borehole was a sampled due to proximity of 10<br>This hole was |
| 1             |       |            |                 |                                                                                             |                     |                       |              |                    |          |          | This hole was<br>determine if<br>contamination                                                               |
|               |       |            |                 | Ì                                                                                           |                     |                       |              | ]                  |          |          | continued und<br>house.                                                                                      |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
| l             |       |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               |       |            | ļ               |                                                                                             |                     |                       |              |                    |          | ļ        |                                                                                                              |
|               | 1     |            |                 | :                                                                                           |                     |                       |              |                    |          |          |                                                                                                              |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               | 1     |            |                 |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               |       |            |                 |                                                                                             |                     |                       |              |                    | X.       |          |                                                                                                              |
|               |       |            | ·               |                                                                                             |                     |                       |              |                    |          |          |                                                                                                              |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          | Description an<br>classification of<br>soils by visual                                                       |
|               |       |            |                 |                                                                                             |                     |                       |              |                    |          |          | examination.                                                                                                 |
|               |       |            |                 |                                                                                             |                     |                       | 1            |                    | 1        |          |                                                                                                              |
|               |       |            |                 |                                                                                             | <u> </u>            |                       | <u> </u>     | <u> </u>           |          |          | HOLE NO.                                                                                                     |
|               |       |            |                 |                                                                                             | = SHE               |                       | /            | SITE               | 1        | 106      | Columbia Ln. (LODI)                                                                                          |
| ( <b>1</b> 1) |       |            |                 | •                                                                                           |                     |                       |              |                    |          | A-       |                                                                                                              |

· .

| SITE     |                      | EC             | DLO                           | GI        | CD         | RIL                     | LLO          |          | PROJE      | СТ       |        | FUSRAP                                                 |                             | JOB NO<br>14501             | -138          | HEET NO.<br>1 OF 1<br>FROM HORIZ | HOLE NO.<br>1042R                        |
|----------|----------------------|----------------|-------------------------------|-----------|------------|-------------------------|--------------|----------|------------|----------|--------|--------------------------------------------------------|-----------------------------|-----------------------------|---------------|----------------------------------|------------------------------------------|
| EGU      | 106                  |                |                               |           | Ln. (      |                         | I)           |          |            |          |        | N 1,811 E 937                                          |                             |                             | Ve            | rtical                           |                                          |
|          |                      | 1              | 1-18-                         |           | 1          |                         | Engel        | ; BNI.   |            |          | _      | NAKE AND NODEL<br>ripod/Beaver                         | SIZE                        | OVERBURDEN<br>12.6          |               | CK (FT.)                         | TOTAL DEF                                |
| ORE      |                      |                |                               | ./%       | CORE       |                         | SSAMPL       |          | P CAS      | ING      | G      | ROUND EL. DEPTH                                        | /EL. CROUN                  | DWATER                      | DEP           | TH/EL. TOP                       |                                          |
| AHP      |                      | 1.9/0<br>AMMEI | NEIG                          | SHT/      | /FALL      | ICA!                    | 9<br>SING LE | FT IN HO | LE: DI     | A.7      | LEI    | IGTH LOGGED BY:                                        | ., ., ., .,                 |                             |               |                                  | ,<br>                                    |
|          | 1                    | 40 1           | b./18                         | 3 i1      | a.         |                         |              | NO       |            |          |        |                                                        |                             | R. Mij                      | ues (         | MJ-                              | _                                        |
| H.       | <del>Σ</del> Ϊ₩      |                | SAMPLE<br>BLOUS "N"<br>X CORF | ,≿        | PR         | JATE!<br>ESSU           | RE           |          |            | 2        |        | •                                                      |                             | <b>~</b>                    |               |                                  | -                                        |
| DIA      | 2 D                  |                | 100                           |           | <u>π</u> Σ | TEST:                   |              | ELEV.    | DEPTH      | ĬĬ       | SAMPLE | DESCRIPTION                                            | AND CL                      | ASSIFIC                     | ATION         | NOTES WATER                      | DN:<br>LEVELS,                           |
| 2        | <sup></sup><br>비리    | 토병             | AP-02                         | .Ш        | G. P. M    | PARSS<br>PARSS<br>PARSS | HIN.         |          |            | GRAPHICS | SEL    |                                                        |                             |                             |               |                                  | RETURN                                   |
| gā<br>SS | )<br><u>-</u><br>1.0 | 0.8<br>0.8     | 6                             |           | <u> </u>   | <u>äi</u>               | μ <u>Σ</u>   |          |            |          |        | 0.0.0.9 24 201-                                        | M                           | AN 701-17                   |               |                                  | ING, ETC                                 |
| SS<br>SS |                      | 1.0            |                               | _         |            |                         |              | -        | ].         |          |        | 0.0 - 0.3 Ft. Silty<br>Dusky yellowis<br>medium-graine | h brown (1                  | 0YR2/2), f                  | ine- to       | Borehol                          | e advanced<br>Ft. using 3.0              |
| 55       |                      | 1.0            |                               | -         |            |                         |              |          | ·          |          |        | 0.0 - 9.9 P4 (7)                                       |                             | ND (SC-SI                   | <u>x).</u>    | split-sp                         | oon sample<br>solid-ster                 |
| 85       | 2.0                  | 0.8            |                               |           |            |                         |              | •        |            |          |        | Moderate reddi<br>coarse-grained<br>clasts of Bruns    | ish brown<br>with pebb      | 10R4/6), fi<br>es (to 1.0") | ne- to<br>and | augers.                          |                                          |
|          |                      |                |                               | ~         |            |                         |              |          | _·         |          |        | clasts of Bruns                                        | wick SS.                    | ••••                        |               |                                  |                                          |
| SS       | 2.0                  | 0.7            |                               | 7         | :          |                         |              |          | 5-         |          |        | 5.0 Ft. Concre                                         | te fragmen                  | ts.                         |               | Borehol                          | e was<br>rically samp                    |
|          |                      |                |                               |           |            |                         |              |          |            |          |        | 6.8-7.0 Ft. Sh                                         | dgy sand;                   | brownish b                  | ack           | and gan                          | nma-logged                               |
| SS       | 2.0                  | 1.0            |                               |           |            |                         |              |          |            |          |        | 6.8-7.0 Ft. Six<br>(5YR2/1), fine                      | - to very c                 | oarse-grain                 | ed.           |                                  | ·                                        |
| ss       | 10                   | 1.0            |                               |           |            |                         |              |          | <b>Z</b> . |          |        |                                                        | me as 6.8-1                 | 7.0 Ft.                     |               | FOIR                             | Groundwa                                 |
| ss       |                      | 0.7            |                               | _         |            |                         |              | -        | 10_        | 44       |        | 8.8 - 9.1 Ft. CLA<br>(5Y4/1) mottle                    | Y (CL). C                   | live gray                   | treaks        | - observe                        |                                          |
|          |                      |                |                               |           | I          |                         |              |          | .          |          | N      | n i i                                                  |                             |                             |               | Gamma                            | -scanned to                              |
|          |                      |                |                               |           |            |                         |              |          |            |          | ſ      | 9.1 - 9.9 ft. Clay<br>Brownish black<br>moderate red ( | s (5YR2/1)<br>5R4/6); sli   | mottled windgey.            | ith           |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        | 9.9 - 12.6 Ft. Sili<br>(5R6/2) lamini<br>(5YR5/6). Als |                             |                             |               | 7                                |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        | (5YR5/6). Als                                          | o a few lay<br>4) with ver  | ers of mode<br>v fine       | rate          | 1.                               |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        | brown (5YRS/<br>cross-bedding;                         | graded be                   | ding.                       |               | Low rec                          | overy due i<br>and fragme<br>blocking th |
|          |                      |                |                               |           |            |                         |              |          |            |          |        | Bottom of borehol<br>Borehole backfille                | le at 12.6 F<br>d with spoi | 't.<br>11, 11/18/8          | 7.            | of rock<br>sampler               | blocking th<br>mouth.                    |
|          |                      |                |                               |           | ļ          |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
| Ì        |                      |                |                               |           |            |                         |              |          | Ì.         |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           | İ          |                         |              |          | {          |          |        |                                                        |                             |                             | ,             |                                  |                                          |
|          |                      |                |                               |           |            |                         | ļ            |          |            |          |        |                                                        |                             |                             | •             |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           | •          |                         | ł            |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               | Descrip                          | tion and<br>ation of                     |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               | soils by<br>examination          | visual                                   |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
|          |                      |                |                               |           |            |                         |              |          |            |          |        |                                                        |                             |                             |               |                                  |                                          |
| \$S =    | SPL                  | IT S           | 200N;                         | ST        | * SHE      | LBY TU                  |              | ITE      | •••••••    | 04       |        | Columbia La                                            |                             | <br>DI)                     |               | HOLE NO                          |                                          |
| , =      | UENN                 | 1 20W          | ; " =                         | <b>P1</b> | TCHER;     | U = (                   | JIHER        |          | _          | -9       | _      | Columbia Lr                                            |                             | <i>)</i>                    |               |                                  | 042R                                     |

<u>`</u>\_\_\_

;

-

`~~-

·····

----

-----

`-----

|         |                            | EC                 | LOG                                       | IC D                 | RIL          | L LO          | G        | PROJE |          | F          | USRAP                          |                             | JOB NO.<br>14501-                              | 138 1      |                     | HOLE NO. 1041]           |
|---------|----------------------------|--------------------|-------------------------------------------|----------------------|--------------|---------------|----------|-------|----------|------------|--------------------------------|-----------------------------|------------------------------------------------|------------|---------------------|--------------------------|
| SITË    |                            |                    | lumbia                                    | Ln (                 | ת הי         | T)            | COORDIN  | ATES  |          | N 1 0      | 63 R A                         | 40                          | A                                              |            | ON HORIZ            | BEARING                  |
| EGU     |                            |                    | MPLETED                                   |                      |              | <u> </u>      | 1        |       | DRIL     |            | 53 E 94                        | 48<br>ISIZE                 | OVERBURDEN                                     | Vert       | (FT.)               | TOTAL DE                 |
|         |                            |                    | -18-8                                     |                      | <b>G</b> . 3 | Engel         | BNI.     |       | •        | [ripod     | Beaver                         | 4"                          | 11.0                                           |            |                     | 11.0                     |
| ORE     |                            | over)<br>.5/1      |                                           | () CORE              | BOXE         |               | ESEL. TO | P CAS | ING      | GROUND     | EL. DEPI                       | TH/EL. GRO                  | UND WATER                                      | DEPTH      | EL. TOP             | OF ROCK                  |
| ANP     |                            |                    | NEIGHT                                    | /FALL                | CAS          | 11<br>SING LE | FT IN HO | LE: D | 1A./L    | ENGTH I    | OGGED BY:                      | <u> </u>                    |                                                |            |                     |                          |
|         | 14                         | 10 1               | b./18 i                                   | <u>n.</u>            |              |               | NO       |       |          |            |                                |                             | R. Migu                                        | ies        | Mor                 | -                        |
| Ľ.      | <u>с</u>                   |                    | SAMPLE<br>BLOUS "N"<br>X CORE<br>RECOVERY | PR                   | JATE         |               |          |       |          |            | •                              |                             | ۰ م                                            |            |                     |                          |
|         | <b>A</b> B<br>B            | REC                |                                           |                      | EST          | 5             | ELEV.    | ₹     | GRAPHICS |            |                                | on and a                    | LASSIFICA                                      | TTON       | NOTES               | -                        |
| i.      |                            | 민                  |                                           | ຫຼັ<br>ຫຼັ           | SH S         | HIME<br>HIN.  |          | DEPTH | Ē        |            | 9041- I 11                     | on And C                    | NCHOOTLTNH                                     | TON        | 1 · · · · · · · ·   | RETURN                   |
| 諉       | S<br>S<br>S<br>S<br>S<br>S | <b>M</b><br>N<br>N | a El XIII                                 | LOSS<br>LOSS<br>G.P. | PRESS.       | 부부분           |          | -     | 8        | M<br>I     |                                |                             |                                                |            |                     | NG, ET                   |
| \$S     | 1.0                        | 0.9                |                                           |                      | 64.65        |               | -        |       |          | 10.0       | 0.3 ft. Silt                   | ty sandy C                  | AY (CL-ML).                                    | - <u> </u> |                     |                          |
| ss      | 1.0                        | 0.9                |                                           |                      |              |               |          |       |          | H =        | rayish brov<br>edium-grai      | vn (5YR3/3<br>ined, humu    | 2), fine- to<br>5.                             |            | 0-11.0 F            | e advance<br>`t. using 3 |
| ss      | 1.0                        | 0.3                |                                           |                      |              |               |          |       |          | 0.3 -      | 3.5 Ft. 8                      | Ddy CLAY                    | (CL-SC).                                       | انــــــ   | and 4.0             | oon sampl<br>solid-ste   |
| 55      | 1.0                        | 1.0                |                                           |                      |              |               | · _      |       |          | ₩ ₩        | loderate rec<br>edium-grai     | z (ort4/5), :<br>ined.      | une- to                                        | ,          | augers.             |                          |
| SS      | 1.0                        | 1.0                |                                           |                      |              |               | -        | _     |          |            | 2-3.5 Ft. 1                    | Mottled wit                 | ih dark yellowii                               | տե [_      | 4                   |                          |
| SS      | 1.0                        | 1.0                |                                           |                      |              |               |          | ⁵.    |          | <b>v</b> n | rown (10YF                     |                             | T                                              | /          | Borehol             |                          |
| 6S      | 1.0                        | 0.6                |                                           |                      |              |               |          |       | -        | H 3.5 -    | ту (5¥6/1)                     | MOTTIED W                   | Light olive<br>ith yellowish g                 | ray        | and gam             | ically sam               |
| 55      | 1.0                        | 1.0                |                                           |                      |              |               | _        |       | 1        | N I        |                                |                             |                                                | 1          | TMA-E               | berline, C               |
| ss      | 1.0                        | 1.0                | <u> </u>                                  |                      |              |               | _        |       |          | VII y      | llowish bro                    | wn (10YR:                   | ne sand; dusky<br>2/2), fine- to               | ľ          | 1                   |                          |
| SS      | 1.0                        | 1.0                |                                           |                      |              |               | -        | 1     |          |            | arse-grain                     |                             |                                                | ľ          | 1                   |                          |
| ss      | 1.0                        | 0.8                | ****                                      |                      |              |               |          | 10.   |          |            | ottled with                    | moderate :                  | iack (5YR2/1)<br>red (5R4/6).                  | []         |                     | to 9.0 F                 |
|         |                            |                    |                                           |                      |              |               |          | •     |          | 4.4        | 7.8 Ft. 5/                     | ND (SP).                    | Pale yellowish                                 |            | Gamma<br>8.5 Ft.    | -scanned                 |
|         |                            |                    |                                           |                      |              |               |          |       |          | y y        | ellowish bro                   | wn (10YR)                   | Pale yellowish ed with dusky $2/2$ , fine- to  |            |                     |                          |
|         |                            |                    |                                           |                      | -            |               |          |       |          | 11         | arse-grain                     |                             |                                                |            |                     |                          |
|         |                            |                    | . •                                       |                      |              |               |          |       |          |            |                                |                             | andstone clast                                 | · · · •    |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          | <b>v</b>   | ith light oli                  | ve gray (5)                 | rk gray (N4) m<br>(5/2).                       | ottled     |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          | 7.         | 2-7.8 Ft. 1                    | Medium gra                  | y (N5).                                        | i          |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          | 1 1 18     | 9.0 Ft. <u>CI</u><br>R6/2) mot | tled with d                 | Pale red<br>ark yellowish o<br>ie red (5R4/6). | range      |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          |            |                                |                             | Medium ligh<br>pale red (5R6/                  |            |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          |            |                                |                             | d.<br>5R6/2), very fir                         |            |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          |            | fine-grain                     | ed.                         |                                                |            |                     |                          |
|         |                            |                    |                                           | :                    |              |               |          |       |          | Bott       | om of boreh<br>hole backfil    | ole at 11.0<br>lied with sp | Ft.<br>oils, 11/18/87.                         |            |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          |            |                                |                             |                                                | ,<br>, .   |                     |                          |
|         |                            |                    | 1                                         |                      |              |               |          |       |          |            |                                |                             |                                                | •          |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          |            |                                |                             |                                                |            |                     |                          |
|         |                            |                    |                                           |                      |              |               |          |       | † ·      |            |                                |                             |                                                |            |                     |                          |
| I       |                            |                    |                                           |                      |              |               |          |       |          |            |                                |                             |                                                |            | Descript            | ion                      |
|         |                            |                    |                                           |                      |              |               |          |       |          |            |                                |                             |                                                |            | classifics          | tion of                  |
|         | ł                          |                    |                                           |                      |              |               |          |       |          | 1          |                                |                             |                                                |            | soils by<br>examina |                          |
|         |                            |                    |                                           |                      |              |               |          |       |          |            |                                |                             |                                                |            |                     |                          |
| <br>s = | SPL1                       | T SP               | DON; ST                                   | = SHEI               | BY TI        | BE SI         | TE       |       |          |            | ······                         |                             | -<br>                                          |            | HOLE NO.            | <u> </u>                 |
| = [     | DENNI                      | SON ;              | P = PI                                    | TCHER;               | 0 = 0        | THER          |          | 1     | .06      | Colu       | mbia L                         | n. (LO                      | )<br>IDI)                                      |            |                     | )41R                     |

1\_\_\_

<u>|</u>\_\_\_

·----

1\_\_\_\_

-----

`----

~

، ہـــــ

·\_\_\_

· • • • •

|            | iEC         | LOG                                       | IC D            | KIL   | LLO    |                    | 700   |                   | 1                | FUSR                         | AP      |                         | 1450                         | 1-138 1          |                                           | 1049F                                                              |
|------------|-------------|-------------------------------------------|-----------------|-------|--------|--------------------|-------|-------------------|------------------|------------------------------|---------|-------------------------|------------------------------|------------------|-------------------------------------------|--------------------------------------------------------------------|
| E<br>106   | Co          | lumbia                                    | Ln. (           | LOD   | n      | COORDIN            | TES   |                   | N 1,8            | 270                          | E 954   | 1                       |                              | ANGLE FR<br>Vert |                                           | BEARING                                                            |
| UN         | 100         | MPLETED                                   | DRILL           | ER    |        | J                  |       | DRILL             | MAKE             | AND NO                       | DEL     | SIZE                    | OVERBURDE                    |                  | ( (FT.)                                   | TOTAL DE                                                           |
|            |             | 1-30-8                                    |                 |       |        | ; BNI.<br>ESEL. TO | 0 CAS |                   | Little<br>GROUND | Beav                         |         | 4"                      | 6.0                          | DEPTH            |                                           | OF ROCK                                                            |
| e Reu      | /           |                                           |                 | POAL  | 0      |                    | r uns |                   | akuunu           | 22.                          | ¥ /     | EL. WAU                 |                              |                  | /                                         |                                                                    |
| PLE N      |             | RWEIGHT                                   | /FALL           | CAS   | ING LE | FT IN HO           |       | A./LE             | NGTH             | LOGGED                       | BY:     |                         | D M                          |                  |                                           | al                                                                 |
| •          | 1.          | N/A                                       | L               | IATER | 2      | NO                 |       | TT                | 1                |                              |         |                         | <u>R. M</u>                  | igues            | 1                                         | 20-                                                                |
| SAMP. ADV. | SAMPLE REC. | SAMPLE<br>BLOUS "N"<br>X CORE<br>RECOVERY | PR<br>1<br>SSOJ | ESSU  | RE     | ELEV.              | DEPTH | GRAPHICS<br>52001 |                  | ESCRI                        | PTIO    | 1 AND (                 | (Lassifi)                    | CATION           | CHARA                                     | ON:<br>LEVELS<br>Return<br>Cter of<br>Ing, et                      |
| 6.0        |             |                                           |                 |       |        | · ·                | 5.    |                   |                  | - 6.0 F<br>from au<br>during | LEST SD | oils: geolo             | 2 (SC). Log<br>gist not pres | ged<br>ent       | 0-6.0 F<br>solid-st<br>only.              | e advanced<br>t. using 4.0<br>em augers,                           |
| <b> </b>   |             |                                           |                 |       |        | -                  |       |                   |                  | 5.5-6.0                      | Ft. (A  | pprox.)                 | l'arry, oily a               | and.             | Borehol<br>gamma                          | le was<br>-logged by<br>Sberline, C                                |
|            |             |                                           |                 |       |        |                    |       |                   | Bot<br>Bor       | tom of<br>whole b            | boring  | at 6.0 Ft<br>id with sp | joils, 11/30/                | 87.              | to 5.5 F<br>Auger 1<br>Ft. Pro            | it.<br>it.<br>it.<br>it.<br>it.<br>it.<br>it.<br>it.<br>it.<br>it. |
|            |             |                                           |                 |       |        |                    |       |                   |                  |                              |         |                         |                              |                  | Descrip<br>classifi<br>soils by<br>examin | otion and<br>cation of<br>visual<br>ation.                         |
| s SPI      | JT S        | POON; ST                                  | L = SHF         |       |        | SITE SITE          |       |                   |                  | <u></u>                      |         |                         |                              |                  | HOLE N                                    |                                                                    |
|            |             | ; P = P                                   |                 |       | ,      |                    |       | 106               | Col              | umb                          | oia L   | n. (L(                  | DDI)                         |                  | 1                                         | 049R                                                               |

`\_\_\_

: \ \\_\_\_\_

÷\_\_\_\_

1

:

: -----

~

. : .\_\_\_

| SITE |            | EC          | )LC                 | )GI                | C D                 | RIL                                    | LLC     |                      | PROJE   | 57       |        | FUSI                       | RAP                                     |                                    |                                          | 138 1              | OF 1                                             | HOLE N<br>120     |
|------|------------|-------------|---------------------|--------------------|---------------------|----------------------------------------|---------|----------------------|---------|----------|--------|----------------------------|-----------------------------------------|------------------------------------|------------------------------------------|--------------------|--------------------------------------------------|-------------------|
|      | 106        | Co          | lum                 | bia                | Ln.                 | LOD                                    | )<br>I) | COORDIN              | ATES    |          | N      | 1,796                      | E 961                                   | l                                  | ^                                        |                    | ROM HORIZ<br>tical                               | BEARING           |
| BEGL | ін<br>-3-8 |             |                     |                    | DRILI               |                                        | Encol   | DNI                  |         |          | L NAJ  | E AND H                    | ODEL                                    | SIZE                               | OVERBURDEN                               | ROC                | K (FT.)                                          | TOTAL             |
|      |            |             |                     |                    |                     | BOXE                                   | SSAMP   | I; BNI.<br>LESEL. TO | DP CASI | ING      | GROU   | le Bea                     |                                         | 4"<br>/EL. GROUI                   | 8.0<br>ND WATER                          | DEPTI              | I/EL. TOP                                        | OF ROC            |
| AME  |            |             |                     | IGHT               | /FALL               | - Las                                  |         | EFT IN HO            |         | A /1     | ENCT   |                            | ¥ /                                     |                                    |                                          |                    | /                                                |                   |
|      |            |             | N/A                 |                    |                     |                                        |         | <u>NO</u>            |         | ~•/ L    |        |                            |                                         |                                    | R. Mig                                   | ues                |                                                  |                   |
|      | SAMP. ADV. | SAMPLE REC. | SAMPLE<br>BLOUS "N" | X CORE<br>RECOVERY | LOSS<br>IN<br>G.P.M | ATEFESSU<br>FESSU<br>SSUS<br>SSUS<br>A | RE      | ELEV.                | OEPTH   | GRAPHICS | SAMPLE | DESCR                      | IPTION                                  | i and ci                           | ASSIFIC                                  | TION               | NOTES<br>WATER<br>WATER<br>CHARAC<br>DRILLI      | LEVEL<br>RETUR    |
| ĀU   | 6.0        |             |                     |                    |                     | •                                      | -       | -                    | -       |          | C      | .0 - 6.0<br>Boreh<br>only. | Ft. <u>NO</u><br>ole auger<br>See log 1 | SAMPLES<br>ed for gam<br>1049R for | TAKEN.<br>1ma-scannin,<br>reological dat | ζ,<br>. <b>8</b> . | Borehole<br>0-8.0 Ft<br>in. auger                | . using           |
| -    |            |             |                     |                    |                     |                                        |         | -                    |         |          | I      | lottom o<br>lorehole       | f boreho<br>backfille                   | le at 8.0 F<br>d with spo          | t.<br>ils, 12/3/87.                      |                    | Borehole<br>radiologi<br>and gam<br>TMA-E        | ically ea         |
|      |            |             |                     |                    |                     |                                        |         |                      |         |          |        |                            |                                         |                                    |                                          |                    |                                                  |                   |
|      |            |             |                     |                    |                     |                                        |         |                      |         |          |        |                            |                                         |                                    |                                          |                    |                                                  |                   |
|      |            |             |                     |                    |                     |                                        |         |                      |         |          |        |                            |                                         |                                    |                                          |                    |                                                  |                   |
|      |            |             |                     |                    |                     |                                        |         |                      |         |          |        |                            |                                         |                                    |                                          |                    |                                                  |                   |
|      |            |             |                     |                    |                     |                                        |         |                      |         |          |        |                            |                                         |                                    |                                          |                    |                                                  |                   |
|      |            |             |                     |                    |                     |                                        |         |                      |         |          |        |                            | ·                                       |                                    |                                          |                    |                                                  |                   |
|      |            |             |                     |                    |                     |                                        |         |                      |         |          |        |                            |                                         |                                    |                                          |                    | No descr<br>classifica<br>soils by v<br>examinat | tion of<br>visual |
|      |            |             |                     |                    | = SHEI<br>CHER;     |                                        |         | 1 <b>TE</b>          | 1       | 06       | Co     | lumb                       | oia Ln                                  | i. (LOI                            | DI)                                      |                    | HOLE NO.                                         | 05R               |

| ITE     |              | EO       | LO              | GI        | C D                 | RILI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . LO                 | G              | PROJE |          | ·      | FUSRAP                                                                        |                             |                     | 138 1           | ET NO.<br>OF 1<br>OM HOR1Z                  | HOLE NO.<br>1097R<br>BEARING                     |
|---------|--------------|----------|-----------------|-----------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|-------|----------|--------|-------------------------------------------------------------------------------|-----------------------------|---------------------|-----------------|---------------------------------------------|--------------------------------------------------|
|         |              | Co       | lumt            | <b>ia</b> | Ln. (               | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I)                   |                |       |          | 1      | 1,808 E 961                                                                   | L                           |                     | Vert            |                                             |                                                  |
| EGU     |              | 1        |                 |           | DRILL               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                |       |          | il I   | AKE AND NODEL                                                                 |                             | OVERBURDEN          | ROCI            | ( (FT.)                                     | TOTAL DEP                                        |
|         |              |          | -30             |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | BNI            | PAT Q |          |        | uteman Auger<br>OUND EL. DEPTH                                                | 4"<br>/EL. GROU             | 9.0                 | DEPTH           | /EL. TOP                                    | 9.0                                              |
| UKE     | AL U         | /        |                 | •/ =/     | /                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                    |                |       |          | ł      | 11111111111111111111111111111111111111                                        |                             |                     |                 | / /                                         | Di NOON                                          |
| AMP     | LE N         |          | R WEI           | GHT,      | /FALL               | CAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ING LE               | FT IN HO<br>NO |       | 14./     | LEN    | GTH LOGGED BY:                                                                |                             | R. Mig              | ues             | OPI                                         | >                                                |
| ٢       | <u>ວ່</u> ເມ | REC.     |                 | <u>ج</u>  |                     | ATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE                   |                |       | Ŋ        |        | •                                                                             |                             | e .                 |                 |                                             |                                                  |
| All bie | LEN CORE     | CORE REC | SAMPLE<br>BLOUS | RECOVERY  | LOSS<br>IN<br>G.P.M | ESTS<br>SH SS<br>SH SH SS<br>SH S | TIME<br>MIN.<br>MIN. | ELEV.          | DEPTH | GRAPHICS | SAMPLE | DESCRIPTIO                                                                    | n and Ci                    | _ASSIFIC            | ATION           | WATER                                       | ON:<br>LEVELS;<br>RETURN;<br>CTER OF<br>ING, ET( |
|         |              | -        |                 | 4         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                | 5.    |          |        | 0.0 - 8.0 Ft. <u>Gec</u><br>Augered for ra<br>geologic descr<br>adjacent bore | dioactive c                 | ontaminatio         | on data;<br>rom | 0-9.0 Fi<br>in. auge<br>Borehol<br>radiolog |                                                  |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | •              |       |          | 8      | Bottom of boreho<br>Borehole backfill                                         | ble at 8.0 F<br>ad with spo | t.<br>jila, 11/30/8 | 7.              | 8.0 Ft.<br>high to:<br>OVA.                 | Unusually<br>cic reading                         |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                |       |          |        |                                                                               |                             |                     |                 | 8.0 Ft.                                     |                                                  |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                |       |          |        |                                                                               |                             |                     |                 |                                             |                                                  |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                |       |          |        |                                                                               |                             |                     |                 |                                             |                                                  |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                    |                |       |          |        |                                                                               |                             |                     |                 |                                             |                                                  |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                |       |          |        |                                                                               |                             |                     |                 |                                             |                                                  |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                |       |          |        |                                                                               |                             |                     | •               |                                             |                                                  |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                |       |          |        |                                                                               | ۰.                          |                     |                 |                                             |                                                  |
|         |              |          |                 |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                |       |          |        |                                                                               |                             |                     |                 | No desc<br>classific<br>soils by<br>examin  | ription ar<br>ation of<br>visual<br>ation.       |
|         |              |          |                 |           | = SHE               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /                    | ITE            |       | 10       | <br>6  | Columbia L                                                                    | n (10                       | וח)                 |                 | HOLE NO                                     | 097R                                             |

•

، مىسى:

.

\ \_\_

| |---

| GEOLOGIC DRILL LOG FUSRAP 14501-138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SHEET NO.            | HOLE NO.                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 1174R                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FROM HORIZ           | BEARING                                           |
| EGUN COMPLETED ORILLER OVERBURDEN R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OCK (FT.)            | TOTAL DEPT                                        |
| 1-25-87     E.D.I.     Mobile B-57     6.5"     8.0       ORE RECOVERY (FT./%)     CORE BOXES SAMPLES EL. TOP CASING GROUND EL.     DEPTH/EL. GROUND WATER     DEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TH /F1               | 8.0                                               |
| 1.5/19 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TH/EL. TOP           | UP KUCK                                           |
| AMPLE HAMMER WEIGHT/FALL CASING LEFT IN HOLE: DIA./LENGTH LOGGED BY:<br>140 lbs./ 30 in. NONE David Harnis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>_</u>             |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>             |                                                   |
| WATER<br>PRESSURE<br>TESTS<br>UNATER<br>PRESSURE<br>TESTS<br>UNATER<br>PRESSURE<br>TESTS<br>UNATER<br>PRESSURE<br>TESTS<br>UNATER<br>PRESSURE<br>TESTS<br>UNATER<br>PRESSURE<br>TESTS<br>UNATER<br>PRESSURE<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TESTS<br>UNATER<br>TEST | WATER<br>CHARAC      | ON:<br>LEVELS,<br>RETURN,<br>CTER OF<br>ING, ETC. |
| 3S         2.0         0.0         28-22         0.0         - 4.0 Ft. Silty SAND and Silty GRAVEL           FILL (SM, GM).         FILL (SM, GM).         FILL (SM, GM).         FILL (SM, GM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0-10 Ft            | with 6.5"                                         |
| SS 2.0 1.5 4-4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | auger.               | ow-stern<br>proken grave                          |
| 10<br>1.0-4.0 Ft. Silty SAND, yellowish brown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on top c<br>asphalt. | f 2" of                                           |
| S         2.0         4-9-10           17         5         (10) R54/3) becoming dark reddiab gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sampled              | adiologically<br>and<br>logged by                 |
| 17     5_     (10YR4/3) becoming dark reddish gray<br>(5YR4/2) downward; top is dark yellowish<br>brown (10YR4/4) from iron stain; faint<br>laminations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ŤMA-E                | berline, Corr                                     |
| Bottom of borehole at 8.0 ft.<br>Borehole backfilled with spoils, 11/25/87.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | identifica           | by visual                                         |
| S = SPLIT SPOON; ST = SHELBY TUBE; SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HOLE NO.             |                                                   |
| = DENNISON; P = PITCHER; O = OTHER Brook St. (LODI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 74R                                               |

`.....